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Введение 

 

Упругие колебания и акустические волны, излучаемые упругими телами при 

ударных возбуждениях, являются важным объектом исследования в области меха-

ники сплошных сред, поскольку имеют широкий спектр применений:  

   - Техническая диагностика: обнаружение дефектов и оценка состояния матери-

алов и конструкций; 

   - Сейсмология: изучение упругих колебаний позволяет анализировать сейсми-

ческие волны и предсказывать поведение грунтов и горных пород; 

   - Аэродинамика: акустические исследования используются для оптимизации 

формы и проектирования аэродинамических конструкций; 

   -    Борьба с шумом. 

Теория продольного удара тесно связана с большим кругом технических за-

дач, куда входят: усовершенствование ударных технологий, в том числе, - оценка 

влияния формы, движения ударников на процесс их взаимодействия с преградой, 

создание ударных стендов, позволяющих испытывать изделия, амортизация удара, 

ударное бурение в горном деле и др.  

Теоретическая база изучения продольных колебаний стержня весьма об-

ширна, о чем свидетельствуют классические монографии Рэлея [1], Лява [2] и Ти-

мошенко [3]. Наиболее распространенной и простой моделью их описания является 

волновое уравнение. При использовании этой модели предполагается, что попереч-

ные размеры стержня незначительны по сравнению с его длиной. Это позволяет 

пренебречь влиянием поперечных деформаций, сопровождающих процесс расши-

рения-сжатия при продольных колебаниях стержня, при определении его продоль-

ных смещений. 

Задача соударения тел также имеет богатую историю и большое практиче-

ское значение. Основы теории удара по стержням заложили Сен-Венан [4], Герц 

[5], Сирс [6]. Модель продольного удара Сен-Венана предполагает волновое рас-

пространение возмущений и отсутствие местных деформаций, что может быть 
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обеспечено для идеально плоских торцов соударяемых тел. Модель контактного 

взаимодействия Герца учитывает местную контактную деформацию соударяемых 

сферических тел, но не учитывает волновое движение. Модель Сирса объединяет 

оба   подхода, учитывая местную деформацию и деформацию расширения-сжатия 

в продольной волне. Такая объединенная модель хорошо согласуется с экспери-

ментами [7-9]. Современные направления работ, посвященных продольному удару, 

определяют время соударения, форму ударного импульса [10], различные эффекты, 

сопутствующие продольным колебаниям: поперечные колебания, возникающие в 

условиях параметрического резонанса [11], возможность потери устойчивости пря-

молинейной формы стержня [12], а также возможности диагностики дефектов в 

стержне [13-15]. Большое количество современных работ посвящены рассеянию 

звуковых волн стержнями [16-18].  Более подробно, в работе [19] сравниваются ре-

зультаты трех подходов к решению задачи: теоретического, конечно-элементного 

и экспериментального. Теоретический подход учитывает как распространение про-

дольных волн в стержне, так и локальное смятие по модели Герца. Этот подход 

приводит к дифференциальному уравнению с запаздывающим аргументом. Ко-

нечно-элементный подход рассматривает трехмерную динамическую задачу, в ко-

торой распространение волн и локальное смятие учитываются автоматически. 

Сравнение результатов этих двух подходов показало качественное и количествен-

ное соответствие в отношении закона изменения контактной силы и времени со-

ударения. Для дальнейшего сближения теоретических и конечно-элементных ре-

зультатов необходимо более подробно исследовать влияние краевого эффекта в 

зоне контакта, которое не учитывалось в теоретическом подходе. В эксперимен-

тальном подходе определялось только время соударения. Сравнение результатов 

теоретического и конечно-элементного подходов показало удовлетворительное со-

ответствие. Ввиду относительно небольшой длины стержня, для расчета времени 

соударения была также применена приближенная двухстепенная модель. В [19] 

была решена задача о возбуждении поперечных колебаний после отскока тела от 

стержня. При параметрическом резонансе движение характеризуется биениями, 
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при которых энергия продольных колебаний переходит в энергию поперечных ко-

лебаний и наоборот. Получена оценка максимально возможной амплитуды попе-

речных колебаний.  

Наличие трещин, малых полостей, включений и других локализованных де-

фектов, зачастую, является причиной разрушений элементов конструкций; поэтому 

задача оперативного обнаружения и идентификации таких дефектов является 

весьма актуальной. К настоящему времени имеется значительное количество ра-

бот, посвященных проблем идентификации дефектов по данным рассеяния упру-

гих волн в материале конструкции. Так, в [14] предложен метод решения обратных 

задач определения дефектов стержней при продольных колебаниях. Основываясь 

на моделировании дефекта сечения как известной функции, по двум первым часто-

там приближенно определяются основные параметры дефекта - местоположение и 

объем. 

Методу выявления множественных поперечных трещин и других локализо-

ванных дефектов в стержне по двум спектрам продольных колебаний, соответству-

ющих условиям «свободный-свободный» и «неподвижный-свободный конец», по-

священа работа [15]. Эксперименты проводились на стержне со свободными кон-

цами. Моделируемые повреждения представляли собой кольцевые канавки, сим-

метрично расположенные относительно середины стержня. С помощью таких экс-

периментов были получены собственные частоты, соответствующие двум типам 

граничных условий для стержня половинной длины. Экспериментальные данные 

обрабатывались с использованием разработанного алгоритма. Результаты пока-

зали, что модель, на которой основан алгоритм, хорошо описывает продольные ко-

лебания стержня с локализованными повреждениями в достаточно широком диа-

пазоне частот и позволяет достаточно точно реконструировать множественные по-

вреждения.  

Обнаружению дефектов массы и их влиянию на собственные частоты и 

формы колебаний упругих систем посвящена работа [13]. Показаны общие свой-

ства дефектов различной физической природы: массы, упругости и поперечного 
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сечения. Введены понятия поврежденности и критерий, позволяющий проводить 

дефектоскопию методом неразрушающего контроля.  

Динамика упругой балки, подвергшейся поперечному удару, широко изуча-

лась в течение последнего столетия. Широко используемая модель для исследова-

ния удара балки представлена в работе Тимошенко [20], в которой балка рассмот-

рена по модели Эйлера-Бернулли, а контактное взаимодействие учитывалось с по-

мощью модели Герца. Модель контактного взаимодействия, основанная на квази-

статическом соударении упругих объектов, характеризуется тем, что время кон-

такта сталкивающихся тел значительно превышает период первой формы колеба-

ний каждого из них. Теория Герца применима не только к случаю столкновения 

шаров, но и к более общему случаю прямого центрального удара двух тел, когда 

области вокруг исходной точки контакта ограничены поверхностями второго по-

рядка. Следует отметить, что при ударе по упругому телу, все три размера которого 

имеют один порядок, деформация происходит также, в основном, в малой окрест-

ности точки удара. Данный эффект может быть описан в рамках уравнений дина-

мической теории упругости в случае неограниченной упругой среды, которые 

«позволяют» деформациям локализоваться в окрестности точки приложения сосре-

доточенной силы.  

Кристоферсон [21] изучал влияние деформации сдвига на балке, подверг-

шейся удару, используя теорию балки Тимошенко (TBТ) и использовал преобразо-

вания Лапласа для получения динамического отклика системы. Арнольд [22] про-

вел серию испытаний на удар по рельсе и показал хорошее соответствие теорети-

ческим результатам, полученным с использованием модели удара Тимошенко. 

Анализ воздействия, предложенный Тимошенко, был распространен на тела раз-

личных форм, материалов, разных граничных условий при учете также нелинейных 

подходов [23-26]. Макмиллан и др. показали улучшение модели воздействия за 

счет учета затухания в основных уравнениях [27]. Сразу после удара деформация 

балки распространяется в виде волнового возмущения за пределы области кон-

такта. Если скорость удара высока, материал может испытывать ударную нагрузку, 

которая создает разрыв давления на фронте ударной волны.  
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Россихин и Шитикова [28] изучали ударную нагрузку на тонкие пластины, 

балки и стержни. Для получения данных о волновом распространении в этих струк-

турах использовался метод лучевых рядов. Этот метод подходит для решения задач 

распространения волн, в том числе с сильными разрывами.   

В целом, трудно найти решения задач об ударе в замкнутой форме, поскольку 

сила контакта зависит от локальной деформации нелинейным образом. Часто для 

устранения нелинейности используются численные подходы. Подход, использо-

ванный Тимошенко и другими [29-31], был основан на методе конечных разностей 

и включал итерационные процессы, которые требуют значительных временных ре-

сурсов. Эванс и соавторы [32] предложили более эффективный метод, который поз-

воляет производить аналитическое вычисление интегралов во времени, участвую-

щих в решении задачи, предполагая, что изменение контактной силы во времени 

является линейным за достаточно малый промежуток времени.  

Классический метод нахождения собственных частот и соответствующих 

функций форм колебаний для теории балки Тимошенко можно найти во многих 

учебных пособиях и научных статьях [1]. Для анализа воздействия в решение 

должно быть включено большее количество форм. Гоенс [33] был первым, кто об-

наружил наличие критической частоты, которая разделяет низкочастотную и высо-

кочастотную части спектра балки Тимошенко. Трейлл-Нэш и Коллар [34], а также 

другие [35-40] предложили общие решения, охватывающие оба частотных диапа-

зона. Хотя эти решения имеют аналитический вид, для высоких частот возникают 

численные проблемы из-за необходимости вычисления гиперболических функций 

больших аргументов. Бхаттачарджи и Чаттерджи [41] предположили, что добавле-

ние модального демпфирования могло бы ускорить сходимость и сократить коли-

чество требуемых форм. Были разработаны выражения для стабилизации числен-

ной оценки функций форм для различных граничных условий [42-44]. Гонсалвес 

[45] показал, что численная некорректность для высших мод обусловлена ошиб-

ками округления при вычислении некоторых уравнений с гиперболическими функ-

циями и предложил численно устойчивое выражение, которое может обеспечить 

бесконечное число собственных значений для балки Эйлера-Бернулли. Хасауна и 
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Сегалман [46] применили этот метод к модели балки Тимошенко и представили 

результаты для наиболее часто используемых граничных условий. 

Исследования поперечного воздействия на балки с использованием теорети-

ческих моделей включают в себя много аспектов. Ранние экспериментальные ра-

боты, в которых регистрировалось воздействие груза на балку для определения де-

формации, напряжения и контактной силы, показали разумное соответствие моде-

лям [22, 25]. Было показано, что локальная максимальная контактная сила, обу-

словленная ударом, не зависит от граничных условий в длинных балках [21, 25]. 

Дополнительные удары, которые состоят из более чем одного контакта, прежде чем 

ударник и балка окончательно разделятся, наблюдались и обсуждались в [22, 47-

49]. Бхаттачарджи и Чаттерджи [47] представили теоретическое исследование кон-

тактного взаимодействия и определили, что этим поведением управляет один па-

раметр. Коэффициент восстановления при поперечном ударе о балку изучался в 

[41, 49], но без учета влияния отраженных от границ волн. Россихин и Шитикова 

[50] исследовали воздействие тонкого упругого стержня и упругой сферы на пла-

стину, учитывая эффекты как падающих, так и отраженных волн, генерируемых 

при ударном взаимодействии, с использованием лучевого метода. Реакция на удар 

стержней с нелинейными характеристиками материалов, такими как полимерные 

волокна, изучалась в [51, 52].  

В сочетании с экспериментами, модели соударения стержня, посвященные 

определению динамической реакции материала стержня [34, 53]. Эффекты матери-

ала и вязкого демпфирования были рассмотрены при оценке реакции на удар по 

тонким упругим элементам конструкции в работах Хантера [35, 54] где изучалось 

воздействие сферического ударника по методу Герца на вязкоупругое полупро-

странство и аналитически оценивались продолжительность контакта и коэффици-

ент восстановления. Филлипс и Калвит [55] использовали подход Хантера для изу-

чения столкновения сферы с вязкоупругой пластиной. Ан и Стюарт [56] исследо-

вали сохранение энергии вязкоупругой балки Тимошенко в условиях контакта Си-

ньорини. Россихин и Шитикова [57] изучали реакцию вязкоупругих балок на удар, 
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используя теории Эйлера-Бернулли [57] и Тимошенко [58], а также - теорию Тимо-

шенко с растянутой срединной линией [59].  

Ряд работ, посвященных поперечному удару и послеударным поперечным 

колебаниям, направлены на согласование теоретических и экспериментальных ча-

стот, в том числе, - за критической частотой балки Тимошенко [61], определению 

прекращения взаимодействия [60]. Возникновение поперечных колебаний тонкого 

стержня при кратковременном продольном ударе рассмотрено в [62].  

Различным аспектам решения нестационарных задач теории упругости, в 

частности особого класса контактных задач с подвижными границами, для тел и 

конструкций, в том числе создание математических моделей взаимодействия, тео-

ретических и численных методов исследования динамики посвящены работы [63-

65]. 

На сегодняшний день активно изучаются колебания связанных систем; соот-

ветствующие примеры можно найти в [66–68]. В механике, маятники 

Зоммерфельда представляют собой классический пример связанной системы. Се-

рьёзное внимание уделяется проблемам существования в механических системах 

одночастотных колебаний, их устойчивости, стабилизации и синхронизации коле-

баний подсистем [68].  

Оценка усилий и жесткостей соединений имеет существенное значение при 

определении остаточного ресурса железобетонных конструкций мостов, предвари-

тельно напряженных арматурными стержнями и канатами, анкерного крепления 

кровли подземных горных выработок, стяжных стержней, обеспечивающих це-

лостность конструкций исторических зданий, и в других конструкциях. В литера-

туре описан ряд методов оценки осевой нагрузки и качества заделки стержней [69-

86]. Они могут быть сгруппированы по статическому и динамическому признакам 

исходя из характера лежащих в их основе механических взаимосвязей и последую-

щих измерений. Статические методы требуют измерения деформации под дей-

ствием статической силы для оценки осевой нагрузки в стержне [71-74]. Один из 

них основан на определении усилия вытягивания анкера [71]. Этот метод примени-

тельно к горным выработкам является трудоемким и небезопасным для персонала. 
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Чаще проводятся испытания на изгиб под действием заданной поперечной силы 

[72, 73, 98]. С точки зрения эксплуатации, недостатками статических методов яв-

ляются: необходимость подвешивать к стержневым элементам значительный вес, 

трудности измерения малых деформаций или перемещений с необходимой точно-

стью [73] и, в целом, время и оказываемое влияние на работу конструкции. Дина-

мические методы, с другой стороны, требуют идентификации вибрационных ха-

рактеристик стержня, либо только по собственным частотам, либо по частотам вме-

сте с соответствующими собственными формами. Наиболее распространенный, ча-

стотный метод основан на зависимости между напряжением в арматуре и частотой 

ее собственных поперечных колебаний, которые устанавливаются в натянутой ар-

матуре через определенное время после выведения ее из состояния равновесия уда-

ром или каким-либо другим воздействием. Качество заделки стержневых элемен-

тов оценивается также по уровню добротности послеударных затухающих колеба-

ний [71]. Ввиду важности определения продольных усилий в арматуре, статические 

и динамические методы стандартизованы [74], выпущены приборы, реализующие 

эти методы.  

В последнее время в литературе появляется все больше исследований, посвя-

щенных развитию динамических подходов к определению продольных усилий в 

стяжных стержнях не только по одной, но и по нескольким характерным собствен-

ным частотам [75-85]; некоторые из подходов требуют определения модальных 

форм [80-83]; для этого, в частности, используются дополнительные массы, срав-

нение с результатами МКЭ и оптимизация на основе генетических алгоритмов [75]. 

Актуальным вопросом является влияние граничных условий на концах стяжных 

стержней на динамические характеристики, в том числе, - на частоты свободных 

колебаний. В этом плане рассматриваются заделки не только в виде пружинных 

шарниров с неизвестными линейными и угловыми жесткостями [75-81], но и как 

Винклеровские основания с неизвестными коэффициентами постели [77, 78].  

Большинство перечисленных исследований направлены на анализ измере-

ний, проводимых на реальных объектах со стяжными стержнями, длина которых 

существенно превышает размеры их поперечного сечения. Для описания изгиба и 
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поперечных колебаний таких стержней наиболее естественной является модель Эй-

лера-Бернулли. 

Также одним из современных требований повышения надёжности и остаточ-

ного ресурса технических объектов является определение допустимых величин 

трещиноподобных дефектов, зон и уровней концентрации напряжений. При этом 

желательно, чтобы соответствующая диагностика выполнялась непосредственно в 

процессе эксплуатации технического объекта. В то же время, в связи с широким 

использованием разного рода покрытий визуальный контроль таких дефектов ста-

новится затруднительным, не говоря уже о контроле за изменением внутренней 

микроструктуры материалов, уровнями остаточного и накопленного в процессе 

эксплуатации НДС. Сами покрытия, в особенности, содержащие более одного слоя, 

могут иметь в процессе эксплуатации тенденции к расслоениям и отслоениям от 

подложки. 

       Аппаратура и методики оптико-механического исследования материалов и 

конструкций по отдельности широко используются при решении научных и при-

кладных задач. Например, электронная спекл-интерферометрическая методика 

оказалась наиболее оперативной методикой измерения остаточных напряжений 

[86, 87]. Ультразвуковая диагностика является общепризнанным методом опреде-

ления дефектов в конструкциях [87]. Однако, собранные воедино, методы акусти-

ческой спектроскопии и электронной спекл-интерферометрии позволяют более 

объективно и конкретно судить о наличии дефектов в материале детали не только 

по изменению спектрального состава её вибрационного и звукового полей, но и по 

искажению спекл-интерферограммы перемещений поверхности детали, снимаемой 

в режиме реального времени одновременно с акустической информацией. Краткое 

рассмотрение теории динамической оптической спекл-интерферометрии и ее ис-

пользование для изучения в режиме реального времени макроскопических и мик-

роскопических процессов в деформируемых средах приводится в [88]. Теоретиче-

ская часть показывает, что макроскопические поступательные движения, повороты 

и деформации объектов удобно исследовать по перемещению всего спеклового 

изображения, а также по сдвигу полос двух спекловых полей. Микроскопические 
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процессы наблюдаются по изменению структуры спекловой картины. В [88] при-

водятся примеры использования, разработанных автором, методов определения по-

воротов и деформаций при упругих и пластичных деформациях объектов, реги-

страции ультразвуковых волн и изучения особенностей образования трещин при 

многоцикловом усталостном разрушении материалов.  

Актуальность темы диссертации состоит в разработке новых, более опера-

тивных при меньших трудозатратах методов  диагностики усилий и качества со-

единений в стержнях элементов креплений кровли шахт, мостов, сетчатых оболо-

чек и других металлических конструкций по излучаемому акустическому полю по-

слеударных колебаний, их теоретическом обосновании и экспериментальной вери-

фикации, а также в исследовании встречающихся, но малоизученных эффектов при 

колебаниях и звукоизлучении упругих тел. Практическая полезность данного ис-

следования состоит в возможности существенного сокращения длины высвобож-

даемой части бетонной одежды преднапряжённой арматуры мостов и других стро-

ительных конструкций при проверке сохранения в них проектных значений про-

дольных усилий без уменьшения точности получаемых результатов.  

Степень разработанности исследования. Исследованиями в области соуда-

рения упругих тел занимались Бидерман В.Л., Пановко Я.Г., Товстик П.Е., Беляев 

А.К., Морозов Н.Ф., Зегжда С.А. и др. В частности, динамика при продольном 

ударе телом по стержню рассматривалась в ряде работ Товстика П.Е., Беляева А.К., 

Морозова Н.Ф., в которых основное внимание было уделено определению времени 

соударения, контактной силы, максимальной амплитуде поперечных колебаний 

при параметрическом резонансе, динамической потери устойчивости. Обобщая их 

результаты, первая часть настоящей работы посвящена исследованию послеудар-

ных продольных колебаний стержня и особенностей распределения амплитудно-

частотных зависимостей перемещений и акустического давления выходного конца 

стержня.  

Исследованиями в области диагностики усилий и дефектов занимались Аку-

ленко Л.Д., Нестеров Л.Д., Шифрин Е.И., Попов А.Л., Челюбеев Д.А., Козинцев 
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В.М., Устинов К.Б., Ахтямов А.М., Крутиков О.В., Гершуни И.Ш, Реста, Генти-

лини, Бриколи Бати и др. В их работах представлены методы идентификации раз-

личных дефектов и их влияние на собственные частоты в стержне, разработке чис-

ленных алгоритмов. В последнее время в литературе также появляется все больше 

исследований, посвященных развитию динамических подходов к определению 

продольных усилий в стяжных стержнях; некоторые из подходов требуют опреде-

ления модальных форм; для этого, в частности, используются дополнительные 

массы, сравнение с результатами МКЭ и оптимизация на основе генетических ал-

горитмов. Актуальным вопросом является влияние граничных условий на концах 

стержней на динамические характеристики, в том числе, - на частоты свободных 

колебаний. Таким образом, следующая часть настоящей работы стала продолже-

нием работ по диагностике усилий и жёсткости соединений по более общей мо-

дели, направленной на сокращение свободной длины.  

Целями диссертационной работы являются: 

1. Исследование широкого круга эффектов, встречающихся при колебании и 

звукоизлучении упругих тел, до сих пор неизученных или малоизученных, таких 

как, - сдвиг с первой частоты амплитудного максимума акустического давления 

послеударных продольных колебаний стержня, колебания в окрестности критиче-

ской частоты Тимошенко, влияния растягивающей силы и дефектов закрепления 

на собственные частоты послеударных поперечных колебаний стержней, в том 

числе на положение критической частоты Тимошенко, эффект «разбегания» соб-

ственных частот при растяжении стержня в области слабой нелинейности.  

2. Разработка нового усовершенствованного частотного метода оценки рас-

тягивающей силы в стержневых элементах и коэффициентов узловых жесткостей 

по нескольким характерным собственным частотам при использовании стержневой 

модели Тимошенко пригодного для применения на практике.  

Объектом исследования являются послеударные упругие колебания стерж-

ней.  
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Для достижения поставленных целей были сформулированы и решены сле-

дующие задачи: 

1. Разработка методики и стенда для экспериментального изучения особен-

ностей распределения спектра послеударных продольных колебаний стержня. 

Определение времени соударения и зависимости контактной силы от времени из 

решения задачи о продольных колебаниях стержня при наличии трения, коэффи-

циент которого определяется по совокупности многочастотных затухающих коле-

баний стержня после ударного воздействия. Определение и анализ амплитудно-ча-

стотных зависимостей перемещений и скоростей концов стержня, их связь с аку-

стическим давлением, излучаемым торцами при разных соотношениях между мас-

сой ударника и стержня, а также - различных периодах изменяемости напряженно-

деформированного состояния стержня.  

2. Разработка усовершенствованной методики динамической оценки про-

дольного усилия и коэффициентов угловой жёсткости заделки неидеально закреп-

лённого стержня по спектру его изгибных колебаний путём сравнения эксперимен-

тально зарегистрированных частот колебаний с теоретическим спектром частот, 

сгенерированных на основе аналитической модели балки Тимошенко.  

3. Разработка алгоритма и программы для ЭВМ оптимального поиска значе-

ний продольного усилия и жёсткости заделки стержня по спектру эксперимен-

тально зарегистрированных частот.  

4. Проведение экспериментальных исследований на модельных образцах. 

Определение минимального количества регистрируемых собственных частот коле-

баний, необходимого для динамической оценки продольного усилия с приемлемой 

погрешностью.  

5. Теоретическое и экспериментальное исследования возможности разнона-

правленного изменения собственных частот изгибных колебаний при растяжении 

стержня в области слабо нелинейной зависимости напряжения от деформации.  

6. Уточнение значений механических параметров балки, таких как скорость 

звука и коэффициент Пуассона, исходя из сопоставления спектров эксперимен-

тальных и теоретических частот продольных и поперечных колебаний балки со 
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специально подобранными параметрами, для которых критическая частота по ТБТ 

(Теория изгиба балок Тимошенко) находится внутри акустического спектра. Экс-

периментальная верификация парных частот в сверхкритической области, предска-

занных ТБТ. 

7. Разработка новой методики и стенда для синхронного съёма спекл-интер-

ферометрической и виброакустической информации с вибрирующих объектов (те-

стовых пластин). Проведение тестирования методики синхронного съёма вибро-

акустической и спекл-интерферометрической информации для диагностики дефек-

тов и степени их залечивания в закреплениях границ тестовых пластин в форме 

эллипса и кардиоиды. 

Научная новизна. 

В работе представлены следующие новые результаты: 

1. Исследованы спектры акустического давления послеударных продольных 

колебаний при наличии трения, коэффициент которого определяется по со-

вокупности многочастотных затухающих колебаний стержня после ударного 

воздействия в зависимости от соотношения между массой ударника и 

стержня, и поперечных колебаний при различной величине статического рас-

тяжения и условий закрепления реальных стержневых систем. 

2. Разработана методика и стенд для экспериментального изучения спектра аку-

стического давления послеударных продольных колебаний стержня. Выяв-

лен и изучен эффект сдвига по частоте амплитудного максимума в спектре 

акустического давления при послеударных продольных колебаниях стержня. 

Показано, что величина этого сдвига может зависеть от параметров, опреде-

ляющих период осцилляции, а именно от среды распространения звука, рас-

стояния до приёмника и от отношения масс ударника и стержня. При ударе 

по стержню ударником большей массы амплитуды скорости выходного 

конца на разных частотах отличаются друг от друга значительнее осцилли-

рующего эффекта функции; таким образом, максимум акустического давле-

ния соответствует частоте основного тона. При стремлении отношения масс 
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соударяющейся пары к нулю спектр меняется и диктующим максимум ока-

зывается осциллирующий эффект. 

3. Разработан новый усовершенствованный частотный метод оценки усилий и 

узловых жесткостей в стержнях. Выполнены исследования по эксперимен-

тальной верификации усовершенствованного частотного метода определе-

ния растягивающих усилий и жесткостей закрепления стержневых элементов 

строительных конструкций на основе модели колебаний балки Тимошенко и 

разработанных алгоритма и программы для ЭВМ оптимального поиска зна-

чений продольного усилия и жёсткости заделки стержня по спектру зареги-

стрированных частот. Предложенные расчетные модели и методики спо-

собны обеспечить существенное снижение трудоемкости проведения таких 

испытаний.  

4. Впервые выявлена и объяснена особенность разнонаправленного изменения 

собственных частот изгибных колебаний при растяжении стержня в области 

слабо нелинейной зависимости напряжения от деформации. Показана необ-

ходимость учета изменения начального модуля упругости в процессе дефор-

мирования при частотной диагностике усилий в стержневых элементах. Так, 

при изменении начального значения модуля упругости на 3% при статиче-

ском растяжении для рассматриваемого тестового образца 3-я собственная 

частота поперечных колебаний оказывается ниже 1-ой собственной частоты 

при начальном модуле упругости в отсутствии статического растяжения.  

5. Проведен теоретический и экспериментальный анализ спектров частот балки 

Тимошенко в окрестности критической частоты. При рассмотрении попереч-

ных колебаний используемая методика по определению физических величин 

на примере скорости звука приводит к согласованию теоретических и экспе-

риментальных наборов частот. Экспериментально верифицированы близкие 

пары частот за частотой Тимошенко.  

6. Создан и протестирован оптико-акустический стенд и новая методика син-

хронного съёма виброакустической и спекл-интерферометрической инфор-
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мации, пригодная для диагностики дефектов закрепления тонкостенных эле-

ментов конструкций и анализа степени их устранения. Проведенное тестиро-

вание показало преимущества объединения виброакустической и спекл-ин-

терферометрической диагностики дефектов на примере диагностики дефек-

тов в закреплении границы тестовой пластины. Важный признак такого де-

фекта - снижение резонансной частоты колебаний - является лишь интеграль-

ным признаком, по которому невозможно определить конкретное место рас-

положения дефекта на контуре заделки. В то же время по конфигурации по-

лос спекл-интерферограммы, полученной на сниженной резонансной частоте 

колебаний пластины, однозначно определяется место расположения дефекта 

заделки контура пластины. 

Теоретическая и практическая значимость работы заключается в том, что 

ее результаты направлены на решение новых задач акустоупругости и на совершен-

ствование широко используемого в технической диагностике частотного метода 

контроля сил натяжения стержневых элементов строительных конструкций, в част-

ности преднапряжённой арматуры. Результаты выполнения настоящей работы мо-

гут быть использованы для обеспечения возможности существенного сокращения 

материальных, временных и трудовых затрат на диагностику сил натяжения в пред-

напряжённой арматуре мостов и других строительных конструкций в процессе про-

верки сохранения в них проектных значений продольных усилий путём использо-

вания более совершенных моделей колебаний элементов таких конструкций и оп-

тимизации алгоритма поиска значений продольных усилий и жесткостей заделок 

арматурных стержней и канатов по спектру зарегистрированных собственных ча-

стот после ударных воздействий при значительно меньшей, чем практикуемая, вы-

свобождении длины бетонной одежды без уменьшения точности получаемых ре-

зультатов. 

Методы исследования. Экспериментальные исследования проводились в 

лабораторных условиях с применением современных приборов и установок. В ра-

боте использованы известные методы для решения задач динамики твердого тела. 
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При решении задач, представленных в диссертации, применялись различные мате-

матические и вычислительные методы: решение смешанной краевой задачи мето-

дом Фурье, интегральное преобразование Лапласа, теорема Бореля об умножении 

изображений, методы глобальной и локальной оптимизации.  

      Положения, выносимые на защиту: 

1. Решение задачи об определении спектра акустического давления послеудар-

ных продольных колебаний стержня; 

2. Методика динамической оценки продольного усилия и коэффициентов угло-

вой жёсткости заделки неидеально закреплённого стержня по спектру его из-

гибных колебаний; 

3. Авторский программный код (комплекс), реализующий разработанные алго-

ритмы для определения коэффициентов жесткости и внутренних силовых 

факторов с использованием локально-стохастического метода «basin-

hopping» на основе минимизации Монте-Карло функции ошибок по разности 

теоретических и экспериментальных частот;  

4. Теоретический и экспериментальный анализ спектра частот балки Тимо-

шенко в окрестности критической частоты, в том числе, - влияния растягива-

ющей силы на положение критической частоты. Методика по определению 

физических величин на примере скорости звука приводит к согласованию 

теоретических и экспериментальных наборов частот. Экспериментально ве-

рифицированы близкие пары частот за частотой Тимошенко; 

5. Обнаружение и объяснение эффекта разнонаправленного изменения соб-

ственных частот поперечных колебаний при растяжении стержня в области 

слабой нелинейности при котором возникает рост низких частот и уменьше-

нии высоких частот с ростом порядкового номера частоты; 

6. Создание оптико-акустического стенда и методики синхронного съёма 

виброакустической и спекл-интерферометрической информации для диагно-

стики дефектов закрепления тонкостенных элементов конструкций и степени 

их устранения.  
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Достоверность и обоснованность результатов исследований, проведен-

ных соискателем ученой степени обеспечена использованием классических мате-

матических методов механики деформируемого твёрдого тела и математического 

анализа, применением апробированных методов оптимизации, сравнением с ре-

зультатами экспериментальных исследований. 

Апробация работы. Основные результаты работы докладывались и обсуж-

дались на всероссийских и международных профильных научных конференциях и 

семинарах: 

1. XLIII международная молодёжная научная конференция «Гагаринские чте-

ния», Москва, Россия, 20-23 апреля 2021; 

2. Дни студенческой науки 01-05 марта, 2021; 

3. Дни студенческой науки 28 февраля-04 марта, 2022;  

4. Международная научно-техническая конференция "Актуальные проблемы 

прикладной математики, информатики и механики" 2021, 12 - 14 декабря 

2022; 

5. XIII Всероссийский съезд по теоретической и прикладной механике 21 - 25 

августа, 2023; 

6. Международная научно-техническая конференция "Актуальные проблемы 

прикладной математики, информатики и механики" 2021, 4 – 6 декабря 2023; 

7. Дни студенческой науки 26 февраля–01 марта, 2024; 

Публикации. Основные результаты диссертации изложены в работах [100-

109], изданных в периодических научных изданиях, сборниках материалов и тези-

сах докладов международных и всероссийских конференций. Четыре статьи из 

списка публикаций напечатаны в журналах, входящих в перечень ВАК РФ и/или 

индексируемых в Web of Science, Scopus. Получено свидетельство о государствен-

ной регистрации программы для ЭВМ [113]. 

Личный вклад автора состоит в построении аналитических решений об 

определении спектра перемещения и акустического давления послеударных про-

дольных колебаний конца стержня, реализации метода динамической оценки уси-

лий и узловых жесткостей соединений стержневых элементов, конкретизации и 
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разработке алгоритма определения усилий и узловых жесткостей с использованием 

локально-стохастического метода по разности теоретических и эксперименталь-

ных частот, анализе и обработке экспериментальных данных,  экспериментальной 

верификации на модельных образцах, участии в создании оптико-акустического 

стенда и методики синхронного съёма виброакустической и спекл-интерферомет-

рической информации для диагностики дефектов закрепления тонкостенных эле-

ментов конструкций и степени их устранения. Анализ и обобщение полученных 

результатов. Постановка задач и анализ полученных результатов проводились сов-

местно с научным руководителем - А.Л. Поповым. 

Структура и объем работы. Диссертация состоит из введения, 4 глав, За-

ключения, списка литературы и 2 приложений. Текст диссертации составляет 113 

страниц, включая 37 рисунков и 5 таблиц. Список цитируемой литературы содер-

жит 113 наименований. 

Во введении дана общая характеристика работы, сформулированы ее цели, 

задачи и методы их реализации, обоснована актуальность темы исследования. При-

водятся достижения предшественников и новизна полученных и выносимых на за-

щиту результатов, их теоретическая и потенциальная практическая значимость. 

В первой главе рассмотрены теоретические модели, возбуждаемых ударом, 

колебаний стержней при раздельном и совместном учете волнового движения и 

местной деформации в соударяющихся телах. Показана иерархия моделей, описы-

вающих продольные и поперечные колебания стержней.  

Вторая глава посвящена согласованию теоретических моделей удара и по-

слеударных продольных колебаний стержня с экспериментальными данными. По-

лучено решение задачи о продольных колебаниях стержня со свободными концами 

при наличии трения, коэффициент которого определяется по совокупности много-

частотных затухающих колебаний стержня после ударного воздействия. Опреде-

лены и проанализированы амплитудно-частотные зависимости перемещений и ско-

ростей концов стержня, их связь с акустическим давлением, излучаемым торцами 

при разных соотношениях между массой ударника и стержня. Продемонстрирован 
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эффект сдвига амплитудного максимума акустического давления с частоты основ-

ного тона на обертон, зависящий от параметров, определяющих период осцилля-

ции, и отношения масс ударника и стержня. 

В третьей главе рассмотрена методика динамической оценки продольного 

усилия и коэффициентов угловой жёсткости заделки неидеально закреплённого 

стержня по спектру его изгибных колебаний путём сравнения экспериментально 

зарегистрированных частот колебаний с теоретическими спектрам частот, сгенери-

рованных на основе аналитических моделей балок Эйлера- Бернулли и Тимошенко. 

Для согласования результатов по теоретическим моделям с набором эксперимен-

тальных частот используется сочетание известных алгоритмов оптимизации на ос-

нове глобального поиска и локальных минимумов, проведена экспериментальная 

верификация динамической методики на стержневых моделях с известными значе-

ниями продольного усилия и угловой жёсткости заделки. Для этого в качестве мо-

дельных образцов рассмотрены две балки. В одной из них при растяжении в испы-

тательной машине создавались заданные продольные усилия. Другая балка имела 

вид консоли с торцевым резьбовым креплением, по степени затяжки которого, кон-

тролируемой по статическому прогибу консоли, определялся коэффициент угловой 

жёсткости крепления. В результате, в зависимости от параметров балки, опреде-

лено минимальное количество регистрируемых собственных частот её колебаний, 

необходимое для динамической оценки продольного усилия с приемлемой погреш-

ностью. Также показана зависимость критической частоты балки Тимошенко от 

внутреннего силового фактора – растягивающей силы. Отмечена особенность раз-

нонаправленного изменения собственных частот изгибных колебаний при растя-

жении стержня в области слабо нелинейной зависимости напряжения от деформа-

ции. Также рассмотрены поперечные колебания в плоскости наибольшей жестко-

сти свободно подвешенной на гибких нитях латунной полосы, для которых крити-

ческая частота по ТБТ находится внутри акустического спектра. Исходя из сопо-

ставления спектров экспериментальных и теоретических частот продольных и по-

перечных колебаний балки, проведено уточнение значений механических парамет-

ров балки, таких как скорость звука и коэффициент Пуассона, в результате чего 
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достигнута высокая степень согласования этих спектров, в том числе, - за критиче-

ской частотой. Экспериментально верифицированы парные частоты в сверхкрити-

ческой области, предсказанные ТБТ. 

В четвертой главе рассмотрен метод синхронного съёма виброакустической 

и спекл-интерферометрической информации для диагностики дефектов закрепле-

ния тонкостенных элементов конструкций. Разработан стенд для синхронной оп-

тико-акустической регистрации частот и форм резонансных колебаний наблюдае-

мых элементов конструкций, выполнена их верификация на примерах диагностики 

дефектов в закреплении границ тестовых пластин в форме эллипса и кардиоиды. 

В Заключении сформулированы основные результаты диссертационной ра-

боты.  
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Глава 1. Теоретические модели возбуждаемых ударом колебаний стержней 

 

1.1. Модели продольного соударения упругих тел 

Рассматривая задачи о продольном соударении упругих тел возникает вопрос 

о необходимости выбора масштаба времени, в пределах которого необходимо рас-

сматривать взаимодействие между телами. Широкое распространение при реше-

нии многих технических задач получила классическая теория удара, при которой 

рассматриваемое взаимодействие принимается мгновенным. Соударяющиеся тела 

в классической теории считаются абсолютно твердыми, а потеря энергии, связан-

ная с деформациями в зоне контакта, учитывается с помощью коэффициента вос-

становления. Исследование Сен-Венана о соударении двух тонких однородных 

стержней при различных длинах и поперечных сечениях показало, что коэффици-

ент восстановления меняется от нуля до единицы, его решение основывалось на 

интегрировании одномерных волновых уравнений при соответствующих началь-

ных и граничных условиях. Данные результаты имеют большое практическое зна-

чение, например, в технологии ударного бурения.  

Определение процесса соударения, т.е. отыскание зависимости контактной 

силы от времени, удалось Герцу. Решение Герца основывалось на квазистатиче-

ской постановке задачи соударения упругих тел, по которой продолжительность 

соударения предполагается много больше периода первой собственной формы ко-

лебаний любого из тел соударяющейся пары. Формой тел вне окрестности точки 

первоначального контакта поверхностями второго порядка пренебрегают. Это обу-

словлено тем, что тела при соударении квазистатически деформируются в зоне кон-

такта.  Совместный учет волнового движения и местной деформации в соударяю-

щихся телах на примере стержней со сферическими концами был выполнен Сир-

сом. Методика сведения задачи к решению обыкновенного дифференциального 

уравнения с запаздывающим аргументом, предложенная Сирсом, оказалась очень 

эффективной. Ниже рассмотрены основные модели более подробно.  
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Теория Сен-Венана соударения упругих тел. 

Модель продольного удара Сен-Венана предполагает волновое распростра-

нение возмущений и отсутствие местных деформаций, что может быть обеспечено 

для идеально плоских торцов соударяемых тел. На рисунке 1.1 представлено такое 

соударение плоским ударником по торцу цилиндрического стержня со свободными 

концами.  

 

Рисунок 1.1 –  Удар плоским ударником по стержню со свободными кон-

цами 

Условие контакта в такой задаче следует из общего уравнения: 
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где v0 – скорость ударника в момент удара по стержню, 𝑚 – масса ударника,  

Y – реакция системы на единичный импульс, P(t1) – контактная сила. 

Решение данного интегрального уравнения: 

( ) 0
,

M ct

m lP t c Sv e
−

=  M Sl=   (1.1.2) 

где c – скорость звука, ρ - плотность материала, l – длина стержня, S – площадь 

поперечного сечения стержня 

Очевидно, что такое решение описывает исключительно затухающую часть 

ударного импульса. 

Теория Герца соударения упругих тел 

Основные идеи теории Герца проиллюстрируем на примере прямого цен-

трального удара двух массивных упругих шаров со скоростями, при которых не 

появляются пластические деформации (Рисунок 1.2). 
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Рисунок 1.2 – Соударение упругих шаров 

Уравнение совместного движения таких шаров принимает вид: 

 0 ( )M P t = −  (1.1.3) 

где M0=m1m2/(m1+m2) – приведенная масса, α – местное смятие.  

Зависимость контактной силы от времени Герц получил на основании двух 

гипотез, сущность которых рассматривается на более простом примере удара шара 

по упругому полупространству. Введение этой гипотезы предполагает, что сила со-

ударения не изменится, т.е. существенными при соударении тел являются местные 

деформации в зоне контакта. Второе предположение заключается в том, что силами 

инерции в упругом полупространстве можно пренебречь, т.е. зависимость контакт-

ной силы от времени такая же как при статическом сжатии. Данные гипотезы поз-

воляют установить связь между местным смятием, входящим в уравнение (1.1.3), 

и контактной силой при решении интегрального уравнения контактной задачи при 

помощи теории потенциала. Для двух различных шаров контактная сила имеет вид 

[90]: 

3/2 ,P k= 

1
2 2

1 2 1 2

1 2 1 2

1 1 4

3

R R
k

E E R R

 
−

 − −
= + 

+ 
 (1.1.4) 

где E1, E2 и ν1, ν2 – модули Юнга и коэффициенты Пуассона ударника и стержня 

соответственно, R1 и R2 – радиусы кривизны 

Теория Сирса соударения упругих тел 

Модель Сирса объединяет оба подхода, учитывая местную деформацию и де-

формацию расширения-сжатия в продольной волне. Данный подход предполагает 

одновременный учет принципа Сен-Венана, согласно которому закон распределе-

ния давления по площадке контакта не влияет на динамические деформации вне 
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окрестности точки контакта, и принципа освобождаемости, который позволяет за-

менить условие контакта действием сил давления, приложенных от одного тела к 

другому. 

Основные положения проиллюстрируем на примере продольного удара те-

лом массой m в начальный момент времени со скоростью v0 по упругому стержню 

длиной L с правым концом в упоре (Рисунок 1.3), в результате чего по стержню 

распространяются плоские волны со скоростью c и возникает местное смятие α в 

зоне контакта. Выбор такой модели и учет смятия оправдан в том числе условием 

несвободного конца и сферическим наконечником ударника.  

 

Рисунок 1.3 – Удар сферическим ударником по стержню с упором 

          Условие контакта в такой задаче имеет вид [11]: 

( ) ( )
0 1 1 1 1 1 1

0 0

1
( ) ( )

t t

v t P t t t dt P t Y t t dt
m

− − −  = −   (1.1.5) 

Параметр k для случая удара телом по плоскому торцу при одинаковых мате-

риалах стержня и ударника:  

( )2

2

3 1

E R
k


=

−
 (1.1.6) 

где R – радиус кривизны ударника в точке контакта. 

В результате получим нелинейное интегральное уравнение, которое допус-

кает только численное решение. В отличие от решения, полученного по модели 

Сен-Венана, здесь уже присутствует не только затухающая, но и возрастающая ча-

сти ударного импульса. 

1.2. Послеударные продольные колебания стержня 

Помимо классических инженерных моделей, в области динамики стержней 

существуют так называемые уточненные или неклассические модели. Эти модели 
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учитывают дополнительные факторы, влияющие на динамический процесс. Клас-

сическая теория продольных колебаний стержня была обобщена в моделях Релея-

Лява, Релея-Бишопа и Миндлина-Германа. Ниже будет дано подробное описание 

этих моделей. 

Стержень по модели Сен-Венана 

Для описания свободных продольных колебаний стержня постоянного попе-

речного сечения обычно используется волновое уравнение в виде: 

 
2 2

2

2 2
, ,

u u E
c с

t x

 
= =

  
 ( )1.2.1  

где ( , )u u x t=  - продольное смещение точки стержня с координатой x, направленной 

вдоль его оси, в момент времени t, E - модуль упругости, ρ - плотность стержня.   

      Предполагая, что продольные колебания стержня представляют собой гармони-

ческие колебания с круговой частотой ω; тогда решение уравнения ( )1.2.1  может 

быть представлено в виде:    

( ) ( ), sinu x t U x t=   ( )1.2.2  

где U(x) – амплитуда продольных колебаний сечения стержня.  

Подставляя решение (1.2.2) в (1.2.1), получим дифференциальное уравнение разре-

шенное относительно формы продольного перемещения по координате x: 

2 2

2 2
0

d U
U

dx c


+ =  ( )1.2.3  

где 
E

c


= . Решение данного уравнения может быть представлено в виде: 

1 2( ) cos sinU x C x C x
c c

 
= +  ( )1.2.4  

где С1, С2 - постоянные, определяемые из граничных условий на концах стержня. 

Стержень по модели Релея-Лява 

В усовершенствованной теории продольных колебаний стержня дополни-

тельно рассматривается влияние инерции поперечных смещений, которое приво-
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дит к растяжению или сжатию сечений в их плоскостях при продольных колеба-

ниях стержня. Согласно эффекту Пуассона, компоненты перемещений будут вклю-

чать [89]: 

, ,( ),
x

u
x

u x t
u u

y z


= = −


= −



 v w  ( )1.2.5  

где ν – коэффициент Пуассона, y, z – расстояния от нейтральной оси до выбранной 

точки поперечного сечения.  

     Уравнение уточнённой теории продольных колебаний с учетом поперечных 

смещений растяжения-сжатия стержня: 

2 2 4
2 2

2 2 2 2
0

pIu u u
c

t x F x t

  
− − =

   
  ( )1.2.6  

в котором 
2 2( )p

F

I y z dF= +   - полярный момент инерции поперечного сечения 

стержня c площадью F.  

Если предположить, что колебания гармонические, то продольные переме-

щения точек стержня принимают вид: 

( ) ( ), sinu x t U x t=   ( )1.2.7  

Подставляя данное решение в уравнение уточнённой теории продольных 

колебаний, получим: 

2
2 2 2 2

2
0

pI d U
c U

F dx
  

 
− + = 

 
 ( )1.2.8  

Отсюда решение для амплитуды: 

1 2( ) cos sinU x C x C x
a a

 
= +  ( )1.2.9  

где 
2 2 2pI

a c
F
 = − и С1, С2 - постоянные, определяемые из граничных условий на 

концах стержня. 

Очевидно, что поправка Релея, соответствующая учету кинетической энер-

гии радиального движения, имеет более высокий порядок малости по сравнению с 

энергией продольного движения частиц.                                                 
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Стержень по модели Релея-Бишопа 

Ключевая особенность модели Бишопа состоит в том, что она учитывает не 

только кинетическую энергию радиального движения, но также и потенциальную 

энергию сдвиговых деформаций. 

В соответствии с этой моделью, продольные колебания стержня описыва-

ются более сложным уравнением, имеющим четвертый порядок по x [89]: 

2 2 4 4
2 2

2 2 2 2 4
0p p

u u u u
F EF I GI

t x x t x

   
− − + =

    
     ( )1.2.10  

Аналогичным образом, если предположить, что колебания гармонические, то 

продольные перемещения точек стержня принимают вид: 

( ) ( ), sinu x t U x t=   ( )1.2.11  

Подставляя ( )1.2.11  в уравнение продольных колебаний, имеем: 

2 4
2 2 2 2

2 4
( ) 0p p

dU dU
F U I EF GI

dx dx
     − + − + =  ( )1.2.12  

Очевидно, что уравнение (1.2.12) представляет собой обыкновенное диффе-

ренциальное уравнение четвертого порядка с амплитудой продольных колебаний 

U(x), а его характеристическое уравнение: 

2 2 2
4 2

2 2

( )
0

p

p p

I EF F
k k

G I G I

    

 

−
+ − =  ( )1.2.13  

Решение характеристического уравнения 1,2 ,k i=    3,4 ,k =  где 1i = −  и α 

и β соответственно равны: 

2 2 2 2 2 2 2

2

( ) ( ) 4

2

p p p

p

I EF I EF FG I

G I

        




− + − +
=  

2 2 2 2 2 2 2

2

( ) ( ) 4

2

p p p

p

I EF I EF FG I

G I

        




− − + − +
=  

( )1.2.14  
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С учетом корней характеристического уравнения выражение для формы про-

дольного перемещения стержня будет выглядеть так: 

( ) 1 2 3 4sin cos sinh coshU x C x C x C x C x   = + + +  ( )1.2.15  

где С1, С2, С3, С4 - постоянные, определяемые из граничных условий на концах 

стержня.  

Стержень по модели Миндлина-Германа 

Главной особенностью модели является свобода от гипотезы об одноосности 

деформированного состояния стержня. Основные дифференциальные уравнения 

для цилиндрического стержня могут быть выражены в следующем виде [111]: 

( )

2 2

2 2

2 2

2 2

(2 ) 2

4 2p p

u w u
F F F

x x t

w u w
I Fw F I

x x t

   

    

  
+ + =

  

  
− + − =

  

 ( )1.2.16  

где μ=E/2(1+ν), λ= νE/[(1+ν) (1-2ν)] – постоянные Ламе, u и w – продольное и по-

перечное перемещение сечения стержня соответственно. 

Полагая, что продольные и поперечные колебания гармонические, решение 

может быть представлено в виде: 

( ) ( )

( ) ( )

, sin

, sin

u x t U x t

w x t W x t





=

=
 ( )1.2.17  

где U(x) и W(x) амплитуды продольных и поперечных перемещений сечений 

стержня соответственно. 

Подставляя ( )1.2.17  в систему (1.2.16), описывающую колебания стержня, полу-

чим систему обыкновенных дифференциальных уравнений: 

( )

( )

2
2

2

2
2

2

2 2

0

2 4p p

d d
F F F

Udx dx

Wd d
F I F I

dx dx

    

     

+ +

=

− + + −

 ( )1.2.18  

Соответствующее ей характеристическое уравнение: 

4 2

2 1 0 0a k a k a− + =  ( )1.2.19  

где  



32 

 

( )( )2 2

0 4 ,pa F F I     = − + −  

( ) ( )2 2 2

1 2 4 2 3 ,p pa I F I F F        = + + − +  

( )2 2 pa F I  = +  

( )1.2.20  

Решение характеристического уравнения:  

2

1 1 2 0

1,2

1

4

2

a a a a
k

a

 −
=  ( )1.2.21  

С учетом решения характеристического уравнения, выражения для продоль-

ного и поперечного перемещения примут вид: 

( )

( )
1 1 1 2 1 1 3 2 2 4 2 2

1 1 2 1 3 2 4 2

sinh cosh sinh cosh

cosh sinh cosh sinh

U x C B k x C B k x C B k x C B k x

x C k x C k x C k x C k x

= + + +

 = + + +
 ( )1.2.22  

где 
1,2

1,2 2 2

1,2

2

(2 )

k
B

k



  

−
=

+ +
 

Очевидно, что различия между рассматриваемыми моделями нивелируются 

при уменьшении коэффициента Пуассона и увеличении гибкости стержня, что рав-

ноценно снижению вклада каждого компонента более высоко порядка малости. На 

основании полученных результатов можно также отметить изменение выражения 

для скорости звука, что в некоторой степени также освещено в [89], где отмечено 

сгущение частот с ростом их порядкового номера и величины.  

1.3. Послеударные поперечные колебания стержней 

Аналогичным образом, в области динамики стержней, помимо классических 

инженерных моделей поперечных колебаний, существуют уточненные или не-

классические модели. Эти модели учитывают дополнительные факторы, влияю-

щие на динамический процесс, или не опираются на некоторые гипотезы, харак-

терные для инженерных теорий, что расширяет область их применимости. Класси-

ческую теорию поперечных колебаний стержня обобщают модели Релея и Тимо-

шенко. Ниже будет представлено более подробное описание данных моделей. 
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Стержень по модели Эйлера-Бернулли 

Дифференциальное уравнение, описывающее свободное движение при попе-

речных колебаниях имеет вид: 

2 4

2 4
0

w w
A EI

t x

 
+ =

 
  ( )1.3.1  

где ρ – плотность, A – площадь поперечного сечения E - модуль упругости I - мо-

мент инерции, w(x,t) – динамический прогиб стержня 

Представляя функцию поперечного смещения:  

( ) ( ), sinw x t W x t=   ( )1.3.2  

Дифференциальное уравнение относительно W(x): 

4
2

4
0

W
EI FW

x
 


− =


 ( )1.3.3  

Его решение: 

( ) ( ) ( ) ( )1 2 3 4sin cosW C ax C ax C sh ax C ch ax= + + +  

2
4 F

a
EI

 
=  

( )1.3.4  

Стержень по модели Релея 

Модель учитывает инерцию вращения; дифференциальное уравнение движе-

ния [112]: 

2 4 4

2 4 2 2
0

w w w
F EI I

t x t x

  
+ − =

   
   ( )1.3.5  

Представляя функцию поперечного смещения: 

( ) ( ), sinw x t W x t=   ( )1.3.6  

получим дифференциальное уравнение относительно W(x): 

4 2 2 2

4 2
0

W W F
W

x E x EI

    
+ − =

 
 ( )1.3.7  

 

  



34 

 

Корни характеристического уравнения: 

2
2 2 2

2

1,2 3,4, ,
2 2

F
ia b

E E EI

   
  

 
= −  + =  =  

 
 ( )1.3.8  

2
2 2 2

,
2 2

F
a

E E EI

 
= + + 

 

   

2
2 2 2

2 2

F
b

E E EI

 
= − + + 

 

   
 

( )1.3.9  

Общее решение уравнения (1.3.7) принимает вид: 

( ) ( ) ( ) ( ) ( )1 2 3 4sin cosW x C ax C ax C sh bx C ch bx= + + +  ( )1.3.10  

Сдвиговая модель учитывает соответствующие деформации; дифференци-

альные уравнения движения имеют следующий вид [112]: 

2 2

2 2
0

w w
F kGF

t x x

   
− − = 

   


  

2

2
0

w
EI kGF

x x

  
+ − = 

  


  

( )1.3.11  

где k – сдвиговой коэффициент, 𝐺 – модуль сдвига, θ(x,t) – угол сдвига. 

Решение системы дифференциальных уравнений ( )1.3.11  разыскивается в 

виде: 

( )

( )
sin

W xw
t

x




  
=   

   
 ( )1.3.12  

Подстановка ( )1.3.12  в систему ( )1.3.11  позволяет получить отдельное диф-

ференциальное уравнение для W(x): 

4 2 2 2

4 2

( ) ( )
( ) 0

d W x d W x F
W x

dx kG dx EI

  
+ − =  ( )1.3.13  

Корни характеристического уравнения: 

1,2 ,ia=   3,4 b=   ( )1.3.14  
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2
2 2 2

,
2 2

F
a

kG kG EI

 
= + + 

 

   
 

2
2 2 2

2 2

F
b

kG kG EI

 
= − + + 

 

   
 

Решения уравнений принимают вид: 

( ) ( ) ( ) ( )1 2 3 4( ) sin cosW x C ax C ax C sh bx C ch bx= + + +

( ) ( )
2 2

2 2

1 2

1 1
( ) cos sinx C a ax C a ax

a kG a kG

    
 = − − + − +   

   
 

( ) ( )
2 2

2 2

3 4

1 1
C b ch bx C b sh bx

b kG b kG

    
+ + + +   

   
 

( )1.3.15  

 

Модель Тимошенко объединяет учёт инерции вращения и сдвиговых дефор-

маций (Рисунок 1.4). 

 

Рисунок 1.4 – Деформация балки по Тимошенко  

Дифференциальные уравнения, описывающие свободное движение при по-

перечных колебаниях, имеют вид: 

 

2 2

2 2
0

kFG w

x EI x E t

  


   
+ − − = 

   
 

2 2

2 2
0

w w
F kFG

t x x




   
− − = 

   
 

( )1.3.16  
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По аналогии с рассмотренным выше случаем, разделяя переменные, прихо-

дим к следующему виду одного из дифференциальных уравнений: 

4 2 2 2 4 2

4 2
0

W W F
W

x kG E x kGE EI

    
+ + + − =   

    

    
 ( )1.3.17  

Корни характеристических уравнений для частот ниже критической ω<ωc: 

1,2 ,ia =   3,4 b =   

2
2 2 2 2 2 4 2

,
2 2 2 2

F
a

E kG E kG kGE EI

          
= + + + − −   

   
 

2
2 2 2 2 2 4 2

2 2 2 2

F
b

E kG E kG kGE EI

            
= − + + + − −     

     
 

( )1.3.18  

Решения уравнений принимают вид: 

( ) ( ) ( ) ( )1 2 3 4( ) sin cosW x C ax C ax C sh bx C ch bx= + + +  

( ) ( )
2 2

2 2

1 2

1 1
( ) cos sinx C a ax C a ax

a kG a kG

    
 = − − + − +   

   
 

( ) ( )
2 2

2 2

3 4

1 1
C b ch bx C b sh bx

b kG b kG

    
+ + +   

   
 

( )1.3.19  

Корни характеристических уравнений для частот выше критической ω>ωc: 

1,2 ,ia =   3,4 ib =   

2
2 2 2 2 2 4 2

,
2 2 2 2

F
a

E kG E kG kGE EI

            
= + − + − −     

     
 

2
2 2 2 2 2 4 2

2 2 2 2

F
b

E kG E kG kGE EI

            
= + + + − −     

     
 

( )1.3.20  
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Решения уравнений принимают вид: 

( ) ( ) ( ) ( )1 2 3 4( ) sin cos sin cosW x C ax C ax C bx C bx= + + +  

( ) ( )
2 2

2 2

1 2

1 1
( ) cos sinx C a ax C a ax

a kG a kG

    
 = − − + − +   

   
 

( ) ( )
2 2

2 2

3 4

1 1
cos sinC b bx C b bx

b kG b kG

    
− − + −   

   
 

( )1.3.21  
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Глава 2.  Экспериментально-теоретический анализ начальной стадии 

продольных колебаний стержня после ударного воздействия 

 

Данный раздел посвящен согласованию теоретических моделей удара и по-

слеударных продольных колебаний стержня с экспериментальными данными. По-

лучено решение задачи о продольных колебаниях стержня со свободными концами 

при наличии трения, коэффициент которого определяется по совокупности много-

частотных затухающих колебаний стержня после ударного воздействия. Опреде-

лены и проанализированы амплитудно-частотные зависимости перемещений и ско-

ростей концов стержня, их связь с акустическим давлением, излучаемым торцами 

при разных соотношениях между массой ударника и стержня. Продемонстрирован 

эффект сдвига амплитудного максимума акустического давления с частоты основ-

ного тона на обертон, зависящий от параметров, определяющих период осцилля-

ции, и отношения масс ударника и стержня.   

 

2.1. Время соударения 

Для определения времени соударения запишем волновое уравнение, описы-

вающее продольные колебания: 

2 2
2

2 2

u u
c

t x

 
=

 
 (2.1.1) 

Начальные условия: 

( )

( )

0
0

0

0

0, 0 0
t

t

t

u
u x l

t

u
v x l

t

=
=

=


= =  




= − =



 (2.1.2) 
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Краевые условия: 

0

2

2

0
x

x l x l

u

x

u P u
EF

x g t

=

= =


=



 
= −

 

   (2.1.3) 

Обозначим отношение массы ударяющего тела m к массе стержня M через 

q, так что m=qM. Тогда условие на свободном конце приобретает вид: 

2
2

2

x l x l

u u
c ql

x t= =

 
− =

 
   (2.1.4) 

Для определения времени соударения рассмотрим решение волнового урав-

нения в виде решения Даламбера: 

1 2( ) ( )u f ct x f ct x= − + +  (2.1.5) 

С учётом краевого условия (2.1.3) на свободном конце решение (2.1.4) транс-

формируется к виду: 

( ) ( )u f ct x f ct x= − + +  (2.1.6) 

где каждое из слагаемых представляет собой продольную волну, распространяю-

щуюся в положительном или отрицательном направлении со скоростью звука c.  

Подставляя в начальные условия (2.1.2) функцию u: 

( )

( )

0

/ /

0

( ) ( ) 0 0

1
( ) ( ) 0 0

t

t

u f x f x x l

u
f x f x x l

c t

=

=

= − + =  


= − + =  



 (2.1.7) 

найдем, что: 

( ) 0 ( )f z l z l= −    (2.1.8) 

Теперь рассмотрим краевое условие (2.1.3) на конце, по которому ударяет 

тело. С учетом найденного выражения для u имеем: 

( ) ( ) ( ) ( )/ / / / / /1 1
2 2f z f z f z l f z l

ql ql
+ = − − + −  (2.1.9) 
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Условия непрерывности скорости конца стержня, воспринимающего удар: 

( ) 0[(2 1) 0] [(2 1) 0] 1 ( 1,2,...)
n v

f n l f n l n
c

− + − − − = − =  (2.1.10)  

где n – параметр, определяющий число прохождений стержня фронтом волны.   

Рассмотрим относительное удлинение при x=l: 

( ) ( )
u

f ct l f ct l
x


= − − + +


 (2.1.11) 

при ct<2l 

0

, 2 0

;

ct

ql

x l ct l

vu
e

x c

−

= = −

 
= − 

 
 (2.1.12) 

при ct>2l 

( )
2

0 ;

ct l

qlv
f ct l e

c

−
−

− = −  

( )
2

0 0 2
1 ( 2 ) ;

ct ct l

ql qlv v
f ct l e ct l e

c c ql

−
− − 

+ = − + − − 
 

 

(2.1.13) 

Положим сt=2l+0 

2

0

, 2 0

2 0;q

x l ct l

vu
e

x c

−

= = +

  
= −        

 (2.1.14) 

Из представленных выражений видно, что при t=2l/c удар закончится; удли-

нение конца меняет знак. Также изменит знак напряжение. Волна сжатия пройдет 

длину стержня в одном направлении и, отразившись от ненагруженного конца в 

виде волны расширения, возвратится к концу стержня, подвергнутому удару.  

2.2. Зависимость контактной силы от времени 

Для определения ударной силы запишем условие контакта [7, 11]: 

( ) ( )
0 1 1 1 1 1 1

0 0

1
( ) ( )

t t

v t P t t t dt P t Y t t dt
m

− − −  = −   (2.2.1) 
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где v0 – скорость ударника в момент удара по стержню, 𝑚 – масса ударника, α – 

упругая деформация в зоне контакта, Y – реакция системы на единичный импульс 

[90]: 

( )1

1 1

1

( ) 2
( ) sin

n n

n

t t
Y t t t t

Sl Sl



=

−
− = + −

  
  (2.2.2) 

В реакции на импульс первый член соответствует свободному перемещению 

системы как абсолютно твердого тела. Данная поправка позволяет получить реше-

ние интегрального уравнения (2.2.1) относительно P(t) в элементарных функциях; 

эффектом затухания ввиду незначительной продолжительности взаимодействия и 

для упрощения аналитического решения пренебрегаем. 

При определении ударной силы без учёта местного смятия и малого отноше-

ния масс m/M, а также - свободного края выходного конца стержня, условие кон-

такта примет вид: 

( ) ( )
( )1

0 1 1 1 1 1 1

10 0

sin1 1
( ) ( ) 2 0n

n n

t t
t t

v t P t t t dt P t t t dt
m Sl



 



=

−
− − − − + =

 
 
 

        (2.2.3) 

 

Отметим, что ряд в этом выражении сводится к табличному виду 5.4.2.9 [91]. 

Тогда выражение (2.2.3) упростится: 

( )
0 1 1 1 1 1

0 0

1 1
( ) ( ) 0

t t

v t P t t t dt P t dt
m Sc

− − − =        (2.2.4) 

Дифференцируя дважды интегралы (2.2.4) по параметру t, приходим к диф-

ференциальному уравнению относительно функции P(t): 

1 1 ( )
( ) 0

dP t
P t

m Sc dt
+ =       (2.2.5) 

Решение этого уравнения представляется в виде: 

   ( ) 0
,

M ct

m lP t c Sv e
−

=  M Sl=    (2.2.6) 
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Видно, что в этом решении учитывается только затухающая часть контакт-

ного импульса. 

Для получения контактной силы с учетом местного смятия запишем условие 

контакта [7,11], в котором местное смятие связано с контактной силой по формуле 

Герца: 

( )( )
( )

( ) ( )

2

3

0 1 1 1 1 1 1

0 0

1
,

t t
P t

v t P t t t dt P t Y t t dt
m k

− − − = −
 
 
 

  ( )2

2

3 1

E R
k


=

−
  (2.2.7) 

где R – радиус кривизны ударника в точке контакта, ν – коэффициент Пуассона.   

В таком виде интегральное уравнение допускает только численное решение 

[11]. В отличие от (2.2.6), здесь уже присутствует не только затухающая, но и воз-

растающая части ударного импульса. 

2.3. Особенности спектра продольных колебаний и звукоизлучения стержней 

2.3.1. Определение спектра амплитуд и скоростей перемещений входного и 

выходного торцов стержня 

Рассматривается продольный удар по упругому стержню 1 длиной l, массы 

М с двумя свободными концами (Рисунок 2.1). По правому концу в начальный мо-

мент времени ударяет со скоростью v0 шарик или молоток 2 массой m, в результате 

чего возникает контактное взаимодействие. Ударник, как и в большинстве других 

работ, считается абсолютно твердым телом.  

 

 

Рисунок 2.1 – Удар телом по стержню 
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Колебания стержня по модели Сен-Венана с учетом диссипативных сил и из-

лучаемое акустическое давление описываются уравнениями: 

2 2
2

2 2

2

2 ,

0,

u u u
c

t x t

p k p

  
= − 

  

 + =

 

2 E
c

u
p Z

t

=



=



 (2.3.1.1) 

где u(x,t) – функция продольного перемещения точек стержня, c – скорость звука, 

ρ – плотность стержня, E – модуль упругости, γ - коэффициент, учитывающий тре-

ние, p – акустическое давление, Z – акустический импеданс среды. 

Граничные и начальные условия для функции перемещения запишем в виде: 

0

( );
x

u
ES P t

x =


= −


 0;

x l

u

x =


=


 

0
0;

t
u

=
=  

0

0
t

u

t =


=


 (2.3.1.2) 

где P(t) – контактная сила на конце стержня, S – площадь поперечного сечения, l - 

длина стержня.  

Решение краевой задачи (2.3.1.1), (2.3.1.2) представим в виде ряда по соб-

ственным формам колебаний стержня со свободными концами: 

( ) ( )
1

, cos ,
n n

n

u x t T xt


=

=   
n

n

l


 =  

( ) ( ) ( ) ( ) ( )2 1 2 2 2 ( )
2 ,

n n n n

P t
T t T t c T t

Sl
+  +  =


 ( )0 0,

n
T =  

0

0n

t

T

t =


=


 

( ) ( ) ( )11
1 1

0

2
,

sint
t t n

n

n

T P e
Sl

t t
t dt

− −
=


 −


  

n

nc

l


=  

(2.3.1.3) 

С учетом найденного выражения для ударной силы (2.2.6), получим, что 

функция перемещения: 

( ) ( ) ( ) ( ) ( )1

1 10
1 1 1 1

10 0

sin2
, cos

t t M ct
t t nm l

n n

n

t tcv
u x t P t Y t t dt e e xdt

l

− − −

=

 −
= − = 


   (2.3.1.4) 
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Фурье-спектр перемещения u(x,t), являющегося сверткой двух функций P(t) 

и Y(t), с учетом u(x,t)=0 при t<0 является Лапласовым изображением: 

( ) ( ) ( ) ( )1

1 10
1

10 0 0

sin2
, , cos

t M ct
t ti t i t nm l

n

n n

t tcv
U x u x t e dt e e e xdt dt

l

+ + − − −−  − 

=

 −
 = = 


    (2.3.1.5) 

Согласно теореме свертки двух оригиналов [92], Фурье-спектр перемещений 

входного и выходного концов имеет вид произведения изображений; таким обра-

зом, с учетом преобразований, амплитуда принимает вид: 

( )

( )( ) ( )( )
2 2

1 2 22 2 2

2 2

0 12

n

n n

M c

m l

cv
A

l



=

=

− +  +  +   +


 
 
 

  
(2.3.1.6) 

На рисунке 2.2 показан фрагмент спектра послеударных колебаний для ше-

сти первых собственных частот продольных колебаний стержня при ударе шари-

ком (параметры соударяющихся пар приводятся в экспериментальной части). 

 

Рисунок 2.2 – Расчётное изменение амплитуд спектра послеударных колебаний  

в зависимости от номера собственной частоты 

Видно, что общей тенденцией является снижение амплитуд спектра с ростом 

номера частоты. 
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Для определения амплитудно-частотной зависимости скорости из выражения 

перемещения (2.3.1.4) в форме интеграла Дюамеля найдем функцию скорости 

v(x,t): 

( )( )( )
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Фурье-спектр скорости (2.3.1.7) входного торца стержня при x=0 с учетом 

v(t)=0  при t<0 является Лапласовым изображением: 
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 (2.3.1.8) 

Отсюда видно, что амплитуда │V(ω)│ этого выражения получается умноже-

нием (2.3.1.6) на частоту ω. 

2.3.2. Влияние масс соударяющейся пары и изменяемости звукового 

давления на распределение амплитуд спектра 

В экспериментальной части работы измеряются не перемещения торцов 

стержня, а акустическое давление, регистрируемое микрофоном, расположенным 

у торца стержня. Поэтому при согласовании теоретических и экспериментальных 

результатов необходимо перейти к определению акустического давления в окрест-

ности торца стержня.  

Для определения акустического давления плоского круглого торца стержня, 

пульсирующего в обе стороны с амплитудами, зависящими от частот, используется 

потенциал скоростей, который записывается в виде [93]: 
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где c1 – скорость звука в акустическом пространстве, r – расстояние от элемента 

излучающей поверхности dS до точки измерения, │V(ω)│ – амплитуда скорости из-

лучающей поверхности. 

Для направления вдоль оси стержня интеграл (2.3.2.1) приобретает явный 

вид. В этом случае амплитуда акустического давления на расстоянии l0 в зависимо-

сти от частоты с учетом связи с потенциалом скоростей p=iωρφ представляется вы-

ражением [93]: 
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(2.3.2.2) 

где r0 – радиус стержня, ρ1 - плотность акустической среды. 

Формула (2.3.2.2) справедлива, когда плоскость торца поршня продолжается 

экраном, на котором считается равным нулю потенциал скорости вне поршня. Од-

нако Л.Я. Гутиным показано, что звуковое поле и импеданс осциллирующей порш-

невой диафрагмы и пульсирующей поршневой диафрагмы, излучающих без 

экрана, для направления вдоль оси стержня малоразличимы от случая с экраном 

[93].  

В результате определены амплитудно-частотная зависимость скорости 

│V(ω)│ и осциллирующая функция│f(ω)│, что позволяет определить акустическое 

давление вдоль оси колеблющегося стержня на заданном расстоянии от торца 

стержня. Для разных соотношений масс соударяющейся пары и периода, осцилли-

рующей функции, подобранного из эксперимента, были построены АЧ-зависимо-

сти на рисунке 2.3 и 2.4. 
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Рисунок 2.3 – Теоретический спектр акустического давления в диапазоне 

частот 0 – 20000 Гц при отношении масс m/M =0.41 

 

Рисунок 2.4 – Теоретический спектр акустического давления в диапазоне 

частот 0 – 20000 Гц при отношении масс m/M=0.014 
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При расчете использовалась функция f(ω) с периодом, определенным из экс-

перимента. В этом случае распределение амплитуд спектра частот теоретической 

модели совпадает с экспериментальными данными. 

2.4. Экспериментальная верификация теоретической модели послеударных 

колебаний 

Измерения проводились на установке, схематически показанной на ри-

сунке 2.5. Колебания цилиндрического стержня, подвешенного на двух нитях, воз-

буждались ударом по торцу стержня. Для этого использовался либо стальной ша-

рик с массой, много меньшей массы стержня, либо ударный молоток AU02 с мас-

сой 330 г, соединённый с двухканальным спектроанализатором A19-U2.   

Рисунок 2.5 – Схема экспериментальной установки для ударного возбуждения и 

регистрации продольных колебаний стержня 

Для регистрации колебаний использовался лабораторный микрофон, распо-

ложенный вблизи противоположного (выходного) торца стержня. Сигнал от мик-

рофона поступал на анализатор спектра A19-U2, а затем передавался на компьютер 

для дальнейшей обработки с помощью программного комплекса ZETLab. Частота 

дискретизации данного анализатора спектра составляет 250 кГц. Исходя из тео-

ремы Котельникова-Шеннона, верхней границей различаемого диапазона частот 

будет 125 кГц. В результате микрофонной записи и работы анализатора спектра 

производилась одновременная запись амплитудно-временных и амплитудно-ча-

стотных зависимостей колебаний торцов стержня.  
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В качестве образца использовался цилиндрический стержень из алюминие-

вого сплава длиной l=1 м, диаметром d=20 мм. Масса стержня M = 0.823 кг. На 

рисунке 2.6 показана микрофонная запись многочастотного сигнала звукоизлуче-

ния стержня продолжительностью 0.1 с после ударного воздействия в момент вре-

мени t=0. 

Среднее значение коэффициента γ, характеризующего скорость затухания 

колебаний во времени, определялось по огибающей экспериментальной ампли-

тудно-временной зависимости (Рисунок 2.6) из условия:  

( )

( )
0

0

11 1 800
ln ln 12

260 0.000384 250

A t

k t A t k t
с− = = 

 +  
  

где t0+kΔt – продолжительность записи колебаний, равная 0.1 с, A(t) – амплитуда 

колебаний торца стержня в момент времени t. Начальная амплитуда A(t0) соответ-

ствует моменту времени – 0.00042 с., амплитуда окончания записи A(t0+kΔt) соот-

ветствует 0.1 с, k = 260 – число периодов на интервале записи, Δt = 0.000384 с – 

продолжительность периода колебаний.  

 

Рисунок 2.6 - Амплитудно-временная зависимость затухающих колебаний с экс-

поненциальной огибающей 

Проведены серии экспериментов, в которых при разных соотношениях 

между массой ударника и стержня возбуждались колебания стержня и регистриро-
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валось акустическое давление, излучаемое торцами на заданном расстоянии в усло-

виях, где акустическое сопротивление среды соответствовало сопротивлению воз-

духа при температуре 20 градусов Цельсия. На рисунках 2.7-2.8 приведены экспе-

риментальные спектры акустического давления вблизи выходного конца стержня 

при максимальном и минимальном соотношениях масс соударяющейся пары 

m/M=0.41 и 0.014. Амплитуды экспериментальных спектров акустического давле-

ния по осям ординат отложены в единицах электрического сигнала, поступающего 

с микрофона (мВ).   

 

Рисунок 2.7 – Экспериментальный спектр акустического давления в диапа-

зоне частот 0 – 20000 Гц при отношении масс m/M=0.41 

 

Рисунок 2.8 – Экспериментальный спектр акустического давления в диапа-

зоне частот 0 – 20000 Гц при отношении масс m/M=0.014 
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Приведенные данные показывают хорошее согласование результатов, полу-

ченных по теоретической модели, с экспериментальными результатами. По полу-

ченным АЧЗ видно, что при наибольшем отношении массы ударника к массе 

стержня, амплитудный максимум акустического давления выходного конца (Рису-

нок 2.3, Рисунок 2.7), регистрируемый микрофоном, соответствует частоте основ-

ного тона. При уменьшении m/M амплитудный максимум акустического давления 

выходного конца сдвигается по частоте и, в данном случае, соответствует 4-му 

обертону (Рисунок 2.4, Рисунок 2.8). Данное различие объясняется различным пе-

риодом осциллирующей функции и тем, что при ударе по стержню молотком ам-

плитуды скорости выходного конца на разных частотах отличаются друг от друга 

значительнее осциллирующего эффекта функции f(ω); таким образом, максимум 

акустического давления соответствует частоте основного тона. При стремлении от-

ношения масс к нулю спектр меняется и диктующим максимум оказывается осцил-

лирующий эффект. 
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Глава 3.  Метод частотной оценки осевой нагрузки и реальных граничных 

условий в стержнях 

 

Оценка усилий и жёсткости соединений имеет принципиальное значение для 

контроля стержневых элементов креплений кровли шахт, мостов, сетчатых оболо-

чек и других конструкций. Существующие методы оценки подразделяются на ста-

тические и динамические. В главе рассмотрена методика динамической оценки 

продольного усилия и коэффициентов угловой жёсткости заделки неидеально за-

креплённого стержня по спектру его изгибных колебаний путём сравнения экспе-

риментально зарегистрированных частот колебаний с теоретическим спектром ча-

стот, сгенерированных на основе аналитической модели балки Тимошенко. Для со-

гласования результатов по теоретической модели с набором экспериментальных 

частот используется сочетание известных алгоритмов оптимизации на основе гло-

бального поиска и локальных минимумов. Такой подход активно применяется, в 

частности, для анализа условий работы стяжных стержней в исторических камен-

ных конструкциях. Также проведена экспериментальная верификация динамиче-

ской методики на стержневых моделях с известными значениями продольного уси-

лия и угловой жёсткости заделки. Для этого в качестве модельных образцов рас-

смотрены две балки. В одной из них при растяжении в испытательной машине со-

здавались заданные продольные усилия. Другая балка имела вид консоли с торце-

вым резьбовым креплением, по степени затяжки которого, контролируемой по ста-

тическому прогибу консоли, определялся коэффициент угловой жёсткости крепле-

ния. В результате, в зависимости от параметров балки, определено минимальное 

количество регистрируемых собственных частот её колебаний, необходимое для 

динамической оценки продольного усилия с приемлемой погрешностью. Также по-

казана зависимость критической частоты балки Тимошенко от внутреннего сило-

вого фактора – растягивающей силы. Выявлена особенность разнонаправленного 

изменения собственных частот изгибных колебаний при растяжении стержня в об-

ласти слабо нелинейной зависимости напряжения от деформации.  
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Часть главы продолжает серию исследований, посвящённых соответствию 

экспериментальным данным предсказаний теории балки Тимошенко (ТБТ) о двой-

ном спектре сверхкритических частот поперечных колебаний на примере балки со 

свободными концами. Рассматриваются поперечные колебания в плоскости 

наибольшей жесткости свободно подвешенной на гибких нитях латунной полосы, 

для которых критическая частота по ТБТ находится внутри акустического спектра. 

Исходя из сопоставления спектров экспериментальных и теоретических частот 

продольных и поперечных колебаний балки, проведено уточнение значений меха-

нических параметров балки, таких как скорость звука и коэффициент Пуассона, в 

результате чего достигнута высокая степень согласования этих спектров, в том 

числе, - за критической частотой. Экспериментально верифицированы парные ча-

стоты в сверхкритической области, предсказанные ТБТ. 

3.1. Модель поперечных колебаний стержня Тимошенко с учетом 

продольной силы и граничных условий упругой заделки 

Рассмотрим поперечные колебания балки, нагруженной заранее неизвестной 

продольной силой при неизвестных угловых жёсткостях закреплений. Расчётная 

схема такой балки представлена на рисунке 3.1. 

 

Рисунок 3.1 – Расчётная схема балки длиной l с продольной нагрузкой N и угло-

выми упругими закреплениями концов с жесткостями с0, с1 
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Для описания свободных поперечных колебаний балки используем модель 

колебаний балки Тимошенко с учетом продольного усилия N [94] в обозначениях 

[95]:  
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 (3.1.1) 

(x(z,t) – поперечное смещение центра тяжести сечения, θ(z,t)  – угол поворота попе-

речного сечения, α – коэффициент, учитывающий неравномерность касательных 

напряжений по сечению, зависящий от формы сечения, E – модуль упругости, G – 

модуль сдвига, I – момент инерции сечения в плоскости изгиба, F – площадь попе-

речного сечения, ρ – плотность материала). 

Граничные условия для балки с упругими связями - пружинными шарнирами 

с угловыми жесткостями с0, сl: 
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          Полагая     ( )( , ), ( , ) ( ), ( ) expx z t z t X z z i t =   и исключая угол поворота θ 

из системы уравнений (3.1.1), приходим к разрешающему уравнению относительно 

функции поперечного смещения оси балки:  

( )( ) ( )( )2 22 2

0IV II
I N GFI E G GN F N

X X X
EGFI EGI

      + −+ − +
+ + =  (3.1.3) 

С учетом того, что для подобных балок критическая частота ωc колебаний по 

модели Тимошенко, определяемая из равенства: 

с

GF N

I I
 = −

  
 (3.1.4) 

лежит значительно выше верхней границы акустического спектра, решение урав-

нения (3.1.3) может быть представлено в виде: 

( ) 1 2 3 4
sin ch shcosz С С С СX z z z z   = + + +  
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(3.1.5) 

где  
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(3.1.6) 

Заметим, что растягивающая сила снижает значение критической частоты ωc. 

Подстановка выражений (3.1.5) в граничные условия (3.1.2) приводит к ча-

стотному уравнению:  
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Для модели балки Эйлера-Бернулли параметры λ, μ принимают вид: 

2 22 2

2 2 2 2
,

N N N N

EI EI EI EI EI EI

F F   
 = + +  = + +

   
−    

   
 (3.1.7) 

Граничные условия для стержня с неизвестными угловыми жесткостями по 

этой модели: 
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 (3.1.8) 

Соответствующее частотное уравнение: 
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Для выделения в качестве главного неизвестного угловой жёсткости крепле-

ния стержня, наряду с общей расчетной схемой, изображенной на рисунке 3.1, рас-

смотрим поперечные колебания консольной балки с неизвестной угловой жёстко-

стью закрепления. Расчётная схема такой балки представлена на рисунке 3.2. 

 

Рисунок 3.2 – Расчётная схема балки длиной l с упругим угловым закреплением 

конца с жесткостью с0 
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Граничные условия для консольного стержня с упругим узлом по модели Ти-

мошенко: 
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 (3.1.9) 

Соответствующее частотное уравнение примет вид: 
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Граничные условия для консольного стержня с угловой жёсткостью в закреп-

лении по модели Эйлера-Бернулли: 
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 (3.1.10) 

Частотное уравнение в этом случае может быть записано в виде равенства 

нулю определителя: 
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Полученные из приведенных уравнений значения частот сравниваются ниже 

с экспериментально найденными частотами растянутого и консольного стержней. 
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3.2 Построение алгоритма поиска решений 

При заданных параметрах балки, действующей продольной силе и жестко-

стях заделки выписанные частотные уравнения обеспечивают однозначное опреде-

ление собственных частот, соответствующих определённым формам колебаний 

балки. В то же время, решение обратной задачи исходя из известных собственных 

частот балки может быть неоднозначным. Для поиска значений угловых жестко-

стей заделок с0, с1 и усилия N в модели балки Тимошенко были применены алго-

ритмы глобальной оптимизации (basin-hopping) и локальной оптимизации - метод 

Нелдера-Мида подобно тому, как это реализовано в [76, 85, 96] на модели балки 

Эйлера-Бернулли. Метод является итеративным, каждый цикл которого состоит из 

случайного возмущения координат, локальной минимизации, принятия или отбра-

сывания новых координат на основе минимального значения функции. Краткое из-

ложение алгоритма [113] содержится в Приложении. На рисунке 3.3 показана блок-

схема, обобщающая принятый метод.  

 

Рисунок 3.3 – Оценка коэффициентов угловой жесткости заделки и продольной 

силы по собственным частотам: блок-схема алгоритма  
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Оценка производится по минимуму функции ошибок, называемой квадра-

тичной функцией потерь [97], при сравнении теоретических и экспериментальных 

частот: 

2

exp, ,

1
( )

N

i th i

i

f f
N

− = 
 

(3.2.1) 

где fexp,i – i-ая экспериментальная частота, fth,i - i-ая теоретическая частота, а N огра-

ничено снизу числом искомых неизвестных при решении обратной задачи.  

Преимуществом применения квадратичной функции потерь (3.2.1) является 

инвариантность к знаку: значение функции всегда положительно, т.е. происхо-

дит объективное накопление ошибки от каждого из слагаемых, в то время как при 

использовании линейной функции, как в [85], возможна ситуация, когда большую 

положительную ошибку от первого слагаемого "погашает" большая отрицательная 

ошибка от второго. 

3.3 Экспериментальная верификация теоретической модели 

Предметом экспериментального изучения были послеударные поперечные 

колебания стальной полосы 1 (Рисунок 3.4а), закрепленной в разрывной машине 

МИМ.2 двумя механическими клиновыми захватами 2, имитирующими упругие 

заделки, при малом и значительном статическом растяжении силами, равными 0,15 

и 1,97 кН. Длина полосы между захватами l=0,585 м, поперечное сечение: 2 на 48 

мм. Для балки, рассматриваемой в эксперименте, условия закрепления обоих кон-

цов одинаковы; поэтому можно считать с0 = сl=с. 

Колебания в плоскости наименьшей жесткости возбуждались ударом метал-

лического шарика по широкой грани в двух местах: посередине длины полосы и на 

четверти длины, чтобы обеспечить возбуждение как симметричных, так и антисим-

метричных форм.  С противоположной от места удара стороне полосы распола-

гался лабораторный микрофон 3 (Рисунок 3.4а), соединённый со спектроанализа-

тором типа A19-U2, данные из которого поступали в ЭВМ.  
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Также экспериментально изучался спектр поперечных колебаний консоль-

ного дюралюминиевого цилиндрического стержня длиной l=0,745м с диаметром 

d=24.7мм при различной величине затяжки резьбовой шпильки на конце стержня 

1 (Рисунок 3.4б,в) в массивный стальной стол 2 со шлифованной поверхностью в 

месте контакта. Для статического измерения величины угловой жесткости заделки 

консоли при помощи датчика перемещения 3 типа ЛИР-14 определялся прогиб её 

конца под действием гирьки 4 массой 200 г. 

 

 

 

 

  

а б в 

Рисунок 3.4 – Экспериментальная установка для статического и динамического  

определения продольной силы (а) и угловой жёсткости крепления (б) образцов; 

резьбовая шпилька для ввинчивания консоли в массивный стол (в) 

На рисунках 3.5-3.6 приведены фрагменты спектров колебаний эксперимен-

тальных образцов в акустическом диапазоне: на рисунке 3.5 - спектры полосы при 

растяжении силами 0,15 кН (а) и 1,97 кН (б), а на рисунке 3.6 - спектры консоли 

при максимально возможной (а) и слегка ослабленной (б) затяжке резьбового креп-

ления. 

3 

 

2 

 

 

4 

 2 
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Рисунок 3.5 – Экспериментальные акустические спектры полосы при растя-

жении силой 0,15 кН (а) и 1,97 кН (б) 
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Рисунок 3.6 – Экспериментальные акустические спектры консольного 

стержня при максимальной (а) и слегка ослабленной затяжке (б) 
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        В таблице 3.3.1 приведены зарегистрированные собственные частоты полосы 

при малой (f(A)
i) и значительной (f(В)

i) растягивающих силах (i=1, 2,…,8). Частоты в 

экспериментальных спектрах образцов выделяются в соответствии с теоретиче-

скими спектрами; остальное отнесено к шуму и частотам колебаний, не связанных 

с поперечными колебаниями в плоскости возбуждения.  

Таблица 3.3.1 – Экспериментальные собственные частоты тонкостенной полосы 

при малой (f(A)
i) и значительной (f(B)

i) растягивающей силе в Гц 

i 1 2 3 4 5 6 7 8 

f(A)
i 41 98 175 277 404 557 738 946 

f(B)
i 61 130 225 326 456 611 792 1000 

 

Из сопоставления спектров, изображённых на рисунке 3.5а,б, и значений ча-

стот в таблице 3.3.1 видно, что растяжение образца силой 1.97 кН по сравнению с 

0,15 кН приводит к увеличению значений собственных частот, соответствующих 

идентичным формам колебаний, что позволяет использовать эффект их изменения 

при решении обратной задачи определения внутренних силовых факторов в по-

лосе. Также можно отметить увеличение шага между частотами с ростом продоль-

ной нагрузки.  

При сопоставлении результатов, полученных по различным расчётным моде-

лям, можно отметить, что для данной тонкостенной полосы при возбуждении ко-

лебаний в плоскости наименьшей жесткости учет сдвиговой деформации и инер-

ции вращения не дает принципиальных отличий в определении растягивающей 

силы, чего нельзя сказать о результатах для второго экспериментального образца, 

- консольного цилиндрического стержня, используемого при тестировании мето-

дики определения угловой жесткости упругого узла. 

Определение величины продольной силы и коэффициентов угловой жестко-

сти зажимов тонкостенной полосы по экспериментальным частотам производилось 

с помощью, описанного выше, стохастического метода. Границы поиска продоль-

ной силы были взяты от 0 до 4000 Н, начальное приближение задавалось в 1800 Н. 
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Результаты расчётов с использованием одной первой, двух,…, восьми собственных 

частот представлены в виде диаграммы на рисунке 3.7. Видно, что с приемлемой 

погрешностью менее 2% (1950 Н против 1970 Н в статике) продольная сила опре-

деляется при учёте не более чем пяти первых собственных частот поперечных ко-

лебаний стержня, что важно при анализе спектров, зашумленных паразитными ча-

стотами. Следует также отметить, что коэффициент угловой жесткости захватов 

при последовательном увеличении верхней границы поиска в диапазоне от 0 до 

100000 Нм/рад каждый раз достигал верхней границы заданного диапазона, что 

указывает на допустимость считать захваты жесткими заделками.  

 

Рисунок 3.7 – Значения продольной силы, определённые динамическим методом 

по одной первой, двум,.., восьми собственным частотам; штриховой линией пока-

зано значение продольной силы, заданное в растягивающей установке 

В случае консольного стержня угловая жесткость упругого узла является ос-

новной неизвестной. В таблице 3.3.2 приведены восемь первых собственных частот 

дюралюминиевого цилиндрического консольного стержня при различной вели-

чине угловой жесткости упругого узла до и после незначительного ослабления за-

тяжки.  
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Таблица 3.3.2 – Собственные частоты консольного стального стержня до (f(С)
i) и 

после (f(D)
i) ослабления затяжки в Гц 

i 1 2 3 4 5 6 7 8 

f(C)
i  29 185 521 1030 1683 2506 3447 4552 

f(D)
i 27 172 500 986 1652 2450 3415 4481 

 

По графикам амплитудно-частотных зависимостей (Рисунок 3.6) и данным 

таблицы 3.3.2 видно, что ослабление величины затяжки приводит к снижению соб-

ственных частот консоли, что позволяет использовать это снижение при решении 

обратной задачи определения угловой жесткости заделки; при этом учитывается 

преобладающее влияние на частоту поперечных колебаний угловой жёсткости в 

сравнении с линейной жёсткостью заделки [98].  

Используя стохастический метод минимизации функции потерь по аналогии 

с, рассмотренным выше, растянутым образцом, для измеренных независимо меха-

нических свойств материала консоли (Е =72 ГПа, ρ =2780 кг/м3), по первым четы-

рем собственным частотам ввинченного до упора консольного стержня получены 

следующие коэффициенты угловой жесткости по модели Тимошенко и Эйлера-

Бернулли соответственно: 56590 Нм/рад, 47600 Нм/рад. Границы поиска угловой 

жесткости заделки были приняты от 40000 до 60000 Нм/рад, начальное значение - 

50000 Нм/рад. Сопоставляя с результатом, полученным статическим методом (c = 

55500 Нм/рад), можно утверждать о заниженном более чем 10% значении коэффи-

циента жесткости, полученном по модели Эйлера-Бернулли, тогда как при исполь-

зовании модели Тимошенко отличие от эксперимента составляет менее 2%. Коэф-

фициент угловой жесткости заделки после незначительного ослабления резьбовой 

затяжки консоли, определённый через набор экспериментально зарегистрирован-

ных частот, составил 21550 Нм/рад, тогда как по статическим измерениям - 20790 

Нм/рад. Различие здесь составило менее 4%.  
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Как видно из этих и других сопоставлений, не включённых в текст, рассмот-

ренный метод определения жесткостей заделки достаточно чувствительный; отли-

чия в частотах собственных колебаний консоли, не превышающие 7%, позволяют 

определить резкое снижение угловой жёсткости заделки (в приведенном примере 

– в 2.6 раза).  

3.4. Эффект разнонаправленного изменения собственных частот при 

растяжении стержня 

       Предметом экспериментального изучения были послеударные колебания 

стального стержня круглого поперечного сечения 1 (Рисунок 3.8), закрепленного в 

разрывной машине МИМ.2 двумя цилиндрическими захватами 2, имитирующими 

упругие заделки, при различном статическом растяжении силами 0.1, 5, 10, 15.2 кН. 

Длина стержня между захватами l = 197 мм, диаметр 10 мм. Для построения диа-

граммы растяжения образца использовался навесной экстензометр 3 типа ДД-25.1. 

 
 

Рисунок 3.8 – Экспериментальная установка для построения диаграммы растяже-

ния (а) и регистрации собственных частот (б) 

Поперечные колебания стержня возбуждались ударом металлического ша-

рика в двух местах: посередине и на четверти длины стержня, что обеспечивало 
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регистрацию как симметричных, так и антисимметричных форм колебаний. Реги-

страция осуществлялась бесконтактно с помощью лабораторного микрофона 4 (Ри-

сунок 3.8б), соединённого со спектроанализатором типа A19-U2, данные из кото-

рого поступали в ЭВМ. В таблице 3.4.1 приведены по четыре первых собственных 

частот поперечных колебаний стержня при разных значениях растягивающей 

силы. 

Таблица 3.4.1 – Собственные частоты стержня f, Гц в зависимости от растягиваю-

щей силы N, кН 

N, кН 0,1 5 10 15,2 

f1 936 948 963 999 

f2 2521 2524 2526 2582 

f3 4835 4809 4765 4896 

f4 7828 7766 7701 7788 

 

Ниже приведена диаграмма (Рисунок 3.9), показывающая изменения частот 

собственных колебаний с увеличением растягивающей силы, из которой видно, что 

с увеличением значения силы при растяжении стержня происходит увеличение зна-

чения первой собственной частоты на всех уровнях растяжения, однако эта тенден-

ция с ростом порядкового номера частоты не продолжается.  

 

Рисунок 3.9 – Отличия собственных частот Δf, Гц при различной величине натяга 

N, кН от частот ненагруженного стержня 
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       Наблюдаемый эффект можно объяснить последовательным снижением значе-

ния модуля упругости с ростом растягивающей силы. На рисунке 3.10 приведена 

диаграмма растяжения образца, показанного на рисунке 3.8 в диапазоне от 0 до 30 

кН. Видно, что наклон касательной к кривой нагружения уменьшается с ростом 

нагрузки, что означает некоторое снижение модуля упругости материала образца 

по сравнению со значением при меньших нагрузках. Данное обстоятельство 

обычно не учитывается при расчёте собственных частот поперечных колебаний 

стержня со значительной растягивающей продольной нагрузкой [76]. 

 

Рисунок 3.10 – Диаграмма растяжения образца (сила – удлинение на базе  

экстензометра 25 мм) 

В качестве обоснования рассмотрим колебания шарнирно-опертого стержня, 

растянутого продольной силой, по более простой модели Эйлера-Бернулли [76,99].  

Для шарнирно-опёртого стержня с натягом частоты колебаний определяются 

по формуле [95]: 

2

, 1,2,...
2

i

i N i EI
f i

l m l m

 
= + = 

 
 (3.4.1) 
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из которой выводится связь изменения частоты f  с изменением натяжения N  

и изменением модуля упругости E : 

2

2

2

i

i
EI E N N

l
f

i
EI N

l





 
−  +  
  =
  

+     

 (3.4.2) 

Из (3.4.2) видно, что увеличение натяга приводит к повышению частоты, но 

относительное влияние этого фактора снижается с ростом порядкового номера ча-

стоты. Напротив, влияние снижения модуля упругости возрастает с ростом поряд-

кового номера частоты.  

В таблице 3.4.2 приведены результаты расчётов, показывающие поведение 

первых четырёх частот для стержня со параметрами: длина 197 мм, диаметр 10 мм, 

материал – сталь, плотность 7800 кг/м3, модуль упругости первоначальный 200 

ГПа, затем (при большом растяжении) - 195 ГПа. Первый расчёт сделан для нена-

тянутого стержня с модулем 200 ГПа, второй – для силы натяжения 5 кН при мо-

дуле 195 ГПа. 

Таблица 3.4.2 – Сравнение расчётных частот 

№ ча-

стоты 

Частота, Гц.  

(Ненатянутый 

стержень,  

E = 200 ГПа) 

Частота, Гц. 

(Натяжение 5000 

Н, 

E = 195 ГПа) 

Разность частот, 

Гц 

1 512 555 43 

2 2050 2075 25 

3 4611 4605 -6 

4 8198 8147 -51 
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Из приведенных результатов видно, что тенденция, отмеченная при экспери-

ментальном определении частот поперечных колебаний растянутого стержня, под-

тверждается и в расчётном случае. 

3.5. Теоретический и экспериментальный анализ спектра частот балки 

Тимошенко в окрестности критической частоты 

Дифференциальные уравнения и граничные условия, описывающие по мо-

дели ТБТ собственные изгибные колебания стержня со свободными концами, 

имеют вид: 

2 2

2 2
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x EI x E t
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   
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(3.5.1) 

где w(x,t) – динамический прогиб стержня, θ(x,t), G, k – угол, модуль и коэффициент 

сдвига, A, I – площадь и момент инерции поперечного сечения, E, ρ – модуль упру-

гости и плотность материала стержня. Полагая 

 

и исключая угол сдвига из системы уравнений (3.5.1), приходим к разрешающему 

уравнению относительно функции прогиба стержня: 

 (3.5.2) 

Характер решений этого уравнения зависит от знака коэффициента при не-

дифференциальном члене. Анализ соответствующего характеристического уравне-

ния показывает, что при ω<ωc решение этого уравнения содержит осциллирующую 

и экспоненциальные компоненты, которые, после удовлетворения граничным 

условиям дают спектр изгибных колебаний. При ω>ωc решение уравнения (3.5.2) 

содержит две компоненты, осциллирующие с разной изменяемостью, что приводит 

   ( , ), ( , ) ( ), ( ) exp( )w x t x t W x x i t = 

2 2
2 2

2
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к двум спектрам колебаний. Вследствие этого, частота fc=ωc/2π названа критиче-

ской.  

Предметом экспериментального изучения были послеударные поперечные 

колебания стержня, горизонтально подвешенного на двух эластичных нитях, ими-

тирующих граничные условия свободных концов стержня. В качестве образца была 

взята латунная полоса длиной L=0,69м с поперечным сечением 6х60мм. Такой об-

разец был подобран по аналогии с образцом из [61], где критическая частота теории 

Тимошенко располагалась в акустическом спектре. Колебания в плоскости 

наибольшей жесткости возбуждались ударом молотка или металлическим шари-

ком по соответствующей грани.  С противоположной стороны от места удара уста-

навливался лабораторный микрофон, соединённый со спектроанализатором типа 

A19-U2, данные из которого поступали в ЭВМ; состав экспериментального обору-

дования показан на рисунке 3.11, а на рисунке 3.12 приведен зарегистрированный 

в окрестности критической частоты участок спектра колебания полосы. 

Рисунок 3.11 – Схема образца и экс-

периментального оборудования 

 

 

Рисунок 3.12 – Фрагмент спектра попереч-

ных колебаний в районе критической ча-

стоты Тимошенко 

Для корректного сопоставления экспериментальных данных с результатами 

по ТБТ необходимо знание значений исходных механических параметров, входя-

щих в уравнения (3.5.1). В данном случае это относится к модулю упругости Е и 
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коэффициенту Пуассона ν, который содержится в коэффициенте сдвига; для 

стержня прямоугольного сечения k=10(1+ν)/(12+11ν) [103]. По справочным дан-

ным по модулю упругости и коэффициенту Пуассона латуни имеется определён-

ный разброс: Е=(89÷115)ГПа, ν=0,32÷0,42. 

Для определения модуля упругости и коэффициента Пуассона на тестируе-

мом образце латунной полосы выполнялось несколько видов испытаний. 1.  Стати-

ческое растяжение полосы на испытательной машине МИМ.2 с применением 

навесного экстензометра ДД-25.1. В результате серии измерений получены следу-

ющие значения: Е=99,2 ГПа, ν=0,347. 2. Динамические испытания. Ввиду того, что 

в исходных уравнениях (3.5.1) модуль упругости входит всюду в отношении к 

плотности материала, целесообразным представляется в динамических испытаниях 

определение не его, а величины c, представляющей собой скорость продольных 

волн в материале полосы. Для определения этой величины использован подход, 

описанный в [89], где, задавая скорость звука в возможном диапазоне значений, 

определяется отличие расчётных значений собственных частот (fn
calc) от экспери-

ментальных (fn
exp):  

( ) ( ) ( ) ( ) exp

1

1
,

N
calc

n n n n

n

c f c f c f c f
N =

 =   = −    

На рисунке 3.13 приведен график зависимости Δ(с) по N=14 первым соб-

ственным частотам, из которого видно, что минимальное отклонение между экспе-

риментальным и расчетным наборами частот имеет место при с=3500 м/с. Полу-

ченные результаты согласуются с непосредственным определением скорости рас-

пространения волны по начальной стадии амплитудно-временной зависимости 

(Рисунок 3.14) послеударных продольных колебаний с=2l/Δτ =1.38/0.000394=3502 

м/с, возбуждаемых ударом по одному из торцов полосы. 
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Рисунок 3.13 – Определение скорости 

звука из условия минимума разницы 

между наборами частот 

 

Рисунок 3.14 – Амплитудно-вре-

менная зависимость в начальном 

интервале 

      В таблице 3.5.1 приведены использованные наборы экспериментальных и тео-

ретических частот. 

Таблица 3.5.1 – Собственные частоты в Гц 

 f1 f2 f3 f4 f5 f6 f7 f8 f9 

Тимошенко 441 1163 2149 3320 4619 6001 7435 8900 10382 

Эксперимент 433 1160 2147 3316 4617 6001 7433 8899 10379 

 f10 f11 f12 f13 f14 f15 f16 f17 f18 

Тимошенко 11868 13347 14808 16242 17542 18338 18535 19358 19583 

Эксперимент 11862 13340 14791 16184 17411 18143 18273 19182 19340 

 

Из таблицы 3.5.1 видно, что согласование между экспериментальными и рас-

четными частотами оказалось гораздо выше, чем в [61]; максимальное расхожде-

ние по частотам составило менее 2% по первой частоте, а в районе критической 

частоты (18 кГц) - менее 1,5%, что свидетельствует о более тщательном определе-

нии механических параметров полосы. Так как возбуждение колебаний происходит 

в плоскости наибольшей жёсткости поперечного сечения и разница между 

наибольшей и наименьшей жесткостями очень большая, то в спектре возбуждае-

мых поперечных колебаний в районе критической частоты наблюдаются и, легко 
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возбудимые, частоты изгибных колебаний в плоскости наименьшей жесткости, 

одна из которых, частота fo, расположена у критической частоты (Рисунок 3.12). 

По полученным результатам можно констатировать сближение частот в 

окрестности критической частоты, что может быть использовано как критерий вы-

явления полосы частот, в котором расположена критическая частота Тимошенко, 

после которой собственные частоты располагаются в близких парах друг к другу, 

что также отмечено в [61].  
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 Глава 4. Оптико-акустическая диагностика дефектов закрепления 

тонкостенных элементов конструкций и степени их залечивания 

 

В данной главе описан метод синхронного съёма виброакустической и спекл-

интерферометрической информации, объединяющий возможности обоих подходов 

в диагностике напряжённо-деформированного состояния и дефектов тонкостенных 

элементов конструкций. Для реализации объединённого подхода разработан стенд, 

на котором выполнена диагностика ослабления затяжки отдельных точек в много-

точечном закреплении границ тестовых пластин в форме кардиоиды и эллипса; при 

этом снижение собственных частот колебаний пластин обнаруживало факт ослаб-

ления затяжки в каком-то месте границы, а искажение резонансных форм колеба-

ний пластины отображенных на спекл-интерферограмме, прямо указывало на ме-

сто ослабления затяжки. 

4.1. Влияние граничных условий на спектр колебаний стержневых и 

пластинчатых элементов конструкций 

В случае механических систем, таких как стержневые и пластинчатые эле-

менты конструкций, граничные условия могут существенно влиять на спектр коле-

баний этих элементов. В зависимости от типа граничного условия, колебания могут 

иметь различный вид. Например, закреплённому краю соответствуют узлы колеба-

ний, а свободному — пучности. Влиянию граничных условий на спектр колебаний 

стержневых элементов конструкций было уделено внимание в главе 3, где на при-

мере консольного стержня был продемонстрирован сдвиг собственных частот ре-

зонансных форм колебаний при различной величине затяжки шпильки на одном из 

концов консоли в массивный стол. Аналогичным образом, уменьшение количества 

связей или величины жесткости пластинчатых элементов конструкции приводит к 

снижению собственных частот резонансных форм колебаний, что может быть ис-

пользовано как критерий по определению величины несовершенства граничных 

условий.  
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4.2. Диагностика несовершенств граничных условий по спектру 

акустического сигнала 

О наличии дефектов можно судить по изменению спектрального состава её 

вибрационного и звукового полей тонкостенного элемента конструкции. Метод 

свободных колебаний основан на исследовании частотного спектра колебаний, воз-

буждаемых в изучаемом объекте. Этот метод заключается в возбуждении собствен-

ных затухающих колебаний в твердом теле с определенной массой, гибкостью и 

механическим сопротивлением с помощью удара. Наличие дефектов, таких как 

трещины или неравномерности, параметры колебательной системы, такие как гиб-

кость и масса, изменяются, что влечет изменение частоты и спектрального состава 

собственных колебаний. Этот метод может быть использован для контроля каче-

ства различных материалов и конструкций, таких как металлические детали, ком-

позитные материалы, стекло и другие. Важно отметить, что он также применяется 

в области неразрушающего контроля изделий и структур в различных отраслях. 

Недостатком диагностики такого типа является то, что при этом не определяется 

место локализации дефекта закрепления, что представляется возможным по иска-

жению спекл-интерферограммы поля перемещений поверхности пластины, о кото-

ром говорится в следующем разделе.  

4.3. Спекл-интерферометрия изгиба стержней и пластин в условиях жёсткой 

и ослабленной заделки краёв 

Интерферометрические способы измерения имеют ряд преимуществ по срав-

нению с другими методами, например, тензометрией. Они обеспечивают каче-

ственно иной уровень наглядности и информативности результатов. Кроме того, 

интерферометрия позволяет бесконтактно измерять перемещения поверхности 

объектов на достаточно больших площадях при различных видах нагружения: ста-

тическом, динамическом и температурном. Перемещения регистрируются одно-

временно в любой выбранной точке наблюдаемого участка поверхности. 
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При исследовании изгиба стержней или пластин необходимо учитывать 

условия закрепления краёв, которые могут существенно влиять на характер и вели-

чину деформации. 

Спекл-интерферограммы форм резонансных колебаний стержней и пластин 

представляет собой регулярную картину чередующихся темных и светлых полос, 

отражающих расположение линий уровня резонансного прогиба пластины с шагом 

по высоте, равным половине длины волны излучения примененного в интерферо-

метре лазера (в данном случае - твердотельного зелёного лазера - этот шаг состав-

ляет 0.266 мкм). Регистрируемые интерференционные полосы визуально подобны 

контуру границы, прогиб на которой равен нулю, и огибают её на некотором рас-

стоянии. На рисунках, представленных в параграфе 4.3.3, видно, что узловые линии 

в отсутствии дефектов в закреплении границы коаксильны заделанному контуру.  

При ослаблении заделки краев в каждом из случаев возникает «флюс» в полосе, 

ближайшей к заделке, указывающий место дефекта. В качестве расширения теоре-

тических моделей и объектов экспериментальных исследований для диагностики 

дефектов границы закрепления рассматриваются тонкостенные элементы на при-

мере эллиптической пластины и пластины в форме кардиоиды.  

4.3.1 Оптико-акустический стенд для диагностики несовершенств 

закрепления тонкостенных элементов конструкций 

Для объединения возможностей метода акустической спектроскопии и элек-

тронной спекл-интерферометрии был собран оптико-акустического стенд. В аку-

стическую часть стенда вошли контактные возбудители колебаний: ударный моло-

ток AU02 с датчиком силы АС21 и несколькими насадками, шарики из закалённой 

стали разных диаметров и масс, вибровозбудитель Роботрон 11075, бесконтактные 

электромагнитные возбудители вибрации, высокоточный генератор сигналов ГЗ-

122, усилитель Verstarker LV 103, частотомер ЧЗ-63, направленные микрофоны 

типа BSWA MA231 с равномерной частотной характеристикой в звуковом диапа-

зоне частот и достаточной осевой чувствительностью для выделения дискретных 
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составляющих сигнала в диапазоне до 50 кГц, соединяемые с двух, либо четырёх-

канальными спектроанализаторами A19-U2, A17-U4 и через них, - с ЭВМ. На ри-

сунке 4.1 представлена аппаратура акустической части стенда, предназначенная 

для возбуждения и регистрации колебаний образцов. 

 

Рисунок 4.1 – Акустическая часть оптико-акустического стенда: a - ударный 

молоток, b - груз (шарик) на подвесах, с - аппаратурный блок: 1 - усилитель LV 103, 

2 - частотомер ЧЗ-63, 3 - генератор сигналов с плавной регулировкой частоты Ро-

ботрон 11075, 4 – прецизионный генератор сигналов  ГЗ-122, d - микрофоны, со-

единенные со спектроанализатором A19-U2 

Оптическая часть оптико-акустического стенда представлена спекл-интерфе-

рометром, собранном по модифицированной схеме Майкельсона в составе твердо-

тельного одночастотного термостабилизированного лазера LCM-S-111, 10-ти мега-

пиксельной камеры AV10115DN, полупрозрачного зеркала, установленного под 

углом 45° к направлениям падающих и отражённых лучей, стеклянных пластинок 

с диффузионно отражающими поверхностями, закрепленных на кубике с отверсти-

ями, а также лазерного триангуляционного датчика РФ603. При закреплении об-

разцов предусмотрена возможность параллельного съема акустической и спекл-ин-

терферометрической информации. С помощью оптической части стенда экспери-

ментально определялись резонансные формы колебаний пластин. Схема оптиче-

ской части стенда представлена на рисунке 4.2. 
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Рисунок 4.2 – Схема оптической части стенда 

На монтажную площадку оптического блока установлены следующие эле-

менты:  лазер (твердотельный, длина волны 532 нм, мощность 20 мВт); полупро-

зрачное зеркало напротив лазера, установленное к падающему лучу под углом 45°, 

сетевая видеокамера марки Arecont Vision AV10115 с матрицей 1/2 дюйма с макси-

мальным  размером изображения 36482752 (10 Mп)), которая подключена к пер-

сональному компьютеру; объект, представляющий собой тонкую стальную пла-

стину с диффузно - отражающей поверхностью. 

В процессе эксперимента луч от лазера падает на полупрозрачное зеркало, 

которое разделяет его на два: опорный и предметный (объектный). Опорный луч 

проходит через полупрозрачное зеркало, отражается от диффузной поверхности, 

размещенной на стенке опоры зеркала, возвращается на полупрозрачное зеркало, 

отражаясь от которого, попадает в видеокамеру. Предметный луч отражается от 

полупрозрачного зеркала, падает на исследуемый объект, отражается от него, про-

ходит через полупрозрачное зеркало и также попадает в видеокамеру. 

       Вид сверху на оптическую часть стенда представлен на рисунке 4.3. 
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Рисунок 4.3 – Оптическая часть стенда: 1 – лазерный модуль с расширителем 

пучка, 2 - полупрозрачное зеркало, 3 – видеокамера, 4 - объект наблюдения 

 

4.3.2 Оптико-акустическая диагностика дефектов закрепления 

тонкостенных элементов конструкций и степени их залечивания на 

примере эллиптической пластины 

В качестве образца была выбрана алюминиевая эллиптическая пластина, 

представленная на рисунке 4.4 с отношением полуосей a/b равным 2, большой по-

луосью a = 100 мм, толщиной 1 мм, на 10 винтах крепления к накладкам, обеспе-

чивающих условия жёсткого защемления по контуру. 

1 

3 
2 

4 

https://istina.msu.ru/publications/article/526657155/
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Рисунок 4.4 – Экспериментальный образец – эллиптическая пластина 

Диагностика и залечивание дефектов крепления эллиптической пластины 

проводилась методом синхронного съёма виброакустической и спекл-интерферо-

метрической информации.  Метод позволяет судить не только о наличии дефектов 

по изменению спектрального состава её вибрационного и звукового полей, но и 

даёт возможность определения места дефекта по искажению спекл-интерферо-

граммы поля перемещений поверхности пластины. Так, для определения спектра 

частот пластины в форме эллипса можно использовать теоретическую модель ко-

лебаний или использовалось ударное возбуждение поперечных колебаний с реги-

страцией их с помощью спектроанализатора. Пример таких спектров в интервале 0 

– 2,4 кГц приведен на рисунке 4.5 для эллиптической пластины при затяжке всех 

болтов (а) и после ослабления группы болтовых соединений, скреплявших край 

пластины с левой стороны (б). На рисунке 4.5б можно отметить, что при регистра-

ции спектра положение микрофона совпало с узлом второй резонансной формы. 

Амплитуды экспериментальных спектров акустического давления по осям ординат 

отложены в единицах электрического сигнала, поступающего с микрофона (мВ), 

частоты в Гц. 
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а) 

 

б) 

Рисунок 4.5 – Экспериментальные акустические спектры эллиптической пла-

стины при затяжке всех болтов (а) и после ослабления группы болтовых соедине-

ний, скреплявших край пластины с левой стороны (б)  

f, Гц 

f, Гц 

A, мВ 

A, мВ 
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Для моделирования было выбрано снижение затяжки трёх рядом стоящих 

(слева) винтов крепления пластины для оценки первой и второй резонансной 

формы, а также снижение затяжки двух рядом стоящих (сверху по центру) винтов 

крепления для оценки изменений третьей резонансной формы (Рисунок 4.6).  

 

Рисунок 4.6 – Карта ослаблений винтов крепления экспериментального об-

разца – эллиптической пластины 

 

На рисунке 4.7 приведены пары спекл-интерферограмм резонансных форм 

колебаний эллиптической пластины до и после различного ослабления затяжки от-

дельных групп болтовых соединений для различных частот. Так, на рисунке 4.7а,б 

виден результат ослабления болтов, скреплявших край пластины с левой стороны, 

как показано на рисунке 4.6, а на рисунке 4.7в - у середины верхней части широкой 

стороны. 

Ослабление 1 Ослабление 2 
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в) 

Рисунок 4.7 – Cпекл-интерферограммы резонансных форм колебаний пла-

стины в форме эллипса при частотах 600 Гц (а), 878 Гц (б), 1244 Гц (в) для полной 

затяжки и частичном ослаблении отдельных групп винтов крепления пластины 
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Для первой формы колебаний частота снизилась до 557 Гц при частоте, соот-

ветствующей полному закреплению, - 600 Гц, а спекл-интерферограмма исказилась 

так, что на ней появился «флюс», указывающий на место ослабления заделки с ле-

вой стороны (Рисунок 4.7а).  

Для второй формы колебаний спекл-интерферограмма исказилась так, что на 

ней произошло смещение узловых линий симметричной формы в сторону 

«флюса», указывающего на место ослабления заделки с левой стороны (Рисунок 

4.7б). В данном случае частота снизилась до 810 Гц при частоте, соответствующей 

полному закреплению, 878 Гц. 

Для третьей формы колебаний спекл-интерферограмма исказилась так, что 

произошло нарушение коаксильности линий уровня и появился «флюс», указыва-

ющий на место ослабления заделки в середине верхней части пластины (Рисунок 

4.7в). В данном случае собственная частота снизилась до 1182 Гц при частоте, со-

ответствующей полному закреплению, - 1244 Гц. 

Уравнения колебаний защемленной по краю эллиптической пластины имеют 

наглядное приближённое аналитическое решение, рассмотренное в работе [110]. 

Для вычисления оценок частот и низших форм колебаний в ней применен модифи-

цированный метод Релея – Ритца, основанный на введении обобщенных полярных 

координат и задании осциллирующей функции поперечного смещения от поляр-

ного угла с фиксированным числом узловых линий. Нетрудно обобщить получен-

ное решение на случай оценки любых форм колебаний.  

Постановка задачи о нахождении собственных частот и форм колебаний эл-

липтической пластины, защемленной по краю, сводится к решению следующей 

краевой задачи: 

( )0, ,w w x y D − =   ( )4.3.2.1  

2 2

2 2
0, { , : 1}

Г
Г

w x y
w Г x y

n a b


= = = + =


 ( )4.3.2.2  

где w=w(x,y) – функция прогиба, n – нормаль к эллиптическому контуру, a – боль-

шая, b – меньшая полуоси эллипса, Δ – оператор Лапласа. Искомыми в задаче 
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(4.3.2.1), (4.3.2.2) являются частотные параметры λn (n=0,1,2,…) и соответствующие 

собственные функции wn. Собственные частоты выражаются через λn по формуле: 

 
( )23 1

n
n

E
h

v





=

−
 ( )4.3.2.3  

в которой h – полутолщина пластины, ρ, E, ν – соответственно плотность, модуль 

Юнга, коэффициент Пуассона. 

Краевая задача, записанная выше, эквивалентна вариационной задаче о 

минимуме функционала 

  ( )
2

D

J w w dxdy=    ( )4.3.2.4  

при изопериметрическом условии 

 
2

1
D

Ф w w dxdy= =   ( )4.3.2.5  

на классе дважды дифференцируемых функций, удовлетворяющих краевым усло-

виям. 

Введем новые переменные — обобщенные полярные координаты r, φ: 

cos , sin , 0, 0 2x ar y br r   = =     ( )4.3.2.6  

(на границе эллипса r = 1). 

          В этих координатах функцию прогиба пластины можно представить в виде: 

( ) ( ) ( )
cos

, 2, 3, ...
sin

n
w r V r n

n





= =  ( )4.3.2.7  

При выполнении условий (4.3.2.2), (4.3.2.4), (4.3.2.5) и требования ограничен-

ности функции w(r,φ) и ее производной при r = 0: 

( )
( )

( )
( )1 0

1 , 0 ,
dV dV

V V M M
dr dr

=    ( )4.3.2.8  

выражение для радиальной компоненты функции прогиба пластины может быть 

представлено с помощью функций Бесселя и модифицированных функций Бес-

селя n-го порядка.  



89 

 

( ) ( )1 2( ) n nV r c J r c I r = +  ( )4.3.2.9  

с параметром γ, определяемым из решения вариационной задачи (4.3.2.4), 

(4.3.2.5). В частном случае осесимметричных колебаний получим: 

2 21 2 2

2 2 2

0

1 2
[ ]

4

ab d w dw dw d w
J w A B rdr

dr r dr r dr dr

      
= + +     

      
  ( )4.3.2.10  

1

2

0

[ ] 2 1Ф w ab w rdr= =   

4 4 2 2 4 4 2 2

3 3 2 1 1 6
,A B

a b a b a b a b
= + + = + +  

Используя для решения вариационной задачи (4.3.2.10) метод Лагранжа и со-

ставляя уравнение Эйлера — Лагранжа, приходим к линейному дифференциаль-

ному уравнению четвертого порядка 

4 41 1 8
0,

d d d dw
r r w

r dr dr r dr dr A


 

   
− = =   

   

 ( )4.3.2.11  

решение которого имеет вид (4.3.2.9) при n=0 и γ=μ.  

Из краевых условий (4.3.2.8) получаем систему алгебраических урав-

нений относительно постоянных с1,с2: 

( ) ( ) ( ) ( )1 0 2 0 1 1 2 10, 0c J c I c J c I   + = − =  ( )4.3.2.12  

равенство нулю определителя которой приводит к частотному уравнению  

( ) ( ) ( ) ( )0 1 0 1 0J I I J   + =  ( )4.3.2.13  

В данном случае это уравнение определяет приближенные значения 

(оценки сверху) собственных частот осесимметричных колебаний эллиптической 

пластины. 

Наименьший корень уравнения (4.3.2.13) равен µ10=3.1961. 
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Тогда выражение 

4 4

10
10 4 8 4

3 3 2

8

a

a R R




 
= + + 

 
 ( )4.3.2.14  

даст оценку сверху для наименьшего собственного числа, а 

( )10 1022 3 1

h E
f

v


 
=

−
 ( )4.3.2.15  

- оценку сверху для наименьшей собственной частоты.  Для рассматриваемой эл-

липтической пластины первая расчётная частота f10 составляет 618 Гц, отличие ко-

торой от экспериментального значения составляет 3%.   

Аналогичным образом выводится частотное уравнение для любой формы: 

( ) ( ) ( ) ( )/ / 0, 1,2,...n n n nJ I J I n   − = =  ( )4.3.2.16  

 Так, при n=1 значение частотного параметра γ =4.611, а соответствующая величина 

первой расчётной частоты f11= 1390 Гц для формы колебаний, зафиксированной на 

рисунке 4.7в; соответствующее значение экспериментальной частоты - 1244 Гц. 

4.3.3 Оптико-акустическая диагностика дефектов закрепления 

тонкостенных элементов конструкций и степени их залечивания на 

примере кардиоидной пластины 

Поскольку теоретическая модель колебаний пластины-кардиоиды до сих пор 

не построена, в данном параграфе рассмотрен метод синхронного съёма виброаку-

стической и спекл-интерферометрической информации для диагностики дефектов 

на примере диагностики дефектов в закреплении границы тестовой пластины в 

форме кардиоиды.  Метод позволяет судить не только о наличии дефектов по из-

менению спектрального состава её вибрационного и звукового полей, но и даёт воз-

можность определения места дефекта по искажению спекл-интерферограммы поля 

перемещений поверхности пластины. 

https://istina.msu.ru/publications/article/526657155/


91 

 

На рисунке 4.8 представлены компоненты оптико-акустического стенда: 

слева оптический блок, регистрирующий спекл-интерферограммы резонансных ко-

лебаний с лицевой поверхности образца, в центре - один из образцов в форме кар-

диоидной пластины, скреплённой с основанием несколькими винтами, справа - 

часть акустического блока, обеспечивающего возбуждение и регистрацию резо-

нансных частот колебаний с тыльной стороны образца.   

Рисунок 4.8 – Оптико-акустический стенд: слева - оптический блок, в центре 

- один из образцов, справа - часть акустического блока для возбуждения и реги-

страции резонансных частот колебаний с тыльной стороны образца 

Теоретическая модель колебаний пластины кардиоиды до сих пор не постро-

ена. Для определения спектра частот пластины в форме кардиоиды использовалось 

ударное возбуждение поперечных колебаний с регистрацией их с помощью спек-

троанализатором. Пример такого спектра в интервале 0 - 8 кГц приведен на рисунке 

4.9, где идентифицированы 8 первых собственных частот пластины. 

 

Рисунок 4.9 – Экспериментальный спектр собственных частот колеба-

ний пластины-кардиоиды в диапазоне частот 0-8000 Гц при исходной затяжке 

винтов крепления пластины  
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На рисунке 4.10а представлена фотография спекл-интерферограммы формы 

резонансных поперечных колебаний пластины–кардиоиды на первой собственной 

частоте – 899 Гц. 

 

Рисунок 4.10 – Cпекл-интерферограмма первой формы колебаний пластины 

в форме кардиоиды: а - при полной затяжке всех винтов крепления контура, b - при 

ослабленной затяжке двух винтов заделки 

Полученная спекл-интерферограмма формы резонансных колебаний пла-

стины представляет собой регулярную картину чередующихся темных и светлых 

полос, отражающих расположение линий уровня резонансного прогиба пластины 

с шагом по высоте, равным половине длины волны излучения примененного в ин-

терферометре лазера (в данном случае - твердотельного зелёного лазера); этот шаг 

составляет 0.266 мкм. Видно, что зарегистрированные интерференционные полосы 

визуально подобны контуру границы, прогиб на которой равен нулю, и огибают её 

на некотором расстоянии.  

Характерным дефектом, возникающим при вибрации конструкций, является 

локальное ослабление её закрепления. Здесь такой дефект моделировался сниже-

нием затяжки двух рядом стоящих (внизу справа) винтов крепления пластины. Это, 

с одной стороны, вызывало снижение резонансной частоты колебаний пластины, а 

с другой, - искажение системы интерференционных полос в окрестности заделки. 

В данном случае частота снизилась до 875 Гц, а спекл-интерферограмма исказилась 

так, что на ней появился «флюс», указывающий на место ослабления заделки. На 

рисунке 4.10b показана эта интерферограмма. 
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По приведённым признакам можно контролировать как степень локального 

ослабления граничных условий, так и степень «залечивания» дефекта путём затя-

гивания ослабленных винтов в заделке. Соответствующая интерферограмма после 

затяжки ослабленных винтов мало отличается от изображённой на рисунке 4.10a. 

Однако она была получена не при частоте 899 Гц, а при 903 Гц, что свидетельствует 

о перетяжке слабо затянутых винтов в заделке по сравнению с исходным уровнем. 

Соответствующий спектр показан на рисунке 4.11.  

 

Рисунок 4.11 – Экспериментальный спектр собственных частот колебаний  

пластины-кардиоиды при повторной затяжке ослабленных винтов  

крепления пластины 

 

Проведенное тестирование показало преимущества объединения виброаку-

стической и спекл-интерферометрической диагностики на примере диагностики 

локального ослабления закрепления границ тестовых пластин. Важный признак та-

кого дефекта - снижение резонансной частоты колебаний - является лишь инте-

гральным признаком, по которому не определяется конкретное место расположе-

ния дефекта на контуре заделки. В то же время по конфигурации полос спекл-ин-

терферограммы, полученной на сниженной резонансной частоте колебаний пла-

стины, однозначно определяется место расположения дефекта заделки контура, по-
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сле устранения которого восстанавливается исходная собственная частота колеба-

ний пластины и спекл-интерферограмма соответствующей формы резонансных ко-

лебаний. 
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Заключение 

 

Основные результаты диссертации заключаются в следующем:  

1. Исследованы спектры акустического давления послеударных продоль-

ных колебаний при наличии трения, коэффициент которого определяется по сово-

купности многочастотных затухающих колебаний стержня после ударного воздей-

ствия в зависимости от соотношения между массой ударника и стержня, и попереч-

ных колебаний при различной величине статического растяжения и условий за-

крепления реальных стержневых систем. 

2. Разработана методика и стенд для экспериментального изучения спек-

тра акустического давления послеударных продольных колебаний стержня. Выяв-

лен и изучен эффект сдвига по частоте амплитудного максимума в спектре акусти-

ческого давления при послеударных продольных колебаниях стержня. Показано, 

что величина этого сдвига может зависеть от параметров, определяющих период 

осцилляции, а именно от среды распространения звука, расстояния до приёмника и 

от отношения масс ударника и стержня. Показано, что при ударе по стержню удар-

ником большей массы амплитуды скорости выходного конца на разных частотах 

отличаются друг от друга значительнее осциллирующего эффекта функции; таким 

образом, максимум акустического давления соответствует частоте основного тона. 

При стремлении отношения масс соударяющейся пары к нулю спектр меняется и 

диктующим максимум оказывается осциллирующий эффект. 

3. Разработан новый усовершенствованный частотный метод оценки уси-

лий и узловых жесткостей в стержнях. Выполнены исследования по эксперимен-

тальной верификации усовершенствованного частотного метода определения рас-

тягивающих усилий и жесткостей закрепления стержневых элементов строитель-

ных конструкций на основе модели колебаний балки Тимошенко и разработанных 

алгоритма и программы для ЭВМ оптимального поиска значений продольного уси-
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лия и жёсткости заделки стержня по спектру зарегистрированных частот. Предло-

женные расчетные модели и методики способны обеспечить существенное сниже-

ние трудоемкости проведения таких испытаний.  

4. Впервые выявлена и объяснена особенность разнонаправленного изме-

нения собственных частот изгибных колебаний при растяжении стержня в области 

слабо нелинейной зависимости напряжения от деформации. Показана необходи-

мость учета изменения начального модуля упругости в процессе деформирования 

при частотной диагностике усилий в стержневых элементах. Так, при изменении 

начального значения модуля упругости на 3% при статическом растяжении для рас-

сматриваемого тестового образца 3-я собственная частота поперечных колебаний 

оказывается ниже 1-ой собственной частоты при начальном модуле упругости в 

отсутствии статического растяжения.  

5. Проведен теоретический и экспериментальный анализ спектров частот 

балки Тимошенко в окрестности критической частоты. При рассмотрении попереч-

ных колебаний используемая методика по определению физических величин на 

примере скорости звука приводит к согласованию теоретических и эксперимен-

тальных наборов частот. Экспериментально верифицированы близкие пары частот 

за частотой Тимошенко.  

6. Создан и протестирован оптико-акустический стенд и новая методика 

синхронного съёма виброакустической и спекл-интерферометрической информа-

ции, пригодная для диагностики дефектов закрепления тонкостенных элементов 

конструкций и анализа степени их устранения. Проведенное тестирование пока-

зало преимущества объединения виброакустической и спекл-интерферометриче-

ской диагностики дефектов на примере диагностики дефектов в закреплении гра-

ницы тестовой пластины. Важный признак такого дефекта - снижение резонансной 

частоты колебаний - является лишь интегральным признаком, по которому невоз-

можно определить конкретное место расположения дефекта на контуре заделки. В 
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то же время по конфигурации полос спекл-интерферограммы, полученной на сни-

женной резонансной частоте колебаний пластины, однозначно определяется место 

расположения дефекта заделки контура пластины. 

Перспективы дальнейшей разработки темы диссертации 

Учет более уточнённых моделей соударения и продольных колебаний для 

определения контактной силы и акустического давления. Совершенствование ме-

тодик частотной оценки усилий и алгоритмов поиска решений. Исследование воз-

можности перехода к полностью не повреждающему способу диагностики про-

дольных усилий в арматурных стержнях с использованием, возбуждаемых ударом, 

продольных колебаний стержней.  
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Приложение А 

Свидетельство о государственной регистрации программы для ЭВМ 
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#Программная реализация алгоритма определения продольной силы и коэф-

фициентов жесткости заделки на языке Python 

#Загрузка библиотек 

from sympy import * 

from sympy import symbols 

from sympy import Matrix 

from chebpy import chebfun 

import numpy as np 

import math 

from scipy import optimize 

from scipy.optimize import basinhopping 

import collections 

import collections.abc as collections 

import numpy as np; from pychebfun import * 

from chebpy import chebfun 

#Присвоение переменных 

x, y, E, G, rho, Y, alpha, F, l = symbols("x, y, E, G, rho, Y, alpha, F, l ") 

#Присвоение значений исходным физическим и геометрическим параметрам 

E=, G=, rho=, Y=, alpha=, F=, l= 

# Ввод экспериментальных частот 

qq = [fn, …, f2, f1] 

# Начальные значения варьируемых неизвестных (коэффициенты жесткости 

и силовые факторы) 

x = [x0 ,x1] 

# Частотное уравнение, содержащее неизвестные коэффициенты жесткости 

и силовые факторы (y - теоретическая частота, входящая в частотное уравнение) 
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def f(x): 

     return chebfun(lambda y: … ,[ymin, ymax]) 

# Корни частотного уравнения 

def rts(x): 

     return (f(x).roots()) 

# Функция ошибки 

def df(x): 

     return 1/n *sum(abs(rts(x)-qq)) 

# Метод basin-hopping 

# Начальные значения варьируемых неизвестных (коэффициенты жесткости 

и силовые факторы) 

x0 = [x0start, x1start] 

# Диапазон значений варьируемых неизвестных 

xmin = [x0min, x1min] 

xmax = [x0max, x1max] 

# переписать граничные условия для L-BFGS-B 

bounds = [(low, high) for low, high in zip(xmin, xmax)] 

# Итерационный метод численной оптимизации L-BFGS-B  

minimizer_kwargs = dict(method="L-BFGS-B", bounds=bounds) 

# Минизация функции ошибок 

res = basinhopping(df, x0, minimizer_kwargs=minimizer_kwargs, niter=,step-

size=) 

print(res) 
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Приложение Б 

Внедрение результатов диссертационной работы 

 


