

Акционерное общество «Научно-производственное объединение им. С.А. Лавочкина» (АО «НПО Лавочкина»)

Ленинградская ул., д. 24, г. Химки, Московская область, 141402, ОГРН 1175029009363, ИНН 5047196566 тел.: +7 (495) 573-56-75, факс: +7 (495) 573-35-95, e-mail: npol@laspace.ru, www.laspace.ru

3K3.1

_{*} 07 AEK 2020

Ha Nº 08-2020-10

533/29105

Учёному секретарю Диссертационного совета 221.125.08 на базе ФГБОУ ВО

«Московский авиационный институт (национальный исследовательский университет)

доктору технических наук, профессору

Ю.В. Зуеву

125993, г. Москва, А-80, ГСП-3, Волоколамское шоссе, д.4

«УТВЕРЖДАЮ»

Заместитель тенерального директора АО «НПО Лавочкина» по научной работе доктор технических наук, профессор

> _C.H. Шевченко 2020 г.

ОТЗЫВ

на автореферат диссертации Любинской Наталии Валентиновны на тему «Абляционный импульсный плазменный двигатель для малоразмерных космических аппаратов», представленной на соискание учёной степени кандидата технических наук по специальности 05.07.05- Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов.

Диссертационная работа Н.В. Любинской посвящена повышению энергетических характеристик абляционных импульсных плазменных микродвигателей (АИПД) для малоразмерных космических аппаратов, что в настоящее время является актуальным для развития электрических ракетных двигателей.

«10» 12 2020

men

Методология исследования, представленная в автореферате диссертационной работы, заключалась:

- в определении современного состояния разработки АИПД путём анализа обширного объёма научно-технической информации и наработок автора по данной тематике;
- в выборе принципиальной конструктивной схемы микро-АИПД и определении области исследования основных параметров АИПД, обеспечивающих выполнение поставленной задачи;
- в проведении экспериментального исследования влияния таких параметров разрядной цепи микро-АИПД, как её начальная индуктивность, ёмкость разрядного конденсатора и активное сопротивление, на энергетические характеристики двигателя: тягу, удельный импульс тяги и суммарный импульс тяги;
- в разработке на основе фундаментальных соотношений и уравнений динамики, электродинамики, теплофизики адаптированной к условиям работы микро АИПД физико-математической модели движения плазменного сгустка в разрядном канале двигателя с использованием результатов проведённых автором экспериментальных исследований;
- в разработке компьютерной программы численного решения системы уравнений, представляющих разработанную физико-математическую модель;
- в проектировании, изготовлении и проведении подтверждающих результаты исследования испытаний на экспериментальной ДУ ИПД-120.

Научная новизна результатов работы заключается в том, что:

- при экспериментальном исследовании плазменных сгустков в разрядном канале рельсовой геометрии микро-АИПД с энергией разряда в диапазоне от 3 до 20 Дж был выявлен колебательный характер разрядного тока и степень влияния на амплитуду и период колебаний разрядного тока значения начальной индуктивности разрядного канала. Причём, приведённые в работе результаты экспериментальных исследований показали, что чем больше значение начальной индуктивность разрядного канала, тем больше удельный импульс тяги двигателя и выработка суммарного импульса тяги при постоянстве начальной загрузки рабочего тела, что не отмечалось для АИПД больших энергий разряда (более 50Дж);
- была разработана физико-математическая модель течения плазмы в разрядном канале с учётом колебательного характера разрядного тока и реализована компьютерная программа численного решения задачи определения проектных параметров при разработке новых микро-АИПД, что позволило разработать, изготовить и испытать экспериментальную

двигательную установку ИПД -120 с улучшенными тягово-энергетическими характеристиками.

Достоверность полученных результатов исследований обеспечивалась:

- применением апробированных методик измерений, калибровкой применённых средств измерения до и после испытаний, многократностью повторений производимых измерений (тяга двигателя, расход рабочего тела и т.д.), применением различных методов измерений (спектрографический и интерферометрический методы определения концентрации электронов) для определения одной и той же характеристики, оценкой погрешности произведённых измерений, например:
 - погрешность определения тяги двигателя, не более: $\pm 2 \%$;
 - погрешность определения расхода рабочего тела, не более: $\pm 0.5 \%$;
- использованием фундаментальных соотношений и уравнений динамики, электродинамики, теплофизики, а также признанных научной общественностью опубликованных данных других авторов.

Практическая значимость полученных результатов заключается в следующем:

- 1. Решена научно- техническая задача повышения тягово-энергетических характеристик микро АИПД, реализованная в конструкции экспериментальной ДУ ИПД-120.
- 2. Разработана программа компьютерного расчёта выбора конструктивных и тягово-энергетических параметров микро АИПД, реализованная в среде аналитических вычислений MAPLE 12.

Апробация работы

Результаты исследований по теме работы опубликованы в 12 рецензируемых и приравненных к ним научных изданиях.

Учитывая прикладной характер исследования, к недостаткам изложения материалов диссертации в автореферате следует отнести отсутствие строгого определения областей изменения энергии разряда и индуктивности разрядного тракта АИПД, для которых можно считать расхождение экспериментальных и расчётных данных, полученных на основе использования разработанной физико-математической модели течения плазмы в рабочем канале АИПД, удовлетворительным.

К редакционным недочётам автореферата следует отнести отсутствие пояснительных надписей о границах рабочего тела (тефлона) на рисунках 3 –

5, об отсутствии аргументов (энергия разряда или индуктивность), влияющих на характер положения центров масс плазменных сгустков и их размер, на рисунке 10 и сбое числовой последовательности по оси ординат графика на рисунке 11.

В заключение следует отметить, что диссертационная работа Н.В. Любинской представляет собой законченную научно-квалификационную работу на актуальную тему. Полученные соискателем в работе результаты научно обоснованы и имеют существенное значение для развития электроракетных двигателей космических аппаратов.

Диссертация Н.В. Любинской отвечает критериям п.п. 9-14 Положения ВАК, предъявляемым к кандидатским диссертациям, а её автор заслуживает присуждения учёной степени кандидата технических наук по специальности 05.07.05 - Тепловые, электроракетные двигатели и энергетические установки летательных аппаратов.

hodinece

Начальник сектора АО «НПО Лавочкина», кандидат технических наук

Л.Г. Александров

Персональные данные Л.Г. Александрова заверяю: 141400, г.о. Химки, Московской области, ул. Ленинградская д. 24, тел. 8-495-575-57-60 e-mail: aia@laspace.ru

Заместитель генерального директора по персоналу и общим вопросам

И.В. Шолохова

2020 г.

« 04 » 12