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Аннотация. В статье рассматривается актуальная задача анализа напряженно-деформиро-
ванного состояния (НДС) трехслойных сэндвич-панелей с сотовым заполнителем, содержащим 
локальные нерегулярности – вариации геометрии ячеек, под действием внешних нагрузок – дав-
ления и температурного поля. Традиционные методы расчета, основанные на предположении 
о регулярной и однородной структуре заполнителя, оказываются недостаточно точными в ре-
альных условиях эксплуатации, что может приводить к избыточным запасам прочности или 
снижению надежности конструкций. В работе предложена методика, сочетающая аналитиче-
скую строгость и вычислительную экономичность. На основе теории изгиба трехслойных пла-
стин по модели Тимошенко–Рейсснера первого порядка и с использованием двойных рядов 
Фурье построено решение краевой задачи для шарнирно опертой прямоугольной пластины. 
Введена поправка от влияния температуры через эквивалентные изгибающие моменты. Для уче-
та слабой неоднородности заполнителя применен метод малых возмущений, позволяющий по-
следовательно уточнять решение с учетом отклонений сдвиговых жесткостей от средних значе-
ний. Проведена экспериментальная валидация методики с использованием вакуумного нагруже-
ния и оптического метода корреляции цифровых изображений (DIC). Результаты показали 
высокую степень согласования между численно-аналитическими и экспериментальными дан-
ными по прогибам, что подтверждает применимость разработанного подхода для инженерного 
анализа панелей с нерегулярной сотовой структурой. 
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Abstract. This paper addresses the problem of determining the stress–strain state of three-layer sand-
wich panels with a honeycomb core containing local irregularities. The relevance of the research is 
driven by the widespread use of such structures in aerospace engineering, where an optimal balance 
between low weight and high stiffness and strength is critical, as well as the need to ensure reliability in 
the presence of defects or structural inhomogeneities. An analytical–numerical methodology is pro-
posed, based on the first-order Timoshenko–Reissner theory for sandwich plates, expansion of the 
unknown displacement and rotation fields into double Fourier series, and the method of small perturba-
tions to account for weak spatial variations in the shear stiffness of the core. The approach enables effi-
cient incorporation of both simply supported boundary conditions and external mechanical loading, as 
well as thermal gradients. The thermal effect is modeled through equivalent bending moments propor-
tional to the temperature difference between the face sheets. The experimental component includes tes-
ting of four panel specimens with varying honeycomb geometries under vacuum-induced uniform pres-
sure; deformations were measured using the non-contact Digital Image Correlation (DIC) technique. 
Comparison between numerical predictions and experimental data demonstrates excellent agreement in 
terms of deflection fields, confirming the validity and practical applicability of the developed method. 
The proposed framework offers a reliable tool for the design and analysis of lightweight composite 
structures, enabling improved accuracy in structural assessment and potential weight reduction without 
compromising safety. 
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Введение 

Современные требования к снижению массы 
конструкций при сохранении или повышении их 
прочностных и жесткостных характеристик де-
лают трехслойные панели с сотовым заполните-
лем особенно востребованными в авиастроении, 
ракетно-космической технике [1]. Однако тра-
диционные методы расчета таких панелей пред-
полагают регулярную, однородную структуру 

заполнителя, что не соответствует реальным усло-
виям эксплуатации, где часто встречаются нере-
гулярности – локальные повреждения, вариации 
геометрии ячеек, неоднородности свойств мате-
риалов [2]. Это приводит к неточностям в оценке 
напряженно-деформированного состояния (НДС), 
снижению надежности конструкций и избыточ-
ному запасу прочности. В связи с этим разра-
ботка методики расчета НДС трехслойных па-
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нелей с нерегулярной сотовой структурой яв-
ляется актуальной научной и инженерной за-
дачей [3]. Однако моделирование и расчет па-
нелей с нерегулярной структурой заполнителя 
остаются недостаточно исследованными. Суще-
ствующие подходы либо чрезмерно упрощают 
геометрию дефектов [4], либо требуют чрезвы-
чайно больших вычислительных ресурсов при 
прямом моделировании каждой ячейки [5, 6]. 
Таким образом, отсутствует эффективная инже-
нерная методика, сочетающая точность и вычис-
лительную экономичность для анализа панелей 
с локальными нерегулярностями [7]. 

Постановка схемы решения 

Для описания деформированного состояния 
трехслойной пластины в рамках модели Тимо-
шенко–Рейснера первого порядка вводятся три 
основные функции: прогиб w(x,y) и углы пово-
рота нормали к срединной плоскости θx(x,y), 
θy(x,y). Эти функции удовлетворяют следующей 
системе дифференциальных уравнений [8, 9]: 

∂

∂x
ቆD11

∂θx

∂x
 + D12

∂θy

∂y
ቇ  + 

+ 
∂

∂y
൭D0 ቆ

∂θx

∂y
 + 

∂θy

∂x
ቇ൱  – 
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 – θx൰  = 0, 
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∂
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∂θz

∂y
 + 

∂θy
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ቇ൱  – 

– ky(x) ൬
∂w

∂x
 – θy൰  = 0, 

(2) 

∂

∂x
൤kx(x) ൬

∂w

∂x
 – θz൰൨  + 

+ 
∂

∂y
൤ky(x) ൬

∂w

∂y
 – θy൰൨  + q = 0. 

(3) 

Граничные условия соответствуют шарнир-
ному опиранию по всем четырем краям прямо-
угольной пластины размерами a×b [8, 10]. На 
краях x = 0 и x = a задаются условия: 

w = 0, Mx = D11

∂θx

∂x
 + D12

∂θy

∂y
 = 0, 

а на краях y = 0 и y = b: 

w = 0, My = D22

∂θy

∂y
 + D12

∂θx

∂x
 = 0. 

Учитывая однородность задачи по координа-
те y и характер граничных условий, решение 
ищется в виде разложения в ряд Фурье по сину-
сам и косинусам: 

lw(x,y) = ෍ wn(x)× sin ቀ
nπy

b
ቁ ,

∞

n = 1

 (4) 

θx(x,y) = ෍ θx,n(x)× sin ቀ
nπy

b
ቁ

∞

n = 1

, (5) 

θy(x,y) = ෍ θy,n(x)× cos ቀ
nπy

b
ቁ .

∞

n = 1

 (6) 

Аналогичным образом представляется и внеш-
няя нагрузка: 

lq = ෍ qn× sin ቀ
nπy

b
ቁ

∞

n = 1

, (7) 

где коэффициенты Фурье определяются как 

qn = ൝

4q

n×π
,  n – нечетное,

 0,   n – четное.
 

Такой подход позволяет свести исходную 
двумерную краевую задачу к системе обыкно-
венных дифференциальных уравнений по пере-
менной x для каждого гармонического номера n, 
что существенно упрощает анализ и численную 
реализацию решения. После подстановки раз-
ложений в ряд Фурье для прогиба, углов пово-
рота и нагрузки в исходную систему уравне-
ний (1)–(3) и последующего интегрирования по 
координате y с использованием ортогональности 
тригонометрических функций, задача распада-
ется по гармоникам. Для каждой фиксированной 
гармоники n получается система трех обыкно-
венных дифференциальных уравнений отно-
сительно неизвестных функций w(x,y), θx(x,y), 
θy(x,y): 

D11×θx,n
'' (x) – D0×(

πn

b
)
2

×θx,n(x) – 

– D12(
πn

b
)2×θy,n(x) = 

= ky(x)× ቀwn
' (x) – θx,n(x)ቁ , 

(8) 
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D0× ቀ
πn

b
ቁ ×θy,n

' (x) – D12×θx,n
' (x) – 

– D22(
πn

b
)2×θy,n(x) = 

= ky(x)× ቆ
πn

b
×wn(x) – θy,n(x)ቇ , 

(9) 

∂

∂x
×[kx(x)×൫wn

' ൫x) – θx,n(x)൯൧ – 

– ky(x)×(
πn

b
)
2

×wn(x) + 

+ ky(x)× ቀ
π×n

b
ቁ ×θy,n(x) + qn = 0. 

(10) 

Граничные условия на краях x = 0 и x = a, со-
ответствующие шарнирному опиранию, прини-
мают следующий вид для каждой гармоники: 

wn(0) = wn(a) = 0, (11) 

D11×θx,n
' (0) – D12×(

πn

b
)
2

×θy,n(0) = 0, (12) 

D11×θx,n
' (a) – D12×(

πn

b
)
2

×θy,n(a) = 0. (13) 

Таким образом, исходная двумерная краевая 
задача с частными производными сводится к по-
следовательному решению независимых одно-
мерных задач для каждой моды n, что позволяет 
эффективно учитывать как неоднородность сдви-
говых свойств заполнителя через функции kx(x)  
и ky(x), так и специфику граничных условий 
и внешнего нагружения [5]. 

Для анализа поведения трехслойной пластины 
со слабо неоднородным заполнителем применя-
ется метод малых возмущений. Предполагается, 
что сдвиговые жесткости слабо отклоняются от 
своих средних (постоянных) значений: 

kx(x) = kx
0×ൣ1 + ε×φx

(x)൧, (14) 

ky(x) = ky
0× ቂ1 + ε×φy

(x)ቃ , (15) 

где: kx
0, ky

0 – постоянные средние значения сдви-
говых жесткостей, ε ≪ 1 – малый безразмерный 
параметр, а φx(x), φy(x) – заданные гладкие функ-
ции (например, sin(πx/a)), описывающие форму 
неоднородности.  

Решение ищется в виде разложения по степе-
ням параметра ε: 

wn(x) = wn
(0)(x) + ε×wn

(1)(x) + 
+ ε2×wn

(2)(x)… 
(16) 

θx,n(x) = θx
(0)(x) + ε×θx

(1)(x) + 

+ ε2×θx
(2)(x)… 

(17) 

θy,n(x) = θy
(0)(x) + ε×θy

(1)(x) + 

+ ε2×θy
(2)(x)… 

(18) 

В нулевом приближении (ε = 0) система урав-
нений (16)–(18) становится линейной с постоян-
ными коэффициентами и допускает аналитиче-
ское решение. Для одной гармоники по обеим 
координатам прогиб записывается в виде: 

wn
(0)(x) = Wn× cos(αmx) , (19) 

где введены обозначения 

αm = 
mπ

a
, (20) 

βn = 
nπ

b
, (21) 

а амплитуда Wn определяется из алгебраиче-
ского уравнения: 

Wn = 
qn

D11(αm
2  + βn

2)2 + 
kx

0×ky
0(αm

2  + βn
2)

kx
0×βn

2 + ky
0×αm

2

. 
(22) 

Соответствующие углы поворота в нулевом 
приближении имеют вид: 

θx,n
(0)(x) = αmWn× cos(αmx) , (23) 

θy,n
0 (a) = βnWn× cos(αmx) . (24) 

Первое приближение: 
В первом порядке по ε подстановка разложе-

ний в систему (16)–(18) и сборка коэффициентов 
при ε1 приводят к линейной неоднородной си-

стеме уравнений для поправок wn
(1), θx,n

(1), θy,n
(1) 

kx
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(1), 

(25) 
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(26) 
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–D12αm
2 Xmn

(1) – ൫D22βn
2 + D0αm

2 ൯Ymn
(1) – 

– ky
0൫βnWmn

(1) – Ymn
(1)൯ = 

= –൫βnWmn
(0) – Ymn

(0)൯×ky
(1), 

(27) 

где введены коэффициенты возмущения: 

Kmr
(1) = 

2

a
න kx

0ϕx
(x) cos(αmx) cos(αrx) dx

a

0
, (28) 

ky
(1) = 

1

a
න ky

0ϕy
(x)dx = 0, 

a

0
 (29) 

если ϕy
(x)  не имеет нулевого среднего, то 

ky
(1)

 ≠ 0, но для простоты будем считать ky
(1)

 = 0. 
В рамках метода малых возмущений предпо-

лагается, что отклонения сдвиговых жесткостей 
от некоторых средних значений являются ма-
лыми. Наиболее естественный и физически 
обоснованный способ определения этих средних 
значений – интегральное усреднение по длине 
пластины в направлении неоднородности (коор-
дината x): 

kx
0 = 

1

a
න kx(x)dx = 

hc

a

a

0
න Gxz(x)dx

a

0
, (30) 

ky
0 = 

1

a
න ky(x)dx = 

hc

a

a

0
න Gyz(x)dx

a

0
. (31) 

Таким образом, метод малых возмущений 
позволяет последовательно учитывать слабую 
неоднородность заполнителя, сохраняя аналити-
ческую прозрачность решения. Итоговое при-
ближенное решение задачи изгиба трехслойной 
пластины с учетом слабой неоднородности за-
полнителя записывается в виде: 

lw(x,y) ≈ 

≈ ෍ൣwn
(0)(x) + ε×wn

(1)(x)൧

∞

n = 1

× sin ቀ
nπy

b
ቁ , 

(32) 

θx(x,y) ≈ 

≈ ෍ൣθx,n
(0)(x) + ε×θx,n

(1)(x)൧

∞

n = 1

× sin ቀ
nπy

b
ቁ , 

(33) 

θy(x,y) ≈ 

≈ ෍ൣθy,n
(0)(x) + ε×θy,n

(1)(x)൧

∞

n = 1

× cos ቀ
nπy

b
ቁ . 

(34) 

Для точного учета всех физических особен-
ностей задачи – включая шарнирное опирание 

по всем краям, поперечный сдвиг в заполнителе 
и возможную неоднородность его свойств – ре-
шение представляется в виде двойных рядов 
Фурье по обеим пространственным координа-
там x и y. Такой подход естественно согласу-
ется с граничными условиями и позволяет эф-
фективно использовать ортогональность триго-
нометрических функций. 

Для шарнирно опертой прямоугольной пла-
стины размерами a×b выбираются базисные 
функции, автоматически удовлетворяющие усло-
виям w = 0 и M = 0 на всех краях. Прогиб и углы 
поворота записываются следующим образом: 

lw(x,y) = ෍ ෍ Wmn×sin(
mπx

a
)

∞

n = 1

∞

m = 1

× sin ቀ
nπy

b
ቁ , (35) 

θx(x,y) = ෍ ෍ Xmn×cos(
mπx

a
)

∞

n = 1

∞

m = 1

× sin ቀ
nπy

b
ቁ , (36) 

θy(x,y) = ෍ ෍ Ymn×sin(
mπx

a
)

∞

n = 1

∞

m = 1

× cos ቀ
nπy

b
ቁ . (37) 

Эти разложения автоматически удовлетво-
ряют всем граничным условиям: 

– на краях x = 0,a и y = 0,b прогиб w = 0 бла-
годаря синусам; 

– изгибающий момент Mx = D11
∂θx

∂x
 + D12

∂θy

∂y
 

обращается в ноль при x = 0; 
–  аналогично, Mx = 0, при y = 0,b. 
Коэффициенты Xmn и Ymn представляют собой 

амплитуды углов поворота θx и θy в двойном 
ряде Фурье и не являются независимыми – они 
связаны с коэффициентом прогиба Wmn через 
физические соотношения, вытекающие из урав-
нений равновесия и кинематики трехслойной 
пластины. Эти связи зависят от сдвиговых жест-
костей заполнителя и изгибных жесткостей об-
шивок. В теории трехслойных панелей кинема-
тическая связь между прогибом и углами пово-
рота выражается через поперечные сдвиговые 
деформации: 

∂w

∂x
 – θx = 

Qx

kx
, (38) 

∂w

∂y
 – θy = 

Qy

ky
, (39) 

где Qx, Qy  – поперечные силы, а kx, ky – сдвиго-

вые жесткости заполнителя. Однако в рамках мо-
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дельного подхода, особенно при использовании 
разложения в двойные ряды Фурье, удобнее ис-
пользовать статические уравнения равновесия мо-
ментов, которые при постоянных изгибных жест-
костях Dij и постоянных kx, ky приводят к алгеб-
раической системе, связывающей Wmn, Xmn, и Ymn. 

Из уравнений равновесия моментов для каж-
дой моды (m,n) получаем линейную систему для 
однородного заполнителя (kx = const, ky = const): 

[kx – ൫D11αm
2  + D0βn

2൧Xmn – D12βn
2Ymn = 

= kxαmWmn, 
(40) 

–D12αm
2 Xmn + [ky – (D22βn

2 + D0αm
2 )]Ymn = 

= kyβnWmn. 
(41) 

Решая эту систему, находим: 

Xmn = 
kxαmWmn×ൣky – ൫D22βn

2 + D0αm
2 ൯൧ +

∆mn
 

+ kyβnWmn×D12βn
2

, 

(42) 

Ymn = 
kyβmWmn×ൣkx – ൫D11αm

2  + D0βn
2൯൧ +

∆mn
 

+ kxαmWmn×D12αm
2

, 

(43) 

где определитель системы: 

∆mn = ൣkx – ൫D11αm
2  + D0βn

2൯൧× 

×ൣky – ൫D22βn
2 + D0αm

2 ൯൧ – D12
2 αm

2 βn
2. 

(44) 

Если обшивки изотропны, то: 

D11 = D22 = D, 

D12 = vD, 

D0 = 
1 – v

2
D, 

где  

D = 
E×hf

1 – v2 (
hc + hf

2
)2. (45) 

В этом случае выражения для Xmn и Ymn упро-
щаются, но сохраняют ту же структуру: 

Xmn = αmWmn× 

×
kx(ky – D(βn

2 + 
D0
D ×αm

2 ) + v×D×βn
2×ky

∆mn
, 

(46) 

Ymn = βmWmn× 

×
ky(ky – D ቀαn

2 + 
D0
D ×βn

2ቁ  + v×D×αm
2 ×kx

∆mn
. 

(47) 

Рассмотрим вариант решения для случая 
неоднородного заполнителя. Если kx = kx

(x),  
ky = ky(x),  то локальная алгебраическая связь 
между Wmn, Xmn, и Ymn нарушается. В этом случае: 

1) Решается полная система дифференциаль-
ных уравнений; 

2) Коэффициенты Wmn, Xmn, и Ymn находятся 
совместно из общей линейной системы; 

3) В рамках метода малых возмущений ис-
пользуется разложение, где нулевое приближе-
ние Xmn

(0), Ymn
(0) – вычисляется по формулам для 

однородного случая с kx
0, ky

0: 

Xmn = Xmn
(0)  + εXmn

(1) , (48) 

Ymn = Ymn
(0)  + εYmn

(1) . (49) 

Рассмотрим построение первого приближе-
ния в методе малых возмущений для трехслой-
ной пластины со слабо неоднородным заполни-
телем. Все искомые величины разлагаются по 
степеням ε: 

Wmn = Wmn
(0)  + εWmn

(1)  + ε2Wmn
(2)  +… (50) 

Xmn = Xmn
(0)  + εXmn

(1)  + ε2Xmn
(2)  +… (51) 

Ymn = Ymn
(0)  + εYmn

(1)  + ε2Ymn
(2)  + … (52) 

При переходе к первому порядку O(ε) систе-
ма уравнений становится линейной неоднород-
ной, причем правая часть полностью определя-
ется уже известными величинами нулевого при-
ближения. В частности, в уравнении для W

mn

(1)  
возникает неоднородность, которую удобно обо-
значить как: 

Fmn= –αm ෍൫αrWrn
(0) – Xrn

(0)൯×Kmr
(1).

∞

r = 1

 (53) 

Система уравнений (25–27) сохраняет ту же 
линейную структуру, что и в нулевом прибли-
жении, но теперь имеет ненулевую правую часть 
только в первом уравнении. Это позволяет запи-
сать решение в операторной форме: 

቎

Wmn
(1)

Xmn
(1)

Ymn
(1)

቏  = L–1 ൥
Fmn

0
0

൩ , (54) 

где L – линейный оператор, соответствующий 
однородной (нулевой) задаче. Явно выразить 
решение можно через так называемое ядро от-
клика: 



ТЕПЛОВЫЕ ПРОЦЕССЫ В ТЕХНИКЕ. 2025. Т. 17. № 10 

THERMAL PROCESSES IN ENGINEERING   449 

Wmn
(1)  = ෍ Гmr

(n)×(αrWrn
(0) – Xrn

(0)

∞

r = 1

), (55) 

где функции Гmr
(n) зависят от жесткостей Dij, kx

0, 
ky

0, а также от коэффициентов Kmr
(1) . На практике 

бесконечные суммы обрываются: r = 1,…M, 
n = 1,…N, что делает задачу вычислительно реа-
лизуемой. Таким образом, итоговое приближен-
ное решение с точностью O(ε2) имеет вид: 

lw(x,y) ≈ ෍ ෍ൣWmn
(0) + εWmn

(1)൧×

N

n = 1

M

m = 1

 

× sin(αmx) sin൫βny൯ , 

(56) 

θx(x,y) ≈ 

≈ ෍ ෍ [Xmn
(0) + εXmn

(1)]cos(αmx)sin(βny),

N

n = 1

M

m = 1

 
(57) 

θy(x,y) ≈ ෍ ෍ [Ymn
(0) + εYmn

(1)]×

N

n = 1

M

m = 1

 

× sin(αmx) cos൫βny൯ . 

(58) 

Таким образом, алгоритм численной реали-
зации рассматриваемой методики заключается 
в последовательном выполнении следующих 
действий: 

1) Задать функции неоднородности φx(x), φy(x), 
малый параметр ε, и количество мод M, N. 

2) Вычислить коэффициенты нагрузки qmn 
(ненулевые только при нечетныхm, n). 

3) Найти Wmn
(0), Xmn

(0), Ymn
(0) по замкнутым 

формулам для однородной пластины. 
4) Численно вычислить матрицу возмуще-

ния Kmr
(1) и скаляр ky

(1)  через квадратуры. 
5) Сформировать правую часть Fmn для каж-

дого n. 
6) Решить линейную систему размером 3M для 

каждой фиксированной гармоники n (можно ис-
пользовать ту же матрицу, что и в нулевом при-
ближении, так как оператор L не меняется). 

7) Собрать полное решение, включая поправ-
ку первого порядка. 

Влияние неравномерного 
температурного поля 

В трехслойной теории температурные дефор-
мации проявляются через эквивалентные мо-
менты. Для симметричной пластины при одина-
ковом нагреве обшивок возникает только изгиб, 

если температура различна в верхней и нижней 
обшивках. Задаваясь температурой верхней об-
шивки: T(+)(x) , температура нижней обшивки: 
T(–)(x), получаем уравнение для температурного 
изгибающего момента: 

Mx
T(x) = D11αf

ΔT(x)

hc
, 

 My
T(x) = D12αf

ΔT(x)

hc
. 

Mxy
T (x) = 0(при однородном нагреве по y). 

Где ΔT(x) – температурный градиент: 

ΔT(x) = T(+)(x) – T(–)(x). 

Температурные моменты вводятся как началь-
ные моменты в уравнения равновесия. Тогда си-
стема (1)–(3) принимает вид: 

∂

∂x
൭D11

∂θx

∂x
 + D12

∂θy

∂y
 – Mx

T(x)൱  + 

+ 
∂

∂y
൭D66 ቆ

∂θx

∂y
 + 

∂θy

∂x
ቇ൱  – 

– kx(x) ൬
∂w

∂x
 – θx൰  = 0, 

∂

∂y
൭D22

∂θy

∂y
 + D12

∂θx

∂x
 – My

T(x)൱  + 

+ 
∂

∂x
൭D66 ቆ

∂θx

∂y
 + 

∂θy

∂x
ቇ൱ – ky(x) ൬

∂w

∂y
 – θy൰  = 0, 

∂

∂x
൤kx(x) ൬

∂w

∂x
 – θx൰൨  + 

+ 
∂

∂y
൤ky(x) ൬

∂w

∂y
 – θy൰൨  + q = 0. 

Используя базисные функции (57), (58), тем-
пературный градиент ΔT(x)также разлагается 
в ряд по косинусам: 

ΔT(x) = ෍ ΔTm

∞

m = 1

cos(αmx) , 

ΔTm = 
2

a
න ΔT(

a

0
x) cos(αmx) dx. 

Тогда: 

Mx
T(x) = ෍ Mx,m

T

∞

m = 1

cos(αmx) , 

Mx,m
T  = D11αf

ΔTm

hc
. 
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Применяя метод решения, описанный выше, 
получаем уравнение моментов по x с темпера-
турным членом: 

–൫D11αm
2  + D66βn

2൯Xmn – D12βn
2Ymn – 

– ෍ (Wrn

∞

r = 1

– Xrn)Knr
(x) = –Mx,m

T ×αm×δn1. 

Если температура одинакова по y, то только 
гармоники с n = 1,3,5,…  возбуждаются. Для 
простоты часто предполагают, что температура 
постоянна по y , и тогда влияние температуры 
проявляется только в гармониках с нечетным n. 
Но в наиболее общем случае, если ΔT = ΔT(x) 
(не зависит от y), то после интегрирования по y: 

න sin(βny)
b

0
dy = ൝

2b

nπ
,  n – нечетное,

0,  n – четное.
 

Поэтому температурный вклад в уравнение (2): 

Правая часть = 

= –Mx,m
T ×αm×

2

nπ
 (для нечетных n).  

Аналогично для уравнения (3): 

Правая часть = –My,m
T ×αm×

2

nπ
, 

  

My,m
T  = D12αf

ΔTm

hc
. 

Таким образом, итоговая система (1)–(3) пре-
образуется в систему, учитывающую влияние 
температуры: 

Для нечетных n: 

෍ (Wrn
r

αr – Xrn)Kmr
(x)αm + 

+ ky
avg൫Wmnβn – Ymn൯βn = qmn, 

– ൫D11αm
2  + D66βn

2൯Xmn – D12βn
2Ymn – 

– ෍
r

(Wrnαr – Xrn)Kmr
(x) = –αmMx,m

T ×
2

nπ
, 

– D12αm
2 Xmn – ൫D22βn

2 + D66αm
2 ൯Ymn – 

– ky
avg(Wmnβn – Ymn) = –αmMy,m

T ×
2

nπ
. 

Для четных 𝑛 правые части второго и третье-
го уравнений системы обращаются в нуль. Если 
при этом неоднородность мала, то: 

kx(x) = kx
0ൣ1 + εϕx

(x)൧, 

ΔT(x) = ΔT0[1 + εψ(x)], 

в нулевом приближении (ε = 0): 

Wmn
(0) = 

qmn + Qmn
T

Λmn
, 

где Qmn
T  – эквивалентная температурная нагруз-

ка, связанная с Mx,m
T , My,m

T . В первом приближе-
нии правая часть Fmn включает: 

 возмущение от ϕx(x), 

 возмущение отlψ(x) (через Mx,m
T(1)). 

Таким образом, температурные деформации 
в трехслойной пластине с неоднородным запол-
нителем учитываются через температурные из-
гибающие моменты M 

T(x) , My
T(x) , пропорцио-

нальные градиенту температуры между обшив-
ками и зависящие от x , модификацию правых 
частей уравнений равновесия моментов и воз-
буждение только нечетных гармоник по y. 

Экспериментальное определение деформаций 
трехслойной панели 

Эксперимент с вакуумным нагружением трех-
слойной панели выбран как управляемый и по-
вторяемый способ создания равномерного квази-
статического перепада давления при минималь-
ном влиянии контактных сил [11–13]. Опирание 
панели по бортикам обеспечивает близкую к шар-
нирной схему закрепления с понятными гранич-
ными условиями, а центральный штуцер с лини-
ей откачки формирует однородное поле нагрузки 
по поверхности панели до уровня около −0,5 атм. 
Такая постановка исключает необходимость тя-
желых штамповых приспособлений, снижает 
риски внецентренного нагружения и позволяет 
точечно варьировать уровень нагрузки, остава-
ясь в упругой области материала. 

Оптическая система с верхними камерами 
и маркерным полем на поверхности панели вы-
брана как бесконтактный метод с высокой про-
странственной разрешающей способностью. Она 
позволяет восстановить полное поле перемеще-
ний и получить производные поля деформаций 
без внесения жесткостных и масс-инерционных 
возмущений, характерных для контактных дат-
чиков. Корреляция цифровых изображений (Di-
gital Image Correlation – DIC) – это бесконтакт-
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ный оптический метод измерения деформации 
объекта (рис. 1) [14]. Суть методики заключает-
ся в отслеживании изменений состояния (изме-
нении уровня насыщенности серого цвета) не-
большого участка (subset) черно-белой текстуры 
в процессе нагружения. Анализ такой элемен-
тарной ячейки позволяет вычислить простран-
ственное перемещение и деформацию на задан-
ном участке. Для получения полной картины, 
поверхность образца, программным образом, 
делится на элементарные ячейки, анализ кото-
рых и позволяет вычислить поле распределения 
деформации по всей поверхности. 

Рис. 1. Бесконтактный оптический метод измерения деформа-
ции объекта 

Совмещение таких данных с численным ре-
шением дает возможность не только сверить 
интегральные метрики (максимальный прогиб, 
прогиб в центре), но и провести полевую вали-
дацию: сопоставить картины изолиний проги-
бов, кривизну, локальные гребни деформаций 
возле дефектов и неоднородностей сот [2, 15]. 
Выбор вакуумного нагружения способствует 
высокой метрологической чистоте: давление 
задается и контролируется манометром, утечки 
идентифицируются. Жесткость опоры по борти-
кам и геометрическая начальная кривизна пане-
ли учитываются через нулевой оптический сни-
мок состояния без нагрузки, что позволяет отде-
лить собственные дефекты формы от вызванных 
нагрузкой деформаций. Пошаговое нагруже-
ние/разгружение с регистрацией поля перемеще-

ний позволяет проверить обратимость деформа-
ций и убедиться в работе в упругом режиме, что 
важно для корректной калибровки линейно-упру-
гих моделей. На рисунке 2 показана схема экс-
периментальной установки и вакуумный стол – 
оснастка. 

 

а 

б 

Рис. 2. Оснастка для расположения панели (а) и схема экспе-
риментальной установки шарнирно опертой панели (б) 

Для проведения экспериментальных исследо-
ваний изготовлены 4 панели, с размерами 300 мм 
на 150 мм (рис. 3), с разными коэффициентами 
роста (1; 1,5; 2,0; 2,5) [13]. 

 

Рис. 3. Образцы для испытаний с размерами 300 мм на 150 мм 

Результаты и обсуждение 

После установки панели на рабочий стол-
оснастку и герметизацию контура, проведены 
испытания сотовых панелей с различными ти-
пами заполнителей при создании разрежения 



ТЕПЛОВЫЕ ПРОЦЕССЫ В ТЕХНИКЕ. 2025. Т. 17. № 10 

452    THERMAL PROCESSES IN ENGINEERING 

под пластиной до q = –0,7 бар. Используя метод 
корреляции цифровых изображений (DIC) по-
лучено поле прогибов трехслойной сэндвич-
пластины с сотовым заполнителем (рис. 4), на 
основании которого определены поля переме-
щений [11, 16]. 

   

а б в 

Рис. 4. Бесконтактный оптический метод измерения деформа-
ции панели при квазишарнирном опирании с применением 
DIC метода (а) и распределение поля перемещений в трех-
слойной пластине с сотовой структурой полученное DIC мето-
дом (б) и численным решением (в) 

По результатам проведенных эксперимен-
тальных wЭКС

  и численных исследований wАН
  

полученны данные по прогибам панелей. Эти 
данные, полученные по каждому из испытуемых 
образов, занесены в таблицу 1. 

Таблица 1. Результаты экспериментальных данных с ре-
зультатами, полученными в Программе и аналитическим 
решением 

Тип wЭКС
 , мм

 
wАН

 , мм 
Регулярная структура 
(k = 1,0) 

1,45 1,43 

k = 1,5 1,50 1,49 
k = 2,0 1,62 1,60 
k = 2,5 1,71 1,69 

Сравнение результатов, полученных с помо-
щью аналитико-численной модели, основанной 
на основе метода малых возмущений и двойных 
рядов Фурье, с экспериментальными данными 
показало высокую степень совпадения по клю-
чевым компонентам напряженно-деформирован-
ного состояния – прогибам. Это подтверждает 
корректность принятых гипотез, включая ис-
пользование модели Тимошенко–Рейсснера пер-
вого порядка и метода усреднения для опреде-
ления эффективных сдвиговых жесткостей при 
слабой неоднородности структуры [5, 7, 9].  

Заключение 

Разработанная в работе методика расчета 
напряженно-деформированного состояния трех-
слойных панелей с нерегулярным сотовым за-
полнителем позволяет эффективно и с высокой 
точностью учитывать локальные неоднородно-
сти структуры, не прибегая к ресурсоемкому 
прямому моделированию каждой ячейки. Ис-
пользование разложения в двойные ряды Фурье 
в сочетании с методом малых возмущений обес-
печивает аналитическую прозрачность и вычис-
лительную экономичность, что особенно важно 
для инженерных приложений. Учет температур-
ных воздействий через эквивалентные моменты 
расширяет применимость метода к реальным 
условиям эксплуатации. Экспериментальная ва-
лидация, проведенная с применением вакуумно-
го нагружения и метода DIC, подтвердила высо-
кую достоверность полученных решений. Таким 
образом, предложенный подход представляет 
собой перспективный инструмент для проекти-
рования и анализа легких композитных кон-
струкций, позволяющий повысить их надеж-
ность и снизить массу за счет более точного уче-
та реального поведения материалов и структур. 
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