УДК 533.6.013.42:629.7.021.2

DOI: <u>10.34759/trd-2020-113-19</u>

# Флаттер беспилотного летательного аппарата из композиционных материалов с двухбалочным оперением

# Нагорнов А.Ю.

Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия e-mail: <u>andrey-nagornov@mail.ru</u>

Статья поступила 18.09.2020

# Аннотация

Представлена математическая модель для расчета на флаттер беспилотного летательного аппарата из композиционных материалов с двухбалочным хвостовым оперением. Математическая модель построена в программном комплексе Nastran. Упругая модель аппарата представлена совокупностью балок, соединенных через податливые узлы. Аэродинамическая модель построена с помощью метода дипольной решетки (DLM). Рассмотрены особенности конструкции исследуемого аппарата. Представлены расчеты безрулевых и рулевых форм флаттера и проведен анализ полученных результатов.

Ключевые слова: беспилотный летательный аппарат, математическая модель, композиционный материал, флаттер, метод конечных элементов (МКЭ).

## Введение

В настоящее время высокими темпами развивается создание беспилотных летательных аппаратов (БЛА) самолетного типа с целью проведения

#### Труды МАИ. Выпуск № 113

#### http://trudymai.ru/

разведывательных или боевых действий, а также осуществления транспортировки грузов в автоматическом режиме. В конструкции подобных БЛА широко применяются композиционные материалы, из которых изготавливают, практически полностью, планер БЛА, за исключением наиболее нагруженных узлов агрегатов, а также узлов крепления оборудования и полезной нагрузки. Это позволяет, с одной стороны, уменьшить массу планера БЛА, а с другой использовать сложные аэродинамические профили с целью повысить аэродинамическое качество аппарата.

Среди различных типовых схем БЛА самолётного типа находит применение схема с двухбалочным хвостовым оперением, в которой хвостовое оперение крепиться на двух балках непосредственно к крылу аппарата (IAI Seacher, IAI Heron, Aeronautics Aerostar, RQ-5 Hunter, RQ-7 Shadow и др.). Такая конструктивнокомпоновочная схема позволяет оптимизировать загрузку фюзеляжа, а также использовать силовую установку (СУ) с толкающим винтом. К негативным последствиям, обусловленными двухбалочной схемой, следует отнести большую податливость хвостового оперения. Кроме того, колебания стабилизатора на хвостовых балках связаны с упругостью крыла и вызывают приращение местных углов атаки как на самом стабилизаторе, так и на крыле, что может приводить к значительному снижению критической скорости флаттера по сравнению с классической самолетной схемой. С целью облегчить конструкцию и не нарушать обтекания несущих поверхностей, на подобных аппаратах редко применяется весовая балансировка органов управления, что обостряет проблему флаттера органов управления.

Исследованию аэроупругой устойчивости летательных аппаратов посвящено большое количество работ [0-0], в том числе исследованию аппаратов из композиционных материалов [0,0]. Для расчета на флаттер широко применяются методы Ритца и конечных элементов [0,0], с использованием конечно-элементного программного комплекса Nastran [0]. Проведены исследования аэроупругости с учетом особенно системы управления беспилотных летательных аппаратов [0-0]. Имеются исследования влияния анизотропии материала на модальные характеристики конструкции [0].

В БЛА данной работе представлено исследование флаттера ИЗ композиционных материалов с двухбалочным хвостовым оперением. Упругая модель представлена с помощью метода конечных элементов (МКЭ), аэродинамическая модель - с помощью метода дипольной решетки (панельный метод). Расчеты на флаттер выполнены в программном комплексе NX Nastran.

## Объект исследований

На рис. 1 представлен общий вид БЛА с двухбалочным хвостовым оперением.



Рис. 1 – БЛА с двухбалочным оперением

Все агрегаты БЛА выполнены их композиционных материалов. Обшивка несущих поверхностей представляет собой трехслойную оболочку из стеклопластика и заполнителем из пенопласта. Лонжероны крыла, а также шпангоуты крепления центроплана в фюзеляже – углепластиковые. На рис. 2 показан конструктивно-силовой набор крыла.



Рис. 2 – Конструкция крыла

На аппарате применена система дистанционного управления (СДУ): отклонение органов управления осуществляется с помощью электромеханических приводов, которые установлены на общивке несущих агрегатов.

# Математическая модель для исследования флаттера

Для построения упругой модели беспилотного летательного аппарата применяется балочная схематизация. Каждый агрегат дискретизируется путем деления на несколько отсеков. В данной работе принято: 10 отсеков для оперения и фюзеляжа, 20 отсеков для крыла. В пределах отсека балочные жесткости считаются постоянными.

Для расчета физических констант композиционного материала [0,0] была разработана программа на языке Python. После разбиения исходного БЛА на сечения записывались координаты контура каждого сечения в локальной системе координат для каждого агрегата, которые затем передавались в программу вместе со схемами укладок в сечениях и характеристиками применяемых материалов. Алгоритм рассчитывает физические константы программы И жесткостные балочной характеристики заданных сечений В соответствии с теорией подкрепленных оболочек [0,0]. На рис. 3 показаны рассчитанные жесткости крыла, отнесенные к площади крыла.



Рис. 3 – Распределение балочных жесткостей по размаху крыла

Упругая модель создана с помощью МКЭ. Все агрегаты БЛА моделируются балочными конечными элементами «СВЕАМ». Все органы управления считаются упругими. Массово-инерционные характеристики агрегатов планера и сосредоточенные грузы задаются с помощью элементов «CMASS2», инерционные силы от которых передаются на конструкцию с помощью элементов RBE3. Узлы соединений агрегатов планера считаются податливыми и моделируются элементами

«CELAS2». Для связи упругой модели с аэродинамической моделью для всех несущих поверхностей заданы абсолютно жесткие элементы «RBE2», зависимые узлы которых лежат на носке и законцовке агрегатов. Таким образом моделируются жесткие хорды крыла, стабилизатора, килей и всех органов управления. Конечно-элементная модель (КЭМ) аппарата представлена на рис. 4.



Рис. 4 – Конечно-элементная модель БЛА

Аэродинамическая модель создана с помощью плоских аэродинамических панелей «CAERO1», аэродинамические силы на которых вычисляются с помощью метода дипольной решетки (Doublet- Lattice Method). Аэродинамические панели разбиты прямоугольной сеткой (BOXES), в которой вычисляются перемещения по направлениям нормалей к поверхностям каждого прямоугольника (Aerodynamic Grid Point). На рис.5 представлена аэродинамическая модель аппарата.



Рис. 5 – Аэродинамическая модель БЛА

Упругая и аэродинамическая модели связаны между собой с помощью сплайнов по поверхности «SPLINE1», которые связывают степени свободы аэродинамической модели (Aerodynamic Grid Point) со степенями свободы упругой модели (Structural Grid Point – узлы КЭМ). Каждая аэродинамическая панель связана со своим набором узлов на жестких хордах «RBE2».

Органы управления крепятся к агрегатам планера с помощью жестких конечных элементов «RBE2», моделирующих узлы навески, и конечных элементов «CELAS2», моделирующих статические жесткости приводов.

Демпфирование конструкции БЛА задается в виде модального демпфирования, учитываемого после редуцирования уравнений движения к нормальным координатам как табличную зависимость коэффициента конструкционного демпфирования от циклической частоты (Modal damping table).

Значение коэффициента конструкционного демпфирования в промежуточных точках таблицы вычисляется с помощью линейной интерполяции.

Ввиду небольших скоростей полета, рассматриваемого летательного аппарата, расчеты на флаттер выполнены без учета сжимаемости потока для плотности воздуха у земли ρ = 1,225 кг/м<sup>3</sup>.

Для расчета модальных характеристик упругой модели используется модифицированный метод Хаусхолдера с нормализацией форм по массам.

Для расчета на флаттер используется метод «PKNL» (модифицированный «британский» метод) с учетом разложения уравнений движения по первым сорока собственным формам планера БЛА, с учетом форм движения планера как твердого тела.

Основные уравнения колебаний упругого БЛА:

$$[M_{hh}p^{2} + (B_{hh} - \frac{1}{4}\rho \overline{c} V Q_{hh}^{I} / k)p + (k_{hh} - \frac{1}{2}\rho V^{2} Q_{hh}^{R})]\{u_{h}\} = 0$$
(1)

,где  $M_{hh}$  – матрица масс,  $B_{hh}$  – матрица демпфирования,  $K_{hh}$  – матрица жесткости,  $Q_{hh}^{I}$  – матрица аэродинамического демпфирования (функция от числа Маха М и приведенной частоты  $k = \frac{\omega \overline{c}}{2V}$ ),  $Q_{hh}^{R}$  – матрица аэродинамической жесткости (функция от числа Маха М и приведенной частоты k),  $\overline{c}$  – характерная длина, V – скорость потока воздуха,  $\omega$  – круговая частота,  $p = \omega(\gamma \pm i)$  – собственные значения,

$$k = \left(\frac{\overline{c}}{2V}\right) \operatorname{Im}(p), u_h$$
 – вектор перемещений

При применении метода расчета «PKNL», уравнение (1) записывается в виде:

$$[A - pI]\{\overline{u}\} = 0 \tag{2}$$

где, А – действительная матрица:

$$[A] = \begin{bmatrix} 0 & I \\ -M_{hh}^{-1} \begin{bmatrix} K_{kk} - \frac{1}{2} \rho V^2 Q_{hh}^R \end{bmatrix} -M_{hh}^{-1} \begin{bmatrix} B_{kk} - \frac{1}{4} \rho \overline{c} V^2 Q_{hh}^I / k \end{bmatrix}$$
(3)

Для анализа устойчивости колебаний решается задача о собственных значениях уравнения (2), результатом которой является набор комплексно сопряженных пар чисел.

# Расчет на флаттер

В табл. 1 представлены основные модальные характеристики исследуемого

БЛА.

| № тона                  | Частота f, Гц | Форма                                   |  |  |  |  |
|-------------------------|---------------|-----------------------------------------|--|--|--|--|
| симметричный спектр     |               |                                         |  |  |  |  |
| 1                       | 3,7           | Вертикальный изгиб хвоста 1 тона        |  |  |  |  |
| 2                       | 7,5           | Вертикальный изгиб крыла 1 тона         |  |  |  |  |
| 3                       | 17,8          | Горизонтальный изгиб крыла 1 тона       |  |  |  |  |
| 4                       | 19,4          | Вертикальный изгиб стабилизатора 1 тона |  |  |  |  |
| 5                       | 23,6          | Вертикальный изгиб хвоста 2 тона        |  |  |  |  |
| 6                       | 30,2          | Вертикальный изгиб крыла 2 тона         |  |  |  |  |
| антисимметричный спектр |               |                                         |  |  |  |  |
| 1                       | 4,2           | Вертикальный изгиб хвоста 1 она         |  |  |  |  |
| 2                       | 6,8           | Горизонтальный изгиб хвоста 1 она       |  |  |  |  |
| 3                       | 10,5          | Горизонтальный изгиб крыла 1 тона       |  |  |  |  |
| 4                       | 16,7          | Вертикальный изгиб крыла 1 тона         |  |  |  |  |
| 5                       | 25,9          | Вертикальный изгиб хвоста 2 тона        |  |  |  |  |
| 6                       | 37,5          | Вертикальный изгиб крыла 2 тона         |  |  |  |  |

Таблица 1 – Основные собственные частоты БЛА

При расчете безрулевых форм флаттера жесткости приводов полагались бесконечно большими. В результате анализа полученных результатов выделены 3 формы флаттера:

1. Mode 8 – антисимметричные колебания хвостовых балок первого тона;

2. Mode 20 – Симметричный вертикальный изгиб крыла первого тона совместно со вторым тоном вертикального изгиба хвостовых балок и первым тоном изгиба стабилизатора;

3. Mode 21 – Антисимметричный изгиб крыла первого тона совместно с антисимметричным изгибом хвостовых балок второго тона.

Таблица 2 – Критические скорости и циклические частоты безрулевого флаттера

| mod                      | e 8            | mode 20                  |                           | mode 21                  |                     |
|--------------------------|----------------|--------------------------|---------------------------|--------------------------|---------------------|
| $V_{\kappa p}$ , к $M/4$ | <i>fкp,</i> Гų | $V_{\kappa p}$ , к $M/4$ | <i>f<sub>кp</sub>, Гų</i> | $V_{\kappa p}$ , к $M/4$ | $f_{\kappa p}$ , Гц |
| 615                      | 4,32           | 641                      | 22,01                     | 610                      | 21,62               |

Для получения зависимости критической скорости флаттера от парциальных вращательных частот органов управления В конечно-элементной модели «CELAS2», варьировались жесткости элементов моделирующих приводы соответствующих органов управления. Жесткость системы «руль-привод» вычислялась по формуле:

$$k_{np} = 4\pi^2 f_{\rho}^2 J_{\rho} \qquad (4)$$

,где *f<sub>ep</sub>* – парциальная вращательная циклическая частота органа управления, Гц, *J<sub>ep</sub>* – Массовый момент инерции органа управления относительно его оси вращения.

В результате исследования рулевых форм флаттера получены зависимости критической скорости флаттера от собственной вращательной частоты органа управления *f*<sub>вр</sub>.

При анализе флаттера закрылков выделены следующие формы флаттера:

- Mode 22 антисимметричное вращение закрылков совместно с антисимметричным вертикальным изгибом крыла первого тона и хвостовых балок второго тона;
- Mode 25 симметричное вращение закрылков совместно с симметричным вертикальным изгибом крыла второго тона;
- Mode 30 антисимметричное вращение закрылков совместно с антисимметричным изгибом крыла второго тона.

На рис.6 представлены зависимости критической скорости флаттера от собственной вращательной частоты закрылков для трех форм флаттера.



Рис. 6 – Зависимость критической скорости флаттера от вращательной частоты

## закрылков

При анализе флаттера элеронов выделены следующие формы флаттера:

 Mode 16 – антисимметричное вращение элеронов совместно с антисимметричным изгибом крыла первого тона;

- Mode 22 антисимметричное вращение элеронов совместно с антисимметричным вертикальным изгибом крыла первого тона и хвостовых балок второго тона;
- Mode 24 антисимметричное вращение элеронов совместно с антисимметричным вертикальным изгибом крыла первого тона и хвостовых балок второго тона. Элероны вращаются в другой фазе относительно крыла, по сравнению с формой Mode 22;
- Mode 25 симметричное вращение элеронов совместно с симметричным вертикальным изгибом крыла и хвостовых балок второго тона.

На рис.7 представлены зависимости критической скорости флаттера от собственной вращательной частоты элеронов для трех форм флаттера.



Рис. 7 – Зависимость критической скорости флаттера от вращательной частоты

## элеронов

При анализе флаттера рулей высоты выделена следующая форма флаттера:

 Mode 19 – симметричное вращение рулей высоты совместно с вертикальным изгибом стабилизатора первого тона.



Рис. 8 – Зависимость критической скорости флаттера от вращательной частоты

# рулей высоты

При анализе флаттера рулей высоты выделена следующая форма флаттера:

1. Моde 13 – антисимметричное вращение рулей направления совместно с

горизонтальным изгибом хвостовых балок первого тона.



Из полученных результатов можно сделать вывод о том, что БЛА с двухбалочным хвостовым оперением подвержен, в первую очередь, рулевым формам флаттера, что объясняется, прежде всего, отсутствием весовой

балансировки органов управления. Для каждого органа управления имеет место минимум на графиках зависимости критической скорости флаттера  $V_{\kappa p}$  от собственной вращательной частоты  $f_{ep}$ . Это объясняется тем, что при частотах органа управления, близких к локальному минимум на кривых  $V_{\kappa p}(f_{ep})$  наиболее сильно проявляется взаимодействие между органом управления и агрегатом, на котором он установлен. Для определения границы устойчивости рулевых форм флаттера для конкретного аппарата требуется определить из эксперимента  $f_{ep}$  каждого органа управления.

Рассмотренный в данной работе аппарат не подвержен безрулевым формам флаттера. Минимальная критическая скорости безрулевого флаттера – 610 км/ч, что значительно выше допускаемой для подобных аппаратов скорости (обычно 300-400 км/ч).

### Выводы

Рассмотренный в статье способ моделирования конструкции летательного аппарата с помощью балочных конечных элементов позволяет учитывать (элементы «СВЕАМ») и массово-инерционных распределение жесткостных (элементы «CMASS2» c характеристик конструкции интерполирующими элементами «RBE3») с учетом укладки слоев композиционного материала и податливости узлов соединений агрегатов. Использование элементов «CELAS2» позволяет варьировать собственные вращательные частоты органов управления для построения зависимости критических скоростей рулевого флаттера от податливости системы «руль-привод». Задание абсолютно жестких хорд с помощью элементов

#### Труды МАИ. Выпуск № 113

#### http://trudymai.ru/

«RBE2» позволяет использовать поверхностные сплайны для связи упругой и аэродинамической модели. К преимуществам метода конечных элементов для рассматриваемого класса задач следует отнести возможность высокой детализации расчетного модели с целью более точного моделирования реальных конструкций летательных аппаратов. Однако, при верификации расчетной модели разработанной с применением МКЭ, могут возникнуть трудности: чем выше детализация модели, тем сложнее скорректировать построенную модель по результатам эксперимента.

Представленные результаты моделирования показывают, что рассмотренный в данной статье тип БЛА с двухбалочным хвостовым оперением подвержен рулевым формам флаттера. В силу особенности конструкции подобных аппаратов, полная весовая балансировка органов управления не применяется, поэтому следует большое внимание уделять достоверности построенной расчетной модели и уточнять собственные вращательные частот органов управления из эксперимента. Рассмотренная конструктивно-компоновочная схема БЛА имеет сравнительно низкие собственные частоты колебаний хвостового оперения из-за податливости хвостовых балок и упругости самого крыла, а также податливости узлов крепления крыла в фюзеляже.

## Библиографический список

1. Бисплингхофф Р.Л., Эшли Х., Халфмэн Р.Л. Аэроупругость. – М.: Издательство иностранной литературы, 1958. – 799 с.

2. Фершинг Г. Основы аэроупругости. – М.: Машиностроение, 1984. – 600 с.

 Колесников К.С., Сухов В.Н. Упругий летательный аппарат как объект автоматического управления. – М.: Машиностроение, 1974. – 268 с.

4. Шклярчук Ф.Н. Аэроупругость самолета: Учебное пособие. – М.: МАИ, 1985. - 77
с.

5. Благодырева О.В. Исследование флаттера композиционного крыла // Труды МАИ.
2014. № 74. URL: <u>http://trudymai.ru/published.php?ID=49345</u>

6. Kilimtzidis S., Mazarakos D., Kostopoulos V. Aeroelastic-Flutter analysis of AGARD Wing from Composite Materials // International Journal of Recent Advancement in Engineering & Research, vol. 4, issue 9, September 2018, pp. 16.

7. Благодырева О.В. Применение метода Ритца и метода конечных элементов к расчету аэроупругих колебаний крылатой ракеты // Труды МАИ. 2017. № 95. URL: <u>http://trudymai.ru/published.php?ID=84426</u>

 Mahran M., Elsabbagh A., Negm N. A comparison between different finite elements for elastic and aero-elastic analyses // Journal of Advanced Research, 2017, Giza, Egypt, vol.
 issue 6, November 2017, C. 635 – 648. DOI: <u>https://doi.org/10.1016/j.jare.2017.06.009</u>
 Ozozturk S., Kayran A., Alemdaroglu N. On the Design and Aeroelastic stability Analysis of Twin Wing-Tail Boom Configuration Unmanned Air Vehicle // 52<sup>nd</sup> AAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 4-7 April 2011, Denver, Colorado, USA, 2011, AIAA 2011-1918, C. 42.

 Парафесь С.Г., Смыслов В.И. Проектирование конструкции и САУ БПЛА с учетом аэроупругости: постановка и методы решения задачи. - М.: Техносфера, 2018. – 181 с.

11. Быков А.В., Парафесь С.Г., Смыслов В.И. Особенности исследований аэроупругих колебаний беспилотных летательных аппаратов с электроприводом рулей // Научный вестник МГТУ ГА. 2018. Т. 21. № 4. С. 73 - 83. DOI: https://org/10.26467/2079-0619-2018-21-4-73-83

12. Парафесь С.Г., Туркин И.К. Об одном подходе к проектированию системы «руль
привод» с учетом требований аэроупругой устойчивости // Известия вузов.
Авиационная техника. 2020. № 1. С. 71 - 77.

Парафесь С.Г., Иванов Д.Н., Опарин А.С. Модель исследования устойчивости системы «руль – привод» маневренного беспилотного летательного аппарата // Научный вестник МГТУ ГА. 2016. № 225. С. 143 - 150.

14. Акимов В.Н., Иванов Д.Н., Нагорнов А.Ю. Парафесь С.Г. Учет требований аэроупругой устойчивости при проектировании системы «руль – привод» маневренного беспилотного летательного аппарата // Научный Вестник МГТУ ГА.
2019. Т. 22. № 4. С. 54 – 66. DOI: <u>https://doi.org/10.26467/2079-0619-2019-22-4-54-66</u>
15. Haghighat S., Martins J. R RA, Liu H. H T. Aeroservoelastic design optimization of a

flexible wing // Journal of Aircraft, 2012, vol. 49, no. 2, pp. 432 - 443. DOI:<u>10.2514/1.C031344</u>

16. Каримбаев Т.Д., Нуримбетов А.У. Собственные частоты колебаний слоистого композиционного стержня // Строительная механика инженерных конструкций и сооружений. 2016. № 5. С. 57 – 64.

17. Nettles A.T. Basic Mechanics of Laminates Composite Plates, Marshall Space Flight Center, Alabama, 1994, 97 p.

 Карпов Я.С. Проектирование деталей и агрегатов из композитов. – Харьков: Издво «Харьковский авиационный институт», 2010. – 768 с.

 Образцов И.Ф. и др. Строительная механика летательных аппаратов. – М.: Машиностроение, 1986. – 536 с.

Астахов М.Ф. и др. Справочная книга по расчету самолета на прочность. – М.:
 Гос. издат. оборн. пром., 1954. – 700 с.