УДК 519.718: 623.466

Замкнутая цилиндрическая оболочка в сверхзвуковом потоке газа в присутствии неоднородного температурного поля

Багдасарян Г.Е.¹*, Микилян М.А.¹**, Варданян И.А.¹***, Пантелеев А.В.²****

¹Российско-Армянский университет, ул. Овсепа Эммина, 123, Ереван, 0051, Армения ²Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия *e-mail: <u>gevorg.baghdasaryan@rau.am</u> **e-mail: <u>marine.mikilyan@rau.am</u> ***e-mail: <u>irena_123@bk.ru</u> ****e-mail: <u>avpanteleev@inbox.ru</u>

Аннотация

Рассмотрена задача устойчивости замкнутой цилиндрической оболочки под действием неоднородного температурного поля и сверхзвукого потока газа, обтекающего оболочку. Получены условия устойчивости невозмущенного состояния рассматриваемой аэротермоупругой системы. Показано, что совместным действием температурного поля и обтекающего потока можно регулировать процесс устойчивости и при помощи температурного поля существенно изменить величину критической скорости флаттера. Ключевые слова: устойчивость, температурное поле, сверхзвуковой поток, флаттер.

1. Постановка задачи и основные предположения

Рассмотрим тонкую изотропную замкнутую круговую цилиндрическую оболочку постоянной толщины h и радиуса R, находящуюся в постоянном температурном поле T. Оболочка отнесена к цилиндрическим координатам x, φ, r , координатные линии x и φ совпадают с линиями кривизны срединной поверхности оболочки (x – вдоль образующей, φ – по дуге поперечного сечения). Пусть с внешней стороны оболочка обтекается сверхзвуковым потоком газа с невозмущенной скоростью U, направленной вдоль оси 0x. Исследуются вопросы устойчивости рассматриваемой аэротермоупругой системы.

В основу исследования принимаются следующие известные предположения:

а) гипотеза Кирхгофа-Лява о недеформируемых нормалях [1];

б) "закон плоских сечений" при определении аэродинамического давления [2,3];

в) линейный закон изменения температуры $T(x, \theta, r)$ по толщине оболочки [4]: $T = T_0(x, \phi) + (R - r)\Theta(x, \phi);$

г) гипотеза Неймана об отсутствии сдвигов от изменения температуры [5].

Для простоты и наглядности принимается, что из лицевых поверхностей $(r = R \pm h/2)$ оболочки происходит теплообмен с окружающей средой по закону Ньютона–Рихмана (на поверхностях сохраняется постоянная температура со

значениями T^+ и T^- соответственно), а боковые поверхности (x=0 и x=a) теплоизолированы.

Под действием неоднородного по толщине стационарного температурного поля ($\Theta \neq 0$) происходит выпучивание оболочки (с прогибом $w_T(x)$ и продольным перемещением $u_T(x)$) и вследствие этого появляется аэроупругое давление. Указанное выпученное состояние принимается как невозмущенное [6], и исследуется его устойчивость под действием температурного поля и давления обтекающего потока газа. Разнообразные вопросы теории флаттера и проблем термоупругости рассматривались в [7–20], проблемы численно-аналитического решения уравнений в частных производных с использованием спектральной формы описания обсуждались в [21].

2. Характеристики невозмущенного состояния

2.1. Определение температурного поля

На основе принятых предположений задача определения стационарного температурного поля сводится к решению уравнения теплопроводности $\Delta T = 0$ в области, занимаемой оболочкой, при следующих поверхностных условиях:

$$\lambda \frac{\partial T}{\partial n} = k \left(T - T^{\pm} \right)$$
 при $r = R \pm \frac{h}{2}$,
 $\frac{\partial T}{\partial n} = 0$ при $x = 0$ и $x = a$.

Сформулированная задача теплопроводности, согласно предположению о линейной зависимости температуры по толщине оболочки, имеет следующее решение:

$$T = T_0 + (r - R)\Theta, \quad T_0 = \frac{T^+ + T^-}{2}, \qquad \Theta = \frac{k(T^+ - T^-)}{kh - 2\lambda}.$$
 (1)

Здесь λ – коэффициент теплопроводности, k – коэффициент теплоотдачи.

2.2. Определение термоупругих напряжений и перемещений

На основе принятых предположений, из основных уравнений, соотношений и граничных условий теории термоупругости тонких оболочек имеем

согласно гипотезам Кирхгоффа-Лява:

$$u_0^{(r)} = w_T(x), \quad u_0^{(x)} = u_T(x) - (r - R)\frac{dw_T}{dx};$$
⁽²⁾

согласно теории тонких оболочек:

$$\frac{d^2 u_T}{dx^2} + \frac{\mu}{R} \frac{dw_T}{dx} = 0, \qquad (3)$$

$$D\frac{d^4w_T}{dx^4} + \frac{12}{Rh^2} \left(\mu \frac{du_T}{dx} + \frac{w_T}{R}\right) + \alpha p_\infty M \frac{dw_T}{dx} = 0; \tag{4}$$

согласно обобщенному закону Гука:

$$T_{11}^{0} = \int_{R-h/2}^{R+h/2} \sigma_{11}^{0} dr = \frac{Eh}{1-\mu^{2}} \left[\frac{du_{T}}{dx} + \mu \frac{w_{T}}{R} - \alpha (1+\mu) T_{0} \right],$$

$$T_{22}^{0} = \int_{R-h/2}^{R+h/2} \sigma_{22}^{0} dr = \frac{Eh}{1-\mu^{2}} \left[\mu \frac{\partial u_{T}}{\partial x} + \frac{w_{T}}{R} - \alpha (1+\mu) T_{0} \right].$$
(5)

- выражение для внутренних усилий невозмущенного состояния.

Здесь $M = Ua_{\infty}^{-1}$ – число Маха для невозмущенного потока, $a_{\infty} = æp_{\infty}\rho_{\infty}^{-1}$ – скорость звука для невозмущенного газа, p_{∞} и ρ_{∞} – давление и плотность газа в невозмущенном состоянии, æ – показатель политропы, $D = Eh^3/12(1-\mu^2)$, E – модуль упругости, μ – коэффициент Пуассона, α – коэффициент линейного теплового расширения материала оболочки.

Решения уравнений (3) и (4) должны удовлетворить условиям закрепления краев оболочки: x = 0 и x = a.

Будут рассмотрены краевые условия следующих двух типов:

1) края шарнирно оперты и свободно перемещаются вдоль оси 0x:

$$w_T = 0, \quad \frac{d^2 w_T}{dx^2} + \alpha (1 + \mu) \Theta = 0$$
 при $x = 0, x = a,$ (6)

$$\frac{du_T}{dx} - \alpha (1+\mu)T_0 = 0 \quad \text{при} \quad x = 0, x = a;$$
(7)

2) края шарнирно оперты и неподвижны:

$$w_T = 0, \quad \frac{d^2 w_T}{dx^2} + \alpha (1 + \mu) \Theta = 0 \quad \text{при} \quad x = 0, x = a,$$
(8)

$$u_T = 0 \text{ при } x = 0, x = a.$$
 (9)

Решение u_T уравнения (3), удовлетворяющее условиям (7) и (9), имеет следующий вид (при этом использовано также условие $w_T = 0$ на торцах оболочки):

$$u_{T} = -\frac{\mu}{R} \int_{0}^{x} w_{T}(\xi) d\xi + \delta \frac{\mu x}{Ra} \int_{0}^{a} w_{T}(x) dx + (1-\delta)\alpha (1+\mu) T_{0}x, \qquad (10)$$

где $\delta = \begin{cases} 0, & \text{когда края оболочки свободно смещаются,} \\ 1, & \text{когда края оболочки неподвижны.} \end{cases}$

В силу (10) из (5) имеем:

$$T_{11}^{0} = \delta \left[\frac{E\mu}{1-\mu^{2}} \frac{h}{a} \int_{0}^{a} \frac{w_{T}(x)}{R} dx - \frac{Eh\alpha}{1-\mu} T_{0} \right],$$

$$T_{22}^{0} = Eh \left[\frac{w_{T}}{R} - (1-\delta)\alpha T_{0} + \delta \left(\frac{\mu^{2}}{1-\mu^{2}} \frac{1}{Ra} \int_{0}^{a} w_{T}(x) dx - \frac{\alpha T_{0}}{1-\mu} \right) \right].$$
(11)

Задача определения w_T в силу (4) и (10) сводится к решению уравнения

$$D\frac{d^{4}w_{T}}{dx^{4}} + \frac{12}{Rh^{2}} \left(\frac{1-\mu^{2}}{R} w_{T} + \frac{\delta\mu^{2}}{Ra} \int_{0}^{a} w_{T}(x) dx + (1-\delta)\alpha\mu(1+\mu)T_{0} \right) + \\ + \alpha p_{\infty}M \frac{dw_{T}}{dx} = 0$$
(12)

при граничных условиях (6) или (8).

3. Характеристики возмущенного состояния

Для получения уравнений возмущенного состояния учитывается, что:

a) величины, характеризующие невозмущенное состояние, удовлетворяют уравнениям и соотношениям, полученным в п. 2;

б) величины невозмущенного состояния определены на основе линейной теории термоупругости (подлежащие определению величины входили в соответствующие уравнения и краевые условия линейно);

в) в окончательных уравнениях и соотношениях величины, характеризующие невозмущенное состояние, будут присутствовать только в первых степенях.

На основе теории термоупругости изотропных тел, гипотезы Кирхгофа-Лява и принятых предположений, аналогично [6] получена следующая система линейных дифференциальных уравнений устойчивости рассматриваемой термогазоупругой системы:

$$\frac{\partial^{2} u}{\partial x^{2}} + \frac{1-\mu}{2} \frac{\partial^{2} u}{\partial \varphi^{2}} + \frac{1+\mu}{2} \frac{\partial^{2} v}{\partial x \partial \varphi} + \frac{\mu}{R} \frac{\partial w}{\partial x} - \frac{(1-\mu^{2})T_{22}^{0}}{ERh} \frac{\partial w}{\partial x} = 0,$$

$$\frac{\partial^{2} v}{\partial \varphi^{2}} + \frac{1-\mu}{2} \frac{\partial^{2} v}{\partial x^{2}} + \frac{1+\mu}{2} \frac{\partial^{2} u}{\partial x \partial \varphi} + \frac{1}{R} \frac{\partial w}{\partial \varphi} - \frac{h^{2}}{12R} \frac{\partial}{\partial \varphi} \left(\Delta w + \frac{w}{R^{2}} \right) = 0,$$

$$D\left[\Delta^{2} w + \frac{\mu}{R^{2}} \frac{\partial^{2} w}{\partial x^{2}} + \frac{1}{R^{2}} \frac{\partial^{2} w}{\partial \varphi^{2}} + \frac{12}{Rh^{2}} \left(\frac{\partial v}{\partial \varphi} + \mu \frac{\partial u}{\partial x} + \frac{w}{R} \right) \right] + \rho_{0} h \frac{\partial^{2} w}{\partial t^{2}} - T_{11}^{0} \frac{\partial^{2} w}{\partial x^{2}} - T_{11}^{0} \frac{\partial^{2} w}{\partial x^{2}} - T_{12}^{0} \left(\frac{\partial^{2} w}{\partial \varphi^{2}} + \frac{w}{R^{2}} \right) + \left(\rho_{0} h \varepsilon + \frac{w p_{\infty}}{a_{\infty}} \right) \frac{\partial w}{\partial t} + w p_{\infty} M \frac{\partial w}{\partial x} + \frac{w (w + 1)}{2} p_{\infty} M^{2} \frac{d w_{T}}{dx} \frac{\partial w}{\partial x} = 0,$$

$$(13)$$

где $u(x, \varphi, t), v(x, \varphi, t)$ и $w(x, \varphi, t)$ – возмущения перемещений точек срединной поверхности оболочки, ρ_0 – плотность материала оболочки, ε – коэффициент линейного затухания.

При решении конкретных задач устойчивости к системе (13) присоединяются граничные условия относительно возмущений, вытекающие из условий закрепления краев оболочки. Например, если края оболочки шарнирно оперты и неподвижны, то граничные условия представляются в виде:

$$u = 0, v = 0, w = 0, \frac{\partial^2 w}{\partial x^2} = 0$$
 при $x = 0$ и $x = a$. (14)

4. Влияние температурного поля на величину критической скорости

На основе сформулированной в п.3 граничной задачи исследуется устойчивость осесимметричного состояния рассматриваемой термоупругой системы. Предполагается, что края оболочки шарнирно оперты и неподвижны. Тогда в силу (13) и (14) задача сводится к решению уравнения

$$D\left[\frac{\partial^4 w}{\partial x^4} + \frac{\mu}{R^2}\frac{\partial^2 w}{\partial x^2} + \frac{12}{Rh^2}\left(\mu\frac{\partial u}{\partial x} + \frac{w}{R}\right)\right] - T_{11}^0\frac{\partial^2 w}{\partial x^2} - T_{22}^0\frac{w}{R^2} + \rho_0h\frac{\partial^2 w}{\partial t^2} + \left(\rho_0h\varepsilon + \frac{\varpi p_{\infty}}{a_{\infty}}\right)\frac{\partial w}{\partial t} + \varepsilon p_{\infty}M\frac{\partial w}{\partial x} + \frac{\varpi(\varpi+1)}{2}p_{\infty}M^2\frac{dw_T}{dx}\frac{\partial w}{\partial x} = 0$$
(15)

при следующих граничных условиях

$$w = 0, \quad \frac{\partial^2 w}{\partial x^2} = 0$$
 при $x = 0, x = a.$ (16)

Решение уравнения (15), удовлетворяющее условиям (16), представим в виде

$$w(x,t) = \sum_{i=1}^{\infty} f_i(t) \sin \lambda_i x, \quad \left(\lambda_i = \frac{i\pi}{a}\right), \tag{17}$$

где $f_i(t)$ – подлежащие определению функции времени t.

Ограничимся случаем двучленной аппроксимации:

$$w = f_1(t)\sin\lambda_1 x + f_2(t)\sin\lambda_2 x. \tag{18}$$

Подставляя (18) в уравнение (15) и используя процесс ортогонализации, получим однородную систему обыкновенных дифференциальных уравнений с постоянными коэффициентами относительно $f_i(t)$ (i = 1, 2). Представляя решение указанной системы в виде $f_i(t) = c_i e^{pt}$, где c_i постоянные, получим однородную

систему линейных алгебраических уравнений относительно c_i . Из условия существования нетривиального решения приходим к характеристическому уравнению относительно p. С помощью теоремы Гурвица могут быть получены условия устойчивости рассматриваемой аэротермоупругой системы.

Условия устойчивости исследованы численно при следующих исходных данных: a=1м, a=100h, $\lambda = 210$ Вт/(м·град), $\mu = 0.34$, $\rho_0 = 2.79 \cdot 10^3$ кг/м³, $\alpha = 1.4$, $\alpha = 23.8 \cdot 10^{-6}$ град⁻¹, $\rho_{\infty} = 1.28$ кг/м³, $E = 7.4 \cdot 10^3$ Н/м⁻². В результате построены области устойчивости, приведенные на рис. 1,а и 1,6 при $\Theta = 0$ и рис. 2,а и 2,6 при $T_0 = 0$, найдены значения критической скорости v_{cr} в зависимости от Θ и T_0 . В таблице 1 приведены значения критической скорости v_{cr} при $T_0 = 0$ при различных значениях Θ и, а в таблице 2 – значения v_{cr} при $\Theta = 0$ при различных T_0 .

Область устойчивости при постоянном температурном поле ($\Theta = 0, T_0 \neq 0$)

Рис. 1, б: Случай *R* = *a* / 2

Рис. 2,а: Случай R = 2a

Рис. 2, б: Случай *a* = 50*h*

Табл. 1

Табл.	2
-------	---

h/a Θ	1/50	1/100
-5000	0.242	0.006
-1000	0.272	0.005
-500	0.274	0.007
0	0.277	0.008
1000	0.282	0.01
5000	0.301	0.018

h/a	1/50	1/100	
-100	0.859	0.102	
-50	0.568	0.055	
-30	0.452	0.037	
0	0.277	неуст.	
5	0.248	неуст.	
10	0.219	0.219 неуст.	
40	0.044	неуст.	

Область устойчивости при $\Theta \neq 0$, $T_0 = 0$

В таблице 3 приведены результаты вычисления критической скорости при совместном воздействии параметров температурного поля и различных значениях геометрических параметров.

т	ัวดีก	2
T.	aon.	J

T_0, Θ	<i>R</i> = <i>a</i> /5	R=a/2	R=a	R=2a	R=5a	R=20a
2.5, -44.12	0.7373	0.1707	0.1113	0.098	0.0944	0.0851
-7.5, 73.53	1.4398	0.3341	0.2180	0.1919	0.1848	0.1836
-30, 117.65	3.0544	0.704	0.4591	0.4041	0.3892	0.3866
-20, 176.47	2.3306	0.5389	0.3517	0.3096	0.2981	0.2961
-20, 294.12	2.3333	0.5385	0.3515	0.3094	0.298	0.296
-25, 441.18	2.7234	0.6212	0.4052	0.3567	0.3435	0.3412
25, -441.18	0.9232	0.2025	0.1312	0.1153	0.111	0.1103
-2.5, -73.53	1.094	0.253	0.1649	0.1452	0.1398	0.5681

Численные расчеты показывают, что учет влияния термоупругих напряжений невозмущенного состояния на области устойчивости является существенным. В зависимости от геометрии оболочки области устойчивости при $\Theta = 0$ в основном имеют виды, приведенные на рис. 1,а и 1,б, а при $T_0 = 0$ имеют вид, представленный на рис. 2,а и 2,б. При этом на геометрию расположения областей устойчивости при меньших значениях скорости обтекания определяющую роль имеют усилия T_{11}^0 , а при достаточно больших скоростях – усилия T_{22}^0 . Расчеты показывают, что влияние неоднородности температурного поля ($\Theta \neq 0$) на устойчивость невозмущенного состояния имеет следующий характер: если R/a < 1, то увеличение параметра Θ приводит к уменьшению значения критической скорости, а если R/a > 1, то функция $v_*(\Theta)$ имеет минимум (см. также приведенные таблицы).

5. Заключение

В работе рассмотрена задача устойчивости (в линейной постановке) замкнутой цилиндрической оболочки под действием двух факторов: неоднородного температурного поля и обтекающего оболочку сверхзвукого потока газа. Получены условия устойчивости невозмущенного состояния рассматриваемой аэротермоупругой системы и найдены области устойчивости. В результате численных расчетов показано, что совместным действием температурного поля и обтекающего потока можно эффективно регулировать процесс устойчивости и при помощи температурного поля существенно изменить величину критической скорости флаттера.

Библиографический список

 Власов В.З. Общая теория оболочек и ее приложения в технике. – М.: Гостехтеориздат, 1949. – 784 с. 2. Ashley H., Zartarian C. Piston theory – a new aerodynamic tool for the aeroelastician // Journal of Aeronautical Science, 1956, vol. 23, no. 6, pp. 1109 – 1118.

 Болотин В.В. Неконсервативные задачи теории упругой устойчивости. – М.: Физматгиз, 1961. – 339 с.

4. Новацкий В. Вопросы термоупругости. – М.: Изд-во АН СССР, 1962. – 364 с.

 Багдасарян Г.Е., Микилян М.А., Сагоян Р.О. Термоупругая устойчивость удлиненной прямоугольной пластинки в сверхзвуковом потоке газа // Известия НАН РА. Механика. 2011. Т. 64. № 4. С. 51 – 67.

 Багдасарян Г.Е. Колебания и устойчивость магнитоупругих систем. – Ереван: Ереванский государственный университет, 1999. – 440 с.

7. Baghdasaryan G., Mikilyan M., Saghoyan R., Marzocca P. Thermoelastic stability of closed cylindrical shell in supersonic gas flow // Transactions of Nanjing University of Aeronautics and Astronautics, 2014, vol. 31, no. 2, pp. 195 – 199.

8. Лурье С.А., Дудченко А.А., Нгуен Д.К. Градиентная модель термоупругости для слоистой композитной структуры // Труды МАИ. 2014. № 75. URL: http://trudymai.ru/published.php?ID=49674

 Шитов С. В. Флаттер упругой полосы в потоке газа с малой сверхзвуковой скоростью // Труды МАИ. 2015. № 82. URL: http://trudymai.ru/published.php?ID=58548

10. Егоров И.А. Определение температурного поля многослойной обшивки летательного аппарата с учетом зависимости теплофизических характеристик от температуры // Труды МАИ. 2016. № 86. URL: http://trudymai.ru/published.php?ID=67804

11. Amabili M., Pellicano F. Nonlinear supersonic flutter of circular cylindrical shells //AIAA Journal, 2001, vol. 39, no. 4, pp. 564 – 573.

12. Amabili M., Paidoussis P. Review of studies on geometrically nonlinear vibrations and dynamics of circular cylindrical shells and panels, with find without fluid-structure interaction // Applied Mechanics Reviews, 2003, vol. 56, pp. 349 – 381.

Bismarck-Nasr M.N., Bones C. Al. Damping effects in nonlinear panel flutter // AIAA
 Journal, 2000, vol. 38, no. 4, pp. 711 - 713.

14. Sargsyan S.H. On Some Interio and Boundary Effects in Thin Plates Based on the Asymmetric Theory of Elasticity // Lectures Notes in Applied and Computational Mechanics, 2004, vol. 16, pp. 201 - 210.

15. Sargsyan S.H. The General Theory of Madnetothermoelasticity of Thin Shells // Journal of Thermal Stresses, 2011, vol. 34, no. 7, pp. 611 – 625.

Yamaguchi N.,Yakota K., Tsugjimoto Y. Flutter limits and behaviors of a flexible thin sheet in high-speed flow. I. Analytical method for prediction of the sheet behavior. II. Experimental results and predicted behaviors for low mass rations // Transactions of the ASME, Journal of Fluids Engineering, 2000, vol. 122, no. 1, pp. 65 – 83.

17. Librescu L. Nonlinear magnetothermoelasticity of anisotropic plates immersed in a magnetic field // Journal of Thermal Stresses, 2003, vol. 26(11–12), pp. 1277 – 1304.

18. Librescu L., Hasanyan D.J., Ambur D.R. Electromagnetically conducting elastic plates in a magnetic field: modeling and dynamic implications // International Journal of Non-Linear Mechanics, 2004, vol. 39, pp. 723 – 739. 19. Qin Z. Magnetoelastic modeling of circular cylindrical shells immersed in a magnetic field. Part I: magnetoelastic loads considering finite dimensional effects // International Journal of Engineering Science, 2003, no. 17, pp. 2005 – 2049.

20. Singh K., Tipton C.R., Han E., Mullin T. Magneto-elastic buckling of an Euler beam // Proc. Roy. Soc. A: Math. Phys. Eng. Sci., 2013, vol. 469(2155), article no. 20130111.

21.Пантелеев А.В., Рыбаков К.А., Сотскова И.Л. Спектральный метод анализа нелинейных стохастических систем управления. – М.: Вузовская книга, 2015. – 392

c.