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Аннотация. Основными характеристиками, определяющими эффективность 

тепловизионных оптико-электронных систем, являются: функция передачи 

сигнала (SiTF), частотно-контрастная характеристика и шум. В статье 

рассмотрены определение SiTF и пространственных и временных составляющих 

3-D шума по изображениям, полученным в лабораторных условиях. Были 

синтезированы однородные изображения объекта и фона по полученным 

функциям SiTF и составляющим 3-D шума, затем по этим изображениям 
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рассчитаны температурный контраст и отношение сигнал-шум (SNR), определена 

зависимость вероятности обнаружения объекта от SNR и температурного 

контраста.  

Рассмотрена методика оценки влияния температурного контраста на 

вероятность обнаружения объекта по результатам лабораторных испытаний  

авиационных оптико-электронных систем, включающая: подготовку исходных 

данных и получение целевых изображений посредством оптико-электронных 

систем; обработку изображений , расчёт функций SiTF, шума и его составляющих; 

синтез изображений фона и цели; расчёт по изображениям средних значений 

температуры объекта, фона, среднеквадратического отклонения температуры 

объекта и фона, стандартного отклонения шума от объекта и фона; расчёт 

температурного контраста и отношения сигнал-шум; расчёт вероятности 

обнаружения объекта и построение зависимости вероятности обнаружения от 

температурного контраста.  

Ключевые слова: эквивалентная разность температур, температурный контраст, 

оптический контраст, вероятность обнаружения, функция передачи сигнала, SiTF, 

3-D шум и его составляющие.  
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Abstract. The main parameters characterizing the efficiency of thermal imaging electro-

optical systems are the signal transfer function (SiTF), the frequency-contrast 

characteristic and noise. The article considers the definition of SiTF, and spatial and 

temporal components of 3-D noise from images obtained in laboratory conditions. 

Homogeneous images of the object and the background were synthesized from the 

obtained SiTF functions and 3-D noise components, then the temperature contrast and 

signal-to-noise ratio (SNR) were calculated from these images, and the dependence of the 

probability of detecting an object on SNR and temperature contrast was determined.  

The article considers a method for assessing the influence of temperature contrast 

on the probability of object detection based on the results of laboratory tests of electro-

optical systems, including: preparation of initial data and obtaining target images using 

electro-optical systems; image processing, calculation of SiTF functions, noise and its 

components; synthesis of background and target images; calculation of average values of 

object temperature, background, standard deviation of object temperature and 

background, standard deviation of noise from the object and background; calculation of 

temperature contrast and signal-to-noise ratio; calculation of object detection probability 

and plotting the dependence of detection probability on temperature contrast.   

Keywords: equivalent temperature difference, temperature contrast, optical contrast, 

detection probability, signal transmission function, SiTF, 3-D noise and its components.  

 

  

Введение  

В статье рассмотрены вопросы, связанные с определением эквивалентной 

разности температур, температурного и оптического контраста в средневолновом 

и длинноволновом инфракрасных диапазонах, а также вероятностью 

обнаружения объекта, функции передачи сигналов SiTF и составляющих 3-D шума.  

Актуальность данного материала обусловлена следующими факторами.   



4  

1. Возможностью определения минимального порога температурного 

контраста, необходимого для обнаружения сигнала по результатам лабораторных 

испытаний оптико-электронных систем (ОЭС).  

  

2. Возможностью получения значений температурного контраста, при 

которых был установлен факт обнаружения (распознавания) объекта наблюдения 

по результатам натурных испытаний.  

3. Возможностью синтеза выборки изображений объектов наблюдения с 

учётом характеристик ОЭС на различных фонах, необходимой для обучения ней 

ронных сетей .  

4. Возможностью расчёта среднего значения начального температурного 

контраста по температурной сигнатуре объекта и фона, полученных в полевых 

условиях с различных углов визирования (с учётом времени суток и года), 

необходимого для оценки результатов натурных испытаний ОЭС.  

  

Эквивалентная разность температур  

На поверхности физического объекта могут происходить четыре фотонных 

дей ствия: поглощение, отражение, пропускание и излучение [1]  

𝛼𝛼(𝜆𝜆) + 𝜌𝜌(𝜆𝜆) + 𝜏𝜏(𝜆𝜆) = 1,  

где 𝛼𝛼(𝜆𝜆) – коэффициент поглощения, 𝜌𝜌(𝜆𝜆) – коэффициент отражения; 𝜏𝜏(𝜆𝜆) - 

коэффициент пропускания.  

Большинство материалов не пропускают волны средневолнового 

инфракрасного (СВИК) и длинноволнового инфракраснного (ДВИК) диапазонов, 

за исключением селенида цинка, сапфира, шпинеля и германия. Для непрозрачных 

материалов 𝜏𝜏(𝜆𝜆) равно 0, следовательно:  

𝛼𝛼(𝜆𝜆) + 𝜌𝜌(𝜆𝜆) = 1.  

Из этого равенства видно, что объекты с высокой отражающей способностью 

(цвета) имеют небольшое поглощение, и, наоборот, при большом поглощении 

отражение сигнала мало. В инфракрасном диапазоне сигнал от объекта 

формируется за счёт излучения. В соответствии с законом Кирхгофа, когда объект 
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находится в тепловом равновесии с окружающей средой , коэффициенты 

поглощения 𝛼𝛼(𝜆𝜆) и излучения 𝜀𝜀(𝜆𝜆) равны:  

𝛼𝛼(𝜆𝜆) = 𝜀𝜀(𝜆𝜆),  

Таким образом,  

𝜀𝜀(𝜆𝜆) + 𝜌𝜌(𝜆𝜆) = 1,  

  

то есть сильно излучающий в инфракрасном диапазоне объект имеет низкую 

отражательную способность.  

В инфракрасном диапазоне характеристики поглощения и излучения 

объектов более значимы, чем их характеристики отражения и пропускания. 

Объекты имеют тенденцию поглощать солнечную энергию с последующим 

излучением, но существуют объекты, являющиеся источниками собственного 

излучения. Температура объектов обеспечивает энергию, необходимую для 

излучения фотонов. Два основных положения справедливы для излучения [1]:   

− тело с более высокой температурой соответствует большему излучению 

потока;  

− тело с более высокой температурой сдвигает максимум спектрального 

распределения потока в сторону более коротких длин волн.   

Эти положения верны независимо от характеристик излучательной 

способности объекта. Излучательная способность объекта зависит от 

температуры объекта, спектрального распределения и коэффициента излучения:  

𝑐𝑐 1 Вт 𝑀𝑀𝑒𝑒 𝜆𝜆   м2 ∙ мкм,  

𝑒𝑒𝜆𝜆𝜆𝜆 − 1 

8 

Вт∙мкм2 4 ; 𝑐𝑐2 = 14388 мкм ∙ К, где 𝑐𝑐1 = 3,7418 × 10 м 

спектральная квантовая светимость:  

 𝑐𝑐 1 фотон 

 𝑀𝑀𝑞𝑞   ,  

 𝜆𝜆 𝑒𝑒𝜆𝜆𝜆𝜆 − 1 мкм 

 
где 𝑐𝑐3 = 1,88365 × 1027  с− м2 .  
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На рисунке 1 приведена зависимость спектральной квантовой светимости 

абсолютно чёрного тела от длины волны и температуры, рассчитанная по 

формуле Планка для абсолютно чёрного тела (АЧТ) [2], у которого 𝜀𝜀(𝜆𝜆) равен 1.   

Данный график подтверждает положение о том, что тело с более высокой 

температурой соответствует большему излучению потока и сдвигает максимум 

спектрального распределения потока в сторону более коротких длин волн. 

Например, излучение АЧТ с температурой 1000 К наблюдается в видимом 

диапазоне, при температуре 300 К излучения АЧТ в видимом диапазоне нет, но 

наблюдается в СВИК (MWIR) и ДВИК (LWIR) диапазонах.  

Следует обратить внимание на сдвиг длины волны максимального 

излучения 𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 для различных температур, значение которой определяется 

законом Вина [1]:  

2897,8 

𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚 𝑊𝑊 =  [мкм],  

𝑇𝑇 

где температура дана в Кельвинах.   

Таким образом, определив перечень объектов наблюдения и зная их 

среднюю температуру можно определить спектральный диапазон, в котором 

должна работать разрабатываемая ОЭС. Например, объекты со средней 

температурой 300 К имеют максимальное излучение на длине волны 9,66 мкм, т.е. 

ДВИК диапазон. Длина волны 4 мкм СВИК диапазона соответствует излучательной 

способности объектов с температурой 724,45 К.  

  

  
Рисунок 1 - Зависимость спектральной квантовой светимости абсолютно чёрного тела 

от длины волны и температуры.  
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Объекты, излучение которых зависит от длины волны, называют 

спектральными излучателями. Значение энергетической светимости в заданном 

спектральном диапазоне определяется во формуле [2]:  

𝜆𝜆2 

 𝑐𝑐1 1 Вт 

𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇) =  𝜀𝜀(𝜆𝜆) 𝜆𝜆5  𝑐𝑐2  м2 ∙ К ; 𝜆𝜆1

 𝑒𝑒𝜆𝜆𝜆𝜆 − 1 

𝜀𝜀(𝜆𝜆) = 

𝑀𝑀𝑜𝑜𝑜𝑜(𝜆𝜆)

, 

𝑀𝑀𝐵𝐵𝐵𝐵(𝜆𝜆

) 

где 𝑀𝑀𝑜𝑜𝑜𝑜(𝜆𝜆), 𝑀𝑀𝐵𝐵𝐵𝐵(𝜆𝜆) – измеренные спектральные энергетические 

светимости объекта и АЧТ при температуре АЧТ, равной температуре объекта.  

Объект с постоянным коэффициентом излучения 𝜀𝜀(𝜆𝜆) на всех длинах волн 

называется серым телом. Закон Стефана-Больцмана обеспечивает простые 

расчёты потока, когда желательно знать излучение во всём спектре:  

𝑀𝑀𝑒𝑒(𝑇𝑇) = 

𝜀𝜀𝜎𝜎 
4𝑇𝑇 м2Вт∙ К ,  

где константа Стефана-Больцмана 𝜎𝜎 равна 5,67032 × 10−8 м2
Вт∙К4.   

   Уравнение применимо только к черным и серым телам.   

Контраст объекта в инфракрасном диапазоне описывается эквивалентной 

разностью температур ∆𝑇𝑇 [2]:  

𝑇𝑇𝜆𝜆 = 𝑇𝑇𝐵𝐵 + ∆𝑇𝑇,  

где 𝑇𝑇𝐵𝐵, 𝑇𝑇𝜆𝜆 – температура фона и объекта соответственно.  

Величина ∆𝑇𝑇 может показаться величиной характеризующей температуру, 

но на самом деле она является радиометрической величиной . Разность между 

двумя величинами можно представить рядом Тей лора [2]:  

 𝜕𝜕𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝐵𝐵) 𝜕𝜕2𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝐵𝐵) ∆𝑇𝑇2 

 𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝐵𝐵 + ∆𝑇𝑇) − 𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝐵𝐵) =  𝜕𝜕𝑇𝑇∆𝑇𝑇 +  𝜕𝜕𝑇𝑇2 2 + ⋯.  
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Для небольших значений ∆𝑇𝑇 достаточно учесть первое слагаемое ряда Тей 

лора:  

𝜕𝜕𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝐵𝐵) 

𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝜆𝜆) − 𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝐵𝐵) ≈ ∆𝑇𝑇,  

𝜕𝜕𝑇𝑇 

где  

 𝜕𝜕𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝐵𝐵) 𝑐𝑐2𝑒𝑒𝑐𝑐2/𝜆𝜆𝜆𝜆𝐵𝐵 

 𝜕𝜕𝑇𝑇= 𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝐵𝐵) 𝜆𝜆𝑇𝑇

2(𝑐𝑐2𝑒𝑒𝑐𝑐2/𝜆𝜆𝜆𝜆𝐵𝐵 − 1).  

Следовательно,   

𝜆𝜆2 
∫𝜆𝜆1 [𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝜆𝜆) − 𝑀𝑀𝑒𝑒(𝜆𝜆, 𝑇𝑇𝐵𝐵)]𝑑𝑑𝜆𝜆 

∆𝑇𝑇 ≈ .  

∫𝜆𝜆𝜆𝜆12 𝜕𝜕𝑀𝑀𝑒𝑒𝜕𝜕(𝜆𝜆𝑇𝑇, 𝑇𝑇𝐵𝐵) 𝑑𝑑𝜆𝜆 

  
Эквивалентная разность температур ∆𝑇𝑇, как правило, используется при 

энергетическом расчёте для оценки характеристик ОЭС. На практике вместо ∆𝑇𝑇 

используется температурный контраст ∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅, который рассчитывается по 

тепловизионным изображениям.  

  

Оптический и температурный контраст  

Оптический контраст 𝐶𝐶 объекта наблюдения в СВИК и в ДВИК диапазонах 

определяется по формулам [1, 3, 4]:  

∆𝑇𝑇 

∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑇𝑇𝜆𝜆 − 𝑇𝑇𝐵𝐵)2 + (𝜎𝜎𝜆𝜆 − 𝜎𝜎𝐵𝐵)2;  

∑𝑛𝑛 ∑𝑚𝑚 𝑡𝑡𝑚𝑚,𝑛𝑛 

 𝑇𝑇 = ; 𝑇𝑇𝜆𝜆 = 𝑇𝑇 или 𝑇𝑇𝐵𝐵 = 𝑇𝑇;  

𝑀𝑀𝑀𝑀 

2 

𝜎𝜎 = ∑𝑛𝑛 ∑𝑚𝑚𝑡𝑡𝑚𝑚,𝑛𝑛 − 𝑇𝑇 ; 𝜎𝜎𝜆𝜆 = 𝜎𝜎 или 𝜎𝜎𝐵𝐵 = 𝜎𝜎,  

𝑀𝑀𝑀𝑀 

𝐶
𝐶 

= 
𝑅𝑅𝑅

𝑅𝑅𝑅 𝑇

𝑇 
𝜆

𝜆 
+ 𝑇

𝑇 
𝐵

𝐵 

;   
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где ∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 – температурный контраст; 𝑇𝑇𝜆𝜆, 𝑇𝑇𝐵𝐵 – средние значения 

температуры (°С или К) объекта и фона, вычисленные по значениям пикселей 

(DN); 𝜎𝜎𝜆𝜆, 𝜎𝜎𝐵𝐵 – среднеквадратическое отклонение (СКО) температуры объекта и 

фона; 𝑀𝑀, 𝑀𝑀 – количество строк и столбцов в изображении объекта наблюдения 

(фона), 𝑡𝑡𝑚𝑚,𝑛𝑛 – температурные значения пикселей .  

Напряжение на выходе пикселя пропорционально количеству электронов в 

потенциальной яме пикселя. При известной разрядности N аналого-цифрового 

преобразователя количество электронов преобразуется в цифрой уровень 

сигнала, его, как правило, обозначают 𝐷𝐷𝐷𝐷 (digital level) или 𝐷𝐷𝑀𝑀 (digital 

number). Из значений цифровых уровней сигналов 𝐷𝐷𝑀𝑀 формируется кадр 

изображения ОЭС. В любой ОЭС формируется изображение в заданном диапазоне 

температур: от 𝑇𝑇𝑚𝑚𝑚𝑚𝑛𝑛 до 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚. Минимальному значению 𝐷𝐷𝐷𝐷, равному 0, 

соответствует 𝑇𝑇𝑚𝑚𝑚𝑚𝑛𝑛, а 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚 соответствует максимальному 2𝑁𝑁 − 1.  

При расчёте ∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅, принимают допущение, о том, что площадь фона 

равна площади объекта, то есть если 𝐻𝐻𝜆𝜆, 𝑊𝑊𝜆𝜆 – это размеры объекта в метрах, 

то размеры фона будут равны [2]:   

𝐻𝐻𝐵𝐵 𝐻𝐻𝜆𝜆; 𝑊𝑊𝐵𝐵 .  

В случае, если фон равномерный , выражение для ∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅, принимает вид 

[2]  

 

∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 = (𝑇𝑇𝜆𝜆 − 𝑇𝑇𝐵𝐵)2 + 𝜎𝜎𝜆𝜆2.  

Часто изображения объекта имеют несколько фрагментов с различной 

температурой (рисунок 2), для вычисления температуры объекта 𝑇𝑇ср и 

температурного контраста ∆𝑇𝑇𝑚𝑚𝑎𝑎𝑒𝑒 используют формулы [4]:   

∑𝐾𝐾𝑘𝑘=1 𝐴𝐴𝑘𝑘 𝑇𝑇𝑘𝑘 

 𝑇𝑇𝑚𝑚𝑎𝑎𝑒𝑒 = ∑𝐾𝐾 𝐴𝐴𝑘𝑘 ;  

𝑘𝑘=1 

∆𝑇𝑇𝑚𝑚𝑎𝑎𝑒𝑒 = 𝑇𝑇𝑚𝑚𝑎𝑎𝑒𝑒 − 𝑇𝑇𝐵𝐵,  

где K, 𝐴𝐴𝑘𝑘, 𝑇𝑇𝑘𝑘 - количество фрагментов изображения, площадь и средняя 

температура k-го фрагмента изображения соответственно.   



10  

   При допущении, если 𝜎𝜎𝜆𝜆 и 𝜎𝜎𝐵𝐵 равны нулю, то ∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 уменьшается до 

∆𝑇𝑇𝑚𝑚𝑎𝑎𝑒𝑒.  

  
Рисунок 2 - Разбиение изображения на фрагменты  

  

Площадь 𝐴𝐴𝑘𝑘 фрагмента изображения – произведение количества пикселей 

в фрагменте изображения на площадь пикселя. Средняя температура 𝑇𝑇𝑘𝑘 

фрагмента изображения равна  

 ∑ ∑𝑛𝑛𝑚𝑚 𝑡𝑡𝑚𝑚𝑘𝑘 ,𝑛𝑛 

𝑇𝑇𝑘𝑘 =  .  

𝑀𝑀𝑀𝑀 

Температурные значения пикселей 𝑡𝑡𝑚𝑚,𝑛𝑛 и 𝑡𝑡𝑚𝑚𝑘𝑘 ,𝑛𝑛 определяются по 

аппроксимирующей зависимости функции передачи сигнала 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆.  

  

  

  

  

Определение функции передачи сигнала  

Зависимость значений пикселей DN от значений температуры есть функция 

передачи сигнала SiTF [1]. В общем случае испытательное оборудование, 

необходимое для определения SiTF, состоит из следующих модулей : абсолютное 

черное тело, зеркальный коллиматор, вращающий ся диск с набором мир 

(мишеней ), компьютер с платой видеозахвата и программное обеспечение для 

тестирования и контроля. Один из вариантов построения испытательного 

оборудования приведен на рисунке 3. В качестве тест-объекта необходимо 

использовать миру, приведённую на рисунке 4. Размещение миры и тепловизора 

должно быть таким, чтобы белый квадрат миры занимал максимально поле 

зрения тепловизора.   
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Рисунок 3 – Схема размещения испытательного оборудования  

  

  

Рисунок 4 - Мира для измерения SiTF  

  

До проведения работ при необходимости следует провести юстировку ОЭС и 

отключить все улучшения изображения и режимы усиления ОЭС.  

В таблице 1 приведены значения температуры АЧТ Tbb и температурного 

контраста ΔT; в таблице 2 приведены характеристики ОЭС, с помощью которой 

получены изображения миры (рисунок 5).  

Таблица 1 
Значения температуры АЧТ  

𝑇𝑇𝑜𝑜𝑜𝑜, ̊ С  𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜, ̊ С  𝑇𝑇𝑜𝑜𝑜𝑜, ̊ С  𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜, ̊ С  

15  -10  22  -3  

16  -9  22,25  -2,75  

17  -8  22,5  -2,5  

18  -7  22,75  -2,25  

19  -6  23  -2  

20  -5  23,25  -1,75  

21  -4  23,5  -1,5  
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22  -3  23,75  -1,25  

23  -2  24  -1  

24  -1  24,25  -0,75  

25 (фон)  0  24,5  -0,5  

26  1  24,75  -0,25  

27  2  25 (фон)  0  

28  3  25,25  0,25  

29  4  25,5  0,5  

30  5  25,75  0,75  

31  6  26  1  

32  7  26,25  1,25  

33  8  26,5  1,5  

34  9  26,75  1,75  

35  10  27  2  

    27,25  2,25  

    27,5  2,5  

    27,75  2,75  

    28  3  

  

  
Таблица 2  

  
Характеристики ОЭС  

Характеристика  Значение  

Фокусное расстояние, мм  300  

Диаметр входного зрачка, мм  75  

Спектральный диапазон, мкм  3 - 5  

Размер активного элемента пикселя, мкм  15  

Угловой размер пикселя, мрад  0,05  

Размер поля зрения, градус  1,8 х 1,5  
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𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = 0 ̊ С  

  
 𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = - 1 ̊ С  𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = 1 ̊ С  

  
 𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = - 2 ̊ С  𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = 2 ̊ С  

  
 𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = - 3 ̊ С  𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = 3 ̊ С  

  
Рисунок 5 - Изображения миры, полученные посредством ОЭС.  

  

  

На рисунках 6 и 7 приведены функции 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆(𝑇𝑇), 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆(𝛥𝛥𝑇𝑇) (синие 

маркеры) и аппроксимирующие функции 𝐷𝐷𝑀𝑀 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜), 𝛥𝛥𝐷𝐷𝑀𝑀 = 

𝑓𝑓(𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜) (красные пунктирные линии).   

В таблицах 3, 4 представлены значения коэффициентов функций 𝐷𝐷𝑀𝑀 = 

 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜), 𝛥𝛥𝐷𝐷𝑀𝑀 = 𝑓𝑓(𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜) и их обратных функций 𝑇𝑇𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝐷𝐷𝑀𝑀), 

𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝛥𝛥𝐷𝐷𝑀𝑀).  
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Рисунок 6 – График SiTF для диапазона от 15 ̊С до 35 ̊С   

  

Рисунок 7 – График SiTF для диапазона от 25 ̊С до 28 ̊С  

  

  
Таблица 3 

Значения коэффициентов для температур от 15 ̊С до 35 ̊С  

Функция  a  b  c  d  

𝐷𝐷𝑀𝑀 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜)  0,055  -4,596  167,75  -123,65  

𝑇𝑇𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝐷𝐷𝑀𝑀)  -1,886× 10-8  1,22× 10-4  -0,2393  163,27  

𝛥𝛥𝐷𝐷𝑀𝑀 = 

𝑓𝑓(𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜)  
0,055  -0,5127  40,023  0,3959  

𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = 

𝑓𝑓(𝛥𝛥𝐷𝐷𝑀𝑀)  
-1,886× 10-8  6,652× 10-6  0,0252  -0,0131  
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𝜎𝜎 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜)  -0.0026  -0.009  7.8604  -71.9394  

𝑇𝑇𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝜎𝜎)  -0.0067  1.4725  -1.056× 102  2.465× 103  

Вид полинома   𝑦𝑦 = 𝑎𝑎𝑥𝑥3 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐𝑥𝑥 + 

𝑑𝑑  
 

  
Таблица 4  

Значения коэффициентов для температур от 25 ̊С до 28 ̊С  

Функция  a  b  c  d  

𝐷𝐷𝑀𝑀 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜)  0.5394  -42.9708  1178.98  -8997.1895  

𝑇𝑇𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝐷𝐷𝑀𝑀)  -2. 4249 × 10-7  0.0015  -3.2104  2246.6812  

𝛥𝛥𝐷𝐷𝑀𝑀 = 

𝑓𝑓(𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜)  
0.5394  -2.5168  41.7909  0.7740  

𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = 

𝑓𝑓(𝛥𝛥𝐷𝐷𝑀𝑀)  
-2.4249× 10-7  4.483× 10-5  0.0236  -0.0171  

𝜎𝜎 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜)  -0.0536  1.2153  49.6355  -1088.0358  

𝑇𝑇𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝜎𝜎)  0.0046  -1.1622  97.1317  -2678.1249  

Вид полинома   𝑦𝑦 = 𝑎𝑎𝑥𝑥3 + 𝑏𝑏𝑥𝑥2 + 𝑐𝑐𝑥𝑥 + 

𝑑𝑑  
 

  

  

Вероятность обнаружения объекта  

Выражение для расчёта вероятности обнаружения объекта имеет вид [5, 6, 

19, 20]  

 

(𝑆𝑆𝑀𝑀𝑆𝑆) =  1 𝑅𝑅𝑁𝑁𝑅𝑅 𝑒𝑒−12(𝑠𝑠−3)2𝑑𝑑𝑑𝑑 ;  

𝑃𝑃𝑑𝑑𝑒𝑒𝑑𝑑 

2𝜋𝜋 0 

∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 

𝑆𝑆𝑀𝑀𝑆𝑆 = ,  

𝜎𝜎𝜆𝜆2(𝑇𝑇𝜆𝜆) + 𝜎𝜎𝐵𝐵2(𝑇𝑇𝐵𝐵) 

где 𝑆𝑆𝑀𝑀𝑆𝑆 – отношение сигнал-шум; 𝜎𝜎𝜆𝜆(𝑇𝑇𝜆𝜆), 𝜎𝜎𝐵𝐵(𝑇𝑇𝐵𝐵) - СКО шума ОЭС от 

объекта наблюдения и фона соответственно, рассчитываемые по формуле [6]:  

 

 𝜎𝜎 (𝑇𝑇) = 𝜎𝜎𝑑𝑑𝑒𝑒𝑚𝑚𝑡𝑡2(𝑇𝑇) + 𝜎𝜎𝑠𝑠𝑡𝑡𝑚𝑚𝑑𝑑2 (𝑇𝑇),  
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где 𝜎𝜎𝑑𝑑𝑒𝑒𝑚𝑚𝑡𝑡(𝑇𝑇) – СКО временного шум ОЭС; 𝜎𝜎𝑠𝑠𝑡𝑡𝑚𝑚𝑑𝑑(𝑇𝑇) – СКО 

пространственного шума  

ОЭС. Необходимо отметить, что рассмотренные выше СКО температуры объекта  

𝜎𝜎𝜆𝜆, фона 𝜎𝜎𝐵𝐵 не есть 𝜎𝜎𝜆𝜆(𝑇𝑇𝜆𝜆), 𝜎𝜎𝐵𝐵(𝑇𝑇𝐵𝐵).  

Модель шума, используемая для оценки эффективности разрабатываемой 

ОЭС посредством аналитической модели [7], на начальных этапах проектирования 

описана в [8]. Рассмотрим модель шума, которую можно использовать после 

изготовления опытного образца ОЭС при проведении его испытаний в 

лабораторных и полунатурных условиях. Также эту модель шума целесообразно 

применять при синтезе изображений с учётом характеристик данной ОЭС для 

заданных внешних условий .   

Для определения функции 𝜎𝜎(𝑇𝑇) используется модель 3-D шума [9 - 11]. 

Суть данной модели в том, что формируется последовательность кадров в виде 

«куба» изображения, размер которого определяется следующими параметрами: H 

– ширина по горизонтали в пикселях, V – высота изображения по вертикали в 

пикселях, K – количество кадров. Затем рассчитывают семь компонентов шума, 

три из которых относятся к временному шуму, три – к пространственному, а один 

– к пространственно-временному:  

 
 𝜎𝜎 (𝑇𝑇) = 𝜎𝜎𝑑𝑑𝑎𝑎ℎ2(𝑇𝑇) + 𝜎𝜎𝑑𝑑𝑎𝑎2 (𝑇𝑇) + 𝜎𝜎𝑑𝑑ℎ2 (𝑇𝑇) + 𝜎𝜎𝑑𝑑2(𝑇𝑇) + 𝜎𝜎𝑎𝑎ℎ2 (𝑇𝑇) + 

𝜎𝜎𝑎𝑎2(𝑇𝑇) + 𝜎𝜎ℎ2(𝑇𝑇) ,  

где 𝜎𝜎𝑑𝑑𝑎𝑎(𝑇𝑇), 𝜎𝜎𝑑𝑑ℎ(𝑇𝑇), 𝜎𝜎𝑑𝑑(𝑇𝑇) – составляющие временного шума; 

𝜎𝜎𝑑𝑑𝑒𝑒𝑚𝑚𝑡𝑡(𝑇𝑇); 𝜎𝜎𝑎𝑎ℎ(𝑇𝑇), 𝜎𝜎𝑎𝑎(𝑇𝑇), 𝜎𝜎ℎ(𝑇𝑇) – составляющие пространственного 

шума; 𝜎𝜎𝑠𝑠𝑡𝑡𝑚𝑚𝑑𝑑(𝑇𝑇); 𝜎𝜎𝑑𝑑𝑎𝑎ℎ(𝑇𝑇) – пространственно-временной шум, его относят 

или к временному шуму  

𝜎𝜎𝑑𝑑𝑒𝑒𝑚𝑚𝑡𝑡(𝑇𝑇) или рассматривают отдельно [4]:  
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𝜎𝜎 (𝑇𝑇) = 𝜎𝜎𝑑𝑑𝑎𝑎ℎ(𝑇𝑇)1 + 𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡ℎ2𝑡𝑡𝑡𝑡2 ((𝜆𝜆𝜆𝜆)) + 𝜎𝜎𝜎𝜎2𝑡𝑡ℎ2 ((𝜆𝜆𝜆𝜆)) + 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡ℎ2𝑡𝑡2((𝜆𝜆𝜆𝜆)) + 𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡ℎ2𝑡𝑡ℎ2 ((𝜆𝜆𝜆𝜆)) + 

𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡ℎ2𝑡𝑡2((𝜆𝜆𝜆𝜆)) + 𝜎𝜎𝜎𝜎𝑡𝑡𝑡𝑡ℎ2ℎ2((𝜆𝜆𝜆𝜆)) . 𝑡𝑡𝑡𝑡ℎ 

  При допущении, что временной шум небольшой, выражение для 𝜎𝜎 (𝑇𝑇) 

принимает вид  

 𝜎𝜎𝑎𝑎ℎ2 (𝑇𝑇)𝜎𝜎𝑎𝑎2(𝑇𝑇)𝜎𝜎ℎ2(𝑇𝑇) 

 𝜎𝜎 (𝑇𝑇) = 𝜎𝜎𝑑𝑑𝑎𝑎ℎ(𝑇𝑇)1 + 𝜎𝜎2(𝑇𝑇) + 𝜎𝜎𝑑𝑑𝑎𝑎ℎ2(𝑇𝑇) + 𝜎𝜎𝑑𝑑𝑎𝑎ℎ2 (𝑇𝑇).  
𝑑𝑑𝑎𝑎ℎ 

  

Описание компонентов шума приведены в таблице 5 [4].   

Таблица 5 
Описание компонентов 3-D шума  

Компонент  Описание  Источник  

𝜎𝜎𝑑𝑑𝑎𝑎ℎ  Случай ный 

пространственновременной шум  
пространственно- 
временной шум пикселей 

(временной шум)  

𝜎𝜎𝑑𝑑ℎ  Временной шум столбцов 

(вертикальные линии, которые 

изменяются от кадра к кадру, 

изменение средней яркости столбца 

со временем)  

Считывание электронов  

(временной шум)  

𝜎𝜎𝑑𝑑𝑎𝑎  Временной шум строк  
(горизонтальные линии, которые 

изменяются от кадра к кадру; 

изменение средней яркости строки 

со временем)  

Считывание электронов  

(временной шум)  

𝜎𝜎𝑎𝑎ℎ   Случай ный пространственный шум 

(не изменяется от кадра к кадру)  
Неоднородность пикселей  

(пространственный шум)  

𝜎𝜎ℎ   Фиксированный шум столбцов 

(вертикальные линии; изменение 

средней яркости столбцов 

постоянное по времени)  

Считывание электронов.  
Неоднородность столбцов  

(пространственный шум)  

𝜎𝜎𝑎𝑎  Фиксированный шум строк  
(горизонтальные линии; изменение 

средней яркости строки постоянное 

по времени)  

Считывание электронов. 
Неоднородность строк  

(пространственный шум)  
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𝜎𝜎𝑑𝑑  Межкадровый шум (изменение 

яркости от кадра к кадру)  
Обработка кадров  

(временной шум)  

  

Расчёт шума 𝜎𝜎 (𝑇𝑇) осуществляется по последовательности кадров, 

полученных для вычисления функции передачи сигнала 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆(𝑇𝑇). На 

рисунке 8 приведены графики составляющих 3-D шума, функции 𝜎𝜎 (𝑇𝑇) и 

полинома 𝜎𝜎 =  𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜), в таблицах 3, 4 - значения коэффициентов полиномов 

аппроксимации функций 𝜎𝜎 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜) и 𝑇𝑇𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝜎𝜎).  

С использованием полученных функций (таблицы 3, 4) были синтезированы 

однородные изображения объектов и фона (рисунок 9). Температура фона 25 ℃, 

температура объектов от 25,01 ℃ до 26 ℃ с шагом 0,02 ℃. На данном рисунке 

отмечено положение объекта с температурным контрастом ∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅, равным 0,43 

℃.  

Характеристический размер объекта наблюдения равен 3,1 м. Под 

характеристическим размером понимается корень квадратный площади объекта.  

  

  

Рисунок 8 – Графики составляющих 3-D шума для диапазона от 25 ̊С до 35 ̊С  
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Рисунок 9 – Синтезированные изображения объектов и фона  

  
На рисунке 10 представлена функция вероятности обнаружения объекта на 

дальности 7000 м для температуры фона 25 ℃.  

В таблице 6 приведены значения температурного контраста при 

вероятности равной 0,8 для различных значений температуры фона 𝑇𝑇𝐵𝐵. 

Температура объекта изменялась от 𝑇𝑇𝐵𝐵 + 0,01 ℃ до 𝑇𝑇𝐵𝐵 + 1 ℃ с шагом 0,02 ℃. 

Таким образом, ОЭС, характеристики которой приведены в таблице 2, в 

температурном диапазоне от 25 ℃ до 35 ℃ обеспечивает обнаружение объекта 

наблюдения при среднем значении температурного контраста 0,46 ℃.  
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Рисунок 10 – Вероятность обнаружения 𝑃𝑃𝑑𝑑𝑒𝑒𝑑𝑑(𝑆𝑆𝑀𝑀𝑆𝑆), 𝑃𝑃𝑑𝑑𝑒𝑒𝑑𝑑(∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅) объекта 
наблюдения на  

дальности 7000 м  
  

Таблица 
6 Значения теплового контраста при вероятности равной 0,8  

𝑇𝑇𝐵𝐵, 

℃  
25  26  27  28  29  30  31  32  33  34  35  

∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅, 

℃  
0,43  0,45  0,46  0,46  0,47  0,47  0,47  0,47  0,47  0,46  0,46  

𝑀𝑀∆𝜆𝜆𝑟𝑟𝑟𝑟𝑟𝑟, 

℃  
     0,46      
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В общем виде методика оценки влияния температурного контраста на 

вероятность обнаружения объекта по результатам лабораторных испытаний ОЭС 

состоит из следующих этапов.  

1. Подготовка исходных данных и получение изображений миры 

посредством ОЭС.  

2. Обработка изображений , определение функций 𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆(𝑇𝑇𝑜𝑜𝑜𝑜), 

𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆(𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜) [12 – 14] и аппроксимирующих функций 𝐷𝐷𝑀𝑀 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜), 

𝛥𝛥𝐷𝐷𝑀𝑀 = 𝑓𝑓(𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜), 𝑇𝑇𝑜𝑜𝑜𝑜 = 

 𝑓𝑓(𝐷𝐷𝑀𝑀), 𝛥𝛥𝑇𝑇𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝛥𝛥𝐷𝐷𝑀𝑀).   

3. Расчёт по изображениям шума 𝜎𝜎 (𝑇𝑇) и его составляющих, 

определение аппроксимирующих функций 𝜎𝜎 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜), 𝑇𝑇𝑜𝑜𝑜𝑜 = 𝑓𝑓(𝜎𝜎) для 

шума и его составляющих 𝜎𝜎𝑑𝑑𝑎𝑎 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜),  𝜎𝜎𝑑𝑑ℎ = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜),  𝜎𝜎𝑑𝑑 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜), 

𝜎𝜎𝑎𝑎ℎ = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜),  𝜎𝜎𝑎𝑎 = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜),  

𝜎𝜎ℎ = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜), 𝜎𝜎𝑑𝑑𝑎𝑎ℎ(𝑇𝑇) = 𝑓𝑓(𝑇𝑇𝑜𝑜𝑜𝑜).  

4. Синтез изображений фона и цели по формульным зависимостям, 

полученным в п.п. 2 и 3 данной методики.  

5. Расчёт по полученным синтезированным изображениям:  

- средних значений температуры объекта 𝑇𝑇𝜆𝜆, фона 𝑇𝑇𝐵𝐵, СКО температуры  

объекта 𝜎𝜎𝜆𝜆 и фона 𝜎𝜎𝐵𝐵;  

- СКО шума от объекта 𝜎𝜎𝜆𝜆(𝑇𝑇𝜆𝜆), и фона 𝜎𝜎𝐵𝐵(𝑇𝑇𝐵𝐵);  

6. Расчёт температурного контраста ∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅 и отношения сигнал - шум 
𝑆𝑆𝑀𝑀𝑆𝑆.  

7. Расчёт вероятности обнаружения объекта 𝑃𝑃𝑑𝑑𝑒𝑒𝑑𝑑(𝑆𝑆𝑀𝑀𝑆𝑆), и 

построение зависимости вероятности обнаружения от температурного контраста 

𝑃𝑃𝑑𝑑𝑒𝑒𝑑𝑑(∆𝑇𝑇𝑅𝑅𝑅𝑅𝑅𝑅).  

На рисунках 11 и 12 показаны примеры изображений возможных целей для 

авиационных ОЭС, полученных в результате расчетов температурной сигнатуры, 

в том числе для разных фонов. Создание базы данных изображений , 

синтезированных в различных условиях, может стать основой для обучения ней 

ронных сетей [15 - 18].   
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 a)  б)  

  
  

 в)  г)  
  

Рисунок 11 – Предварительные сигнатуры (а, б); температурная сигнатура, полученная в 
результате расчёта (в); синтезированное изображение ОЭС (г) БТР-82А  

  

  

  
 а) однородный фон  б) синтезированный фон  в) естественный фон и    

синтезированный объект  
  

Рисунок 12 - Примеры изображений с различными описаниями фона  
  

Заключение  

Данная методика позволяет определить необходимый минимальный порог 

температурного контраста для обнаружения сигнала по результатам 

лабораторных испытаний авиационных ОЭС. При наличии необработанных 

(«сырых») изображений , полученных при проведении натурных испытаний ОЭС, 

можно получить значения температурного контраста, при которых был 

установлен факт обнаружения (распознавания) объекта наблюдения. При 

известной температурной сигнатуре объекта и фона, полученной в полевых 

условиях с различных углов визирования (с учётом времени суток и года), можно 

получить среднее значение начального температурного контраста, которое 
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необходимо для оценки результатов натурных испытаний ОЭС. Кроме того, зная 

температурную сигнатуру объекта наблюдения, можно синтезировать набор 

изображений в различных внешних условиях для обучения ней ронных сетей с 

учётом характеристик оптико-электронных систем на разнообразных фонах.  
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