Методы исследования эжекторных усилителей тяги (ЭУТ)

В.А. Голубев, В.П. Монахова

Приведены результаты расчетно-теоретических и экспериментальных исследований характеристик эжекторного усилителя тяги. Получены значения коэффициента эжекции

и прироста тяги 50% (коэффициент увеличения тяги) при относительной $n{=}\,4,64$ $\delta{\simeq}1{,}5$

длине эжекторного канала и отношении площадей на входе в эжектор $\alpha = 0,042$

На основании данных испытаний простого суживающегося профилированного сопла и сопла с эжекторным усилителем тяги [1, 2] были получены расходная $G_c = f(\pi_c^i)$ (рис. 1) и тяговые

 $P_{c} = f(\pi_{c}^{i})$ и (рис. 2) характеристики соответственно простого суживающегося $P = f(\pi_{c}^{i})$

В настоящей работе авторами рассматриваются два независимых метода определения расходной и тяговой характеристик сопла с ЭУТ на основе экспериментально полученных распределения статического давления по длине эжекторного насадка и распределения p_{\flat}

полного давления по радиусу на выходе из камеры смешения. p_{3i}^{i}

Измеренные распределения статического давления p_{i} по длине эжекторного насадка на p_{i}

режимах = 1,23; 1,41; 1,62; 1,82; 2; 2,13 представлены на рис. 3. Наибольшая величина π_c^i

разрежения ($p_{\mu} - p_{b}$) соответствует сечению входа в камеру смешения ЭУТ. Далее по длине

камеры статическое давление постепенно повышается и на выходе из эжектора становится $p_{\dot{p}}$

равным атмосферному давлению – . Изменение статического давления $p_{_{93}} = p_{_H}$ на входе в p_2

приводит к росту скорости истечения воздуха из эжектирующего сопла, и, следовательно, к

р_н

увеличению разрежения

($p_{\rm H} - p_2$) на входе в камеру смешения ЭУТ.

Рис. 3. Распределение статических давлений р_{эі} по длине эжекторного насадка.

Увеличение тяги при подсасывании внешнего воздуха к эжектирующей струе объясняется тем, что на элементах эжектора возникают дополнительные силы, равнодействующая которых, направленная по оси потока, суммируется с реактивной тягой сопла.

Сила внешнего давления , действующая на входной раструб (лемнискату) эжектора определялась путем суммирования осевых сил P_2

, возникающих в результате действия разности давлений на все элементарные участки разбиения площади лемнискаты, нормальной к P_{2_i}

оси потока:

 $P_2 = \sum_{i=1}^{n} P_{2_i}$

(1)

где осевая сила
$$P_{2_i}$$
, [H], действующая на элементарный участок, площадью $F_{2_i} = \frac{\pi \left(D_{2_i}^2 - d_{2_i}^2 \right)}{4}$, $[M^2]$ (D_{2_i} d_{2_i} - соответственно $F_{2_i} = F_{2_i} \left(p_n - p_b \right)^{-1}$ (2)
тяга сопла представляла сумму реактивной тяги P_c сопла и силы P_2^{-1} (3)
 $P = P_c + P_2^{-1}$ (3)
Тяговая характеристика сопла с ЭУТ, полученная в результате расчета по данному методу приведена на рис. 2. Величина тяги

 $P = P_2 + P_c$ Расход эжектируемого воздуха рассчитали по известному перепаду давлений эжектируемого потока на входе в камеру смешения G_2

ЭУТ:

$$G_2 = mq(\lambda_2)F_2 \frac{p_{_H}}{\sqrt{T_2^c}}$$
, (4)
где (2) – приведенная плотность тока, определенная по газодинамической функции , – коэффициент

 $q(\lambda_2)$ – приведенная плотность тока, определенная по газодинамической функции $\pi(\lambda_2) = \frac{p_{\mu}\sigma_{_{6X}}}{p_2}$, $\sigma_{_{6X}}$

(4)

полного давления – $\sigma_{ex} = 0,995$; F_2 , $[M^2]$ – площадь эжектируемого потока на входе в смесительную камеру.

Суммарный расход воздуха через сопло с эжекторным насадком рассчитывался по формуле:

 $G_3 = G_c + G_2$

Результаты расчетов расхода эжектируемого воздуха G_2 и суммарного расхода воздуха через сопло с ЭУТ приведены на рис. 1. Измеренные распределения полных давлений p_{3i}^i на выходе из камеры смешения эжекторного усилителя тяги на режимах работы

(5)

= 1,23; 1,41; 1,62; 1,82 представлены на рис. 5. π_c^i

По распределению полных давлений на выходе из эжекторного насадка

по распределению полных давлении на выходе из эжекторного насадка

$$P_{3i}^{i} = f(r)$$
 обли постросны пола скоросте и истечения пог
 $G_{3i} = a_{ip} \lambda_{3i} = 18, 3\sqrt{T_{e}^{i}}\lambda_{3i}$, (6)
где λ_{3i} – приведенная скорость потока, которую находили по газодинамической функции
 λ_{3i} – приведенная скорость потока, которую находили по газодинамической функции
 $G_{3i} = \sum_{j=1}^{n} G_{3j} = \sum_{j=1}^{n} mq(\lambda_{3i}) F_{3i} \frac{p_{3i}^{i}}{\sqrt{T^{i}}}$, (7)
 $G_{3} = \sum_{i=1}^{n} G_{3i} = \sum_{j=1}^{n} mq(\lambda_{3i}) F_{3i} \frac{p_{3i}^{i}}{\sqrt{T^{i}}}$, (8)
 $P = \sum_{i=1}^{n} P_{i} = \sum_{j=1}^{n} G_{3i} C_{3i}$, (8)
 $P = \sum_{i=1}^{n} P_{i} = \sum_{j=1}^{n} G_{3i} C_{3i}$, (7)
где п – количество элементарных участков разбиения площади выходного сечения эжекторного насадка;
 $F_{3i} = \frac{\pi (D_{3i}^{2} - d_{3i}^{2})}{4}$, $[m_{3i}^{2}] - m_{3i} = \frac{\pi (D_{3i}^{2} - d_{3i}^{2})}{4}$, $[m_{3i}^{2}] = \frac{\pi (D_{3i}^{2} - d_{3i}^{2})}{4}$, $[m_{3i}^{2}] = \frac{\pi (D_{3i}^{2} - d_{3i}^{2})}{D_{3i}}$, $[m_{3i}^{2}] = \frac{\pi (D_{3i}^{2} - d_{3$

Массу присоединенного эжектором воздуха

рассчитывали как разность

 G_2

 $G_2 = G_3 - G_c$

В

функции располагаемого перепада давления , рассчитанные этим методом приведены на рис. 1. Значения величин выходного импульса π_c^i

 G_3

```
P для различных показаны на рис. 2. \pi_c^i
```

Сравнительный анализ результатов обработки экспериментальных данных показал, что зависимости расходов эжектируемого воздуха

и суммарного расхода воздуха через сопло с эжекторным насадком от располагаемого перепада давления на сопле , π_c^i , π_c^i

полученные различными методами, незначительно отличаются друг от друга. Некоторое отличие объясняется погрешностями измерений и методов обработки экспериментальных данных.

Зависимости $P=f(\pi_c^i)$, рассчитанные независимыми методами, удовлетворительно согласуются между собой и зависимостью,

полученной на основе прямых измерений тяги.

На рис. 1 и 2 приведены также расчетные расходная и тяговая характеристики. $G_{2p} \quad G_{3p} = f(\pi_c^i)$ $P_{n}=f|\pi_{a}^{b}$ сопла с ЭУТ определили на основе данных расчета Расход эжектируемого воздуха , суммарный расход воздуха и тягу G_{2p} G_{3p} P_p простого суживающегося осесимметричного сопла, полученных в работе [1], по эжектирующего воздуха и тяги расхода P_c G_{c}

соотношениям:

где – расчетный коэффициент эжекции –

$$n_p$$
 $n_p = \frac{f\left(1+\frac{1}{\alpha}\right)\sqrt{2\alpha+\alpha^2(f^2-1)+(1+\alpha^2f^2)\omega^2-1-f^2}}{1+\alpha^2f^2}$;

(10)

$$\delta_p = \frac{1}{\sqrt{1 - \alpha^2 n_p^2 + \omega^2} - \omega} \left[\frac{1}{f} \frac{\alpha}{\alpha + 1} (n_p + 1)^2 - (n_p + 1) \omega \right];$$

(11)

а, f и ω – безразмерные величины: $\alpha = \frac{F_c}{F_2}$, $f = \frac{F_4}{F_c + F_2}$, $\omega = \frac{\omega_n}{\omega_c}$ [3]; r_c – площадь выходного сечения эжектирующего сопла, [M^2]; F_4 – площадь выходного сечения диффузора, [M^2]. Для исследуемого ЭУТ без диффузора (f = 1), при работе двигателя на месте ($\omega = 0$) формулы (10) и (11) примут вид:

(12)

 $n_p = \frac{\left(\frac{\alpha+1}{\alpha}\right)\sqrt{2\alpha}-2}{1+\alpha^2}$

$$\delta_p = \frac{\alpha}{\alpha+1} \frac{\left(n_p+1\right)^2}{\sqrt{1-\alpha^2 n_p^2}}$$

 G_2 , , полученные по экспериментальным данным лежат ниже расчетных зависимостей $G_3 = f(\pi_c^i)$ Расходные характеристики

, что говорит о том, что эжектор работает не на полной мощности, его эжекционные способности не исчерпаны до G_{2p} , $G_{3p} = f(\pi_c^i)$

конца. Такой результат можно объяснить меньшей длиной камеры смешения ($\begin{pmatrix} l/d \\ -a_{scn} = 6,7 \end{pmatrix}$) по сравнению с длиной ($\begin{pmatrix} l/d \\ -d \end{pmatrix} = 10 \div 12$),

которая требуется для достижения полного выравнивания параметров в выходном сечении ЭУТ [3]. Поля полных давлений на выходе p_{3i}^{i}

из эжектора подтверждают данное предположение (см. рис. 5).

, рассчитанные косвенными независимыми методами, удовлетворительно согласуются между собой и $P = f(\pi_c^i)$ Зависимости

зависимостью, полученной на основе прямых измерений тяги [2], а также в области дозвуковых перепадов давления в сопле π

приближаются к расчетной зависимости

$$P_p = f\left(\pi_c^i\right)$$

Сравнение тяговых характеристик сопла с ЭУТ

и эжектирующего сопла $P = f(\pi_c^i)$

 $P_c = f(\pi_c^i)$

эжекторного насадка дает возможность значительно увеличить тягу сопла.

Эффективность применения эжекторного насадка с точки зрения его эжекционных свойств и выигрыша в тяге можно оценить,

определив коэффициенты эжекции n и увеличения тяги δ.

Кроме коэффициентов эжекции n, рассчитанных по опытным данным, на рис. 6 приведена зависимость расчетного коэффициента

эжекции в функции , который определили по формуле (12). $n_p = \pi_c^i$

Рис.7

Список литературы

- 1. Голубев В.А., Крылов Б.А., Монахова В.П. Исследование эжекторных усилителей тяги (ЭУТ). // Теория воздушно-реактивных двигателей и их элементов. Тематический сборник трудов научно-методической конференции, посвященной 60-летию кафедры "Теория воздушно-реактивных двигателей" МАИ. Москва, МАИ, 2005. – 73-80 с.
- Голубев В.А., Монахова В.П. Экспериментальное определение характеристик эжекторных усилителей тяги (ЭУТ). // Теория воздушно-реактивных двигателей и их элементов. Тематический сборник трудов научно-методической конференции, посвященной 60-летию кафедры "Теория воздушно-реактивных двигателей" МАИ. Москва, МАИ, 2005. – 86-91 с.
- 3. Абрамович Г. Н. Прикладная газовая динамика. М.: Наука, 1969. 824 с.

СВЕДЕНИЯ ОБ АВТОРАХ

Голубев Виктор Андреевич, профессор кафедры "Теория воздушно-реактивных двигателей" Московского государственного авиационного института (технического университета), к.т.н.

Монахова Вероника Павловна, старший преподаватель кафедры "Метрология, стандартизация, сертификация" Московского государственного авиационного института (технического университета).