Труды МАИ. 2024. № 134 Trudy MAI, 2024, no. 134

Научная статья УДК 681.51 URL: https://trudymai.ru/published.php?ID=178476

ПАРАМЕТРИЧЕСКИЙ СИНТЕЗ НЕЛИНЕЙНОЙ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

Виктория Игоревна Гончарова

Санкт-Петербургский государственный университет аэрокосмического приборостроения, Санкт-Петербург, Россия goncharova_31kaf@bk.ru

Аннотация. Разработка системы автоматического управления любым достаточно сложным техническим объектом представляет собой длительный многоплановый процесс, основных построение адекватной одним ИЗ этапов является математической модели объекта управления. Выбор математической модели объекта так или иначе связан с идеализацией его математического описания, которая предполагает выделение главных закономерностей в поведении объекта и пренебрежение второстепенными связями и эффектами, с учетом ожидаемых условий его физики функционирования в реальной системе. Если в системе регулирования нагревом стержня в печи, реализовать переход от, присущим системам с распределенными параметрами, дифференциальных уравнений в

частных производных, к обыкновенными дифференциальным уравнениям, то наиболее целесообразно рассматривать систему как линейную систему с запаздывающим аргументом.

Следует отметить, что такая процедура является весьма полезной, поскольку алгоритмы для эффективного решения обыкновенных дифференциальных уравнений разработаны значительно лучше, по сравнению с алгоритмами прямого решения дифференциальных уравнений в частных производных.

В работе представлена возможная реализация перехода от дифференциальных уравнений в частных производных к обыкновенным дифференциальным уравнениям для решения задачи параметрического синтеза систем автоматического управления с распределенными параметрами. В качестве математического аппарата используется метод разделения переменных (Фурье), а также получение матриц пространства состояний с целью получения передаточной функции системы автоматического управления с распределенными параметрами.

Ключевые автоматического управления (САУ), САУ слова: система С распределенными параметрами, переменных (Фурье), метод разделения дифференциальные уравнения в частных производных, обобщенный метод Галеркина

Финансирование: работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации, соглашение № FSRF-2023-0003, "Фундаментальные основы построения помехозащищенных систем

космической и спутниковой связи, относительной навигации, технического зрения и аэрокосмического мониторинга"

Для цитирования: Гончарова В.И. Параметрический синтез нелинейной системы автоматического управления с распределенными параметрами // Труды МАИ. 2024. № 134. URL: <u>https://trudymai.ru/published.php?ID=178476</u>

Original article

PARAMETRIC SYNTHESIS OF A NONLINEAR AUTOMATIC CONTROL SYSTEM WITH DISTRIBUTED PARAMETERS

Victoria I. Goncharova

Saint-Petersburg State University of Aerospace Instrumentation, Saint-Petersburg, Russia goncharova_31kaf@bk.ru

Abstract. The development of an automatic control system for any fairly complex technical object is a long, multifaceted process; one of the main stages is the construction of an adequate mathematical model of the control object. The choice of a mathematical model of an object is in one way or another connected with the idealization of its mathematical description, which involves highlighting the main patterns in the behavior of the object and neglecting secondary connections and effects, taking into account the expected conditions of its physics of functioning in a real system. In this work, we will consider an example related to temperature control in a furnace. Since in such a system it is necessary to take into account several variables, when constructing a mathematical

model, the automatic control system is distributed. If, in a system for regulating the heating of a rod in a furnace, we implement the transition from partial differential equations inherent in systems with distributed parameters to ordinary differential equations, then it is most advisable to consider the system as a linear system with a retarded argument.

It should be noted that such a procedure is very useful, since algorithms for efficiently solving ordinary differential equations are much better developed compared to algorithms for directly solving partial differential equations.

The paper presents a possible implementation of the transition from partial differential equations to ordinary differential equations for solving the problem of parametric synthesis using the generalized Galerkin method for automatic control systems with distributed parameters. As a mathematical apparatus, the method of separation of variables (Fourier) is used, as well as obtaining state space matrices in order to obtain the transfer function of an automatic control system with distributed parameters.

Keywords: automatic control system (ACS), ACS with distributed parameters, method of separation of variables (Fourier), partial differential equations, generalized Galerkin method

Funding:the paper was prepared with the financial support of the Ministry of Science andHigherEducationoftheRussianFederation,grantagreementNo.FSRF-2023-0003, "Fundamental principles of building of noise-immunesystems for space and satellite communications, relative navigation, technical vision andaerospace monitoring".

For citation: Goncharova V.I. Parametric synthesis of a nonlinear automatic control system with distributed parameters. *Trudy MAI*, 2024, no. 134. URL: <u>https://trudymai.ru/eng/published.php?ID=178476</u>

Математический аппарат

В качестве математического аппарата для решения поставленной задачи целесообразно использовать обобщенный метод Галеркина [1-5]. Данный метод является эффективным методом синтеза одномерных и многосвязных линейных и нелинейных САУ различных классов: непрерывных, импульсных (с различными видами модуляции сигнала), дискретных (с несколькими импульсными элементами, работающими как синхронно, так и не синхронно, с одной и несколькими частотами прерывания), дискретно-непрерывных, в том числе и со звеньями чистого запаздывания. Данный подход позволяет с единых математических И методологических позиций решать задачу параметрического синтеза САУ указанных классов при минимальных вычислительных затратах, что достигается путем алгебраизации решения задачи и сведения ее к задаче нелинейного программирования с целевой функцией, построенной на основе уравнений Галеркина.

Поскольку элементы систем управления не всегда имеют гладкие статические характеристики, на практике необходимо применять различные методы аппроксимации. В работах [6-12] рассмотрены различные методы аппроксимации статических характеристик элементов систем, даны рекомендации выбора

оптимального метода аппроксимации для адекватного воспроизведения процесса функционирования исследуемой САУ.

Таким образом, целесообразно распространить обобщенный метод Галеркина к решению задачи синтеза нового класса систем управления – САУ с распределенными параметрами, как на линейные, так и на нелинейные, в том числе с различными видами модуляции [13-16].

Рассмотрим синтез управления объектом с распределенными параметрами на примере процесса деформации пластины. В отличии от систем с сосредоточенными параметрами, где применяют обыкновенные дифференциальные уравнения, в системах с распределенными задача усложняется учетом нескольких переменных в пространстве состояний. Что влечет за собой ряд сложностей и как следствие недостаточную изученность, а также отсутствие эффективного математического аппарата для своевременного принятия решения.

Объектом с распределенными параметрами будем считать пластину с протекающим вдоль оси *Ox* сверхзвуковым потоком газа.

С целью упрощения и возможностью распространения обобщенного метода Галеркина на системы с распределенными параметрами, рассмотрим классический пример перехода от дифференциальных уравнений в частных производных к обыкновенным дифференциальным уравнениям, и, распространение известного метода параметрического синтеза Галеркина [1-5] на полученное уравнение перехода.

Поскольку в данном примере рассмотрена непрерывная система, необходимо и достаточно использовать пример из [17-18], где рассмотрено управление процессом деформации пластины. Используя данные из источника [19], применим переход от дифференциальных уравнений в частных производных к обыкновенным дифференциальным уравнениям [20] и распространим полученное уравнение на обобщенный метод Галеркина.

Необходимо найти функцию, удовлетворяющую в двухмерной области [21-24]

$$D = \{(x, y) \in R^2: 0 < x < \pi, 0 < y < \pi\}$$

следующему уравнению

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -(\pi - x)xy,$$

ИЛИ

$$K_1(x,y)\frac{\partial^2 u}{\partial x^2} + K_2(x,y)\frac{\partial^2 u}{\partial y^2} + K_3(x,y)\frac{\partial u}{\partial x} + K_4(x,y)\frac{\partial u}{\partial y} + K_5(x,y) \cdot u = f(x,y).$$

с граничными условиями

$$u(0, y) = u(\pi, y) = u(x, 0) = u(x, \pi) = 10$$

или

$$U(x, y) = U(a, y) = U(x, 0) = U(x, b) = d.$$

При $a=b=\pi$, c=-1, d=10 и n=9, зададим непрерывные функции уравнения $K_1(x,y)$, $(K_1>0)$, $K_2(x,y)$, $(K_2>0)$, $K_3(x,y)$, $K_4(x,y)$, $K_5(x,y)$ и численные параметры a,b,c,d.

$$K_1(x,y)=1, K_2(x,y)=1, K_3(x,y)=0, K_4(x,y)=0, K_5(x,y)=0,$$

 $a=\pi, b=\pi, c=-1, d=10.$
 $f(x,y)=c \cdot (a-x) \cdot x \cdot y$

Получим точное решение *U*(*x*,*y*), с помощью разложения функции в двойной ряд Фурье, используя метод разделения переменных [21]

$$U(x, y) = Q(x, y) + f(y) + \psi(y)$$
$$\frac{\partial^2 U}{\partial x^2} = -\frac{\partial^2 Q}{\partial x^2} - (\pi - x)xy$$

$$\frac{\partial U}{\partial y} = K^2 \frac{\partial Q}{\partial y} + f'(y) + \psi'(y)$$

то есть изменим уравнение, сделаем его неоднородным

$$\frac{\partial U}{\partial y} = K^2 \frac{\partial Q}{\partial x^2} - f'(y) - \psi'(y)$$

при чем

$$Q(a, y) = 0, f(b, y) = 0$$

тогда $U(0, y) = 0 + 0 + \psi(y) = \alpha(y)$

$$U(b, y) = 0 + f(y)b + \psi(y) = \beta(y)$$

$$f(y) = \frac{\beta(y) - \alpha(y)}{b}$$
(1)

Таким образом однородное уравнение представляем в виде неоднородного, при этом у *Q* изменяем граничные условия

$$U(x,0) = f_0(x) = Q(x,0) + f(0)x + \psi(0) = Q(x,0) + \frac{\beta(0) - \alpha(0)}{b}x + \alpha(0)$$

то есть начальные условия для функции Q

$$Q(x,0) = f_0(x) + \frac{\beta(0) - \alpha(0)}{b} x - \alpha(0)$$
$$Q(a, y) = 0, \ Q(b, y) = 0$$

далее

$$Q(x, y) = U(x, y) + V(x, y)$$

разделим правую часть уравнения и граничные условия по разным функциям, то есть оба уравнения будут являться решением одного и того же уравнения, получим однородное уравнение

$$\frac{\partial U}{\partial y} = K^2 \frac{\partial^2 U}{\partial x^2}$$

и неоднородное уравнение

$$\frac{\partial V}{\partial y} = K^2 \frac{\partial^2 V}{\partial x^2} - f'(y)x - \psi'(y)$$

После подстановки (1) получим

$$\frac{\partial V}{\partial y} = K^2 \frac{\partial^2 V}{\partial x^2} - \frac{\beta'(y) - \alpha'(y)}{b} x - \alpha'(y)$$

при этом

$$U(x,0) = f_0(x) - \frac{\beta(0) - \alpha(0)}{b}x + \alpha(0)$$

a

$$V(x,0) = 0.$$

В результате получим

$$\frac{\partial Q}{\partial y} = \frac{\partial (U+V)}{\partial y} = K^2 \frac{\partial^2 U}{\partial x^2} + K^2 \frac{\partial^2 V}{\partial x^2} - \frac{\beta'(y) - \alpha'(y)}{b} x - \alpha'(y) =$$
$$= K^2 \frac{\partial^2 Q}{\partial x^2} + \frac{\beta'(y) - \alpha'(y)}{b} x - \alpha'(y)$$

при этом

$$Q(x,0) = U(x,0) + V(x,0) = f_0(x) - \frac{\beta(0) - \alpha(0)}{b}x - \alpha(0);$$

с учетом нулевых граничных условий

$$U(a, y) = 0, U(b, y) = 0, V(a, y) = 0, V(b, y) = 0.$$

из начальных условий

$$U(a, y) = H(0)B(y) = 0$$
$$U(b, y) = H(l)B(y) = 0$$

B(t) не может быть равно 0, тогда U всегда будет равно 0.

Получим

$$H(a)=0, H(b)=0.$$

Далее разделяем функцию на две части

$$U(x, y) = H(x)B(y)$$
$$\frac{B'(y)}{K^2B(y)} = \frac{H''(x)}{H(x)} = M$$
$$H''(x) - MH(x) = 0$$

Поскольку экспонента не может быть линейной, то

$$H_{km}(x) = \sin\left(\frac{\pi kx}{a}\right)\sin\left(\frac{\pi ky}{b}\right),\,$$

где
$$M = -\left(\frac{\pi k}{b}\right)^2$$
, поскольку $\sqrt{-M} = \frac{\pi k}{b}$, при чем $k \in \mathbb{N}$.

соответственно

$$U(x, y) = d + \sum_{k=1}^{M} \sum_{m=1}^{M} H_{km} \sin\left(\frac{k \cdot \pi x}{a}\right) \sin\left(\frac{m \cdot \pi y}{b}\right).$$

Зададим количество слагаемых, которые обеспечивают точность решения в относительных единицах, при *M*=6 точность составляет 0.001, для наглядности возьмем значение, превышающее данный параметр, например

$$M = 27$$

Найдем коэффициент Н_{km}

$$i = 1...M$$

$$j = 1...M$$

$$H_{i-1,j-1} = \frac{-4}{\pi^2 \cdot (i^2 + j^2)} \cdot \left(\int_{0}^{a} \int_{0}^{b} f(x, y) \cdot \sin\left(\frac{\pi \cdot i \cdot x}{a}\right) \cdot \sin\left(\frac{\pi \cdot j \cdot x}{b}\right) dy dx \right)$$

Таким образом получим точное решение

$$U(x, y) = d + \sum_{k=1}^{M} \sum_{m=1}^{M} H_{k-1, m-1} \sin(\frac{k \cdot \pi x}{a}) \sin(\frac{m \cdot \pi y}{b}).$$

и матрицу точного решения U_l в области D

$$i = 1...10$$
$$j = 1...10$$
$$U_{1i,j} = U\left(a \cdot \frac{i}{10}, b \cdot \frac{j}{10}\right)$$

10	10	10	10	10	10	10	10	10	10	10
10	9.892	9.789	9.695	9.619	9.565	9.543	9.563	9.636	9.777	10
10	9.789	9.587	9.404	9.253	9.147	9.103	9.141	9.284	9.56	10
10	9.695	9.404	9.14	8.921	8.765	8.698	8.749	8.955	9.356	10
10	9.619	9.253	8.921	8.642	8.442	8.352	8.41	8.664	9.172	10
$U_1 = 10$	9.565	9.147	8.765	8.442	8.206	8.092	8.148	8.433	9.021	10
10	9.543	9.103	8.698	8.352	8.092	7.957	8	8.289	8.917	10
10	9.563	9.141	8.749	8.41	8.148	8	8.019	8.279	8.889	10
10	9.636	9.284	8.955	8.664	8.433	8.289	8.279	8.471	8.98	10
10	9.777	9.56	9.356	9.172	9.021	8.917	8.889	8.98	9.28	10
10	10	10	10	10	10	10	10	10	10	10

Из матрицы видно, что решение $min(U_1)=7.957$, а $max(U_1)=10$.

Далее необходимо получить приближенное решение. Для получения приближенного решения введем $n_1 = \sqrt{n}$, которая представляет собой количество решений $U_n = V(0,0,x,y) + \sum_{k=1}^{n_1} \sum_{m=1}^{n_1} C_{k,m} V(k,m,x,y).$

 $n_1 = 3$

Пробные функции вида

$$V_1(k,m,x,y) = x^k \cdot (a-x) \cdot y^m \cdot (b-y)$$

после нормирования

$$i = 1...n_{1}$$

$$j = 1...n_{1}$$

$$VV_{i-1,j-1} = \sqrt{\int_{0}^{a} \int_{0}^{b} (V_{1}(i, j, x, y))^{2} dx dy}$$

Получаем нормированные пробные функции вида

$$V(k,m,x,y) = if\left(k+m \neq 0, \frac{V_1(x,m,x,y)}{VV_{k-1,m-1}}, d\right)$$

Для получения поверочных функций, для примера возьмем пробные функции

$$W(k,m,x,y) = V(k,m,x,y)$$

Зададим оператор, соответствующий левой части уравнения

$$L_{1}(k,m,x,y,V) = K_{1}(x,y) \cdot \frac{d^{2}}{dx^{2}} V(k,m,x,y) + K_{2}(x,y) \cdot \frac{d^{2}}{dy^{2}} V(k,m,x,y) + K_{3}(x,y) \cdot \frac{d}{dx} V(k,m,x,y)$$
$$L(k,m,x,y,V) = L_{1}(k,m,x,y,V) + K_{4}(x,y) \cdot \frac{d}{dy} V(k,m,x,y) + K_{5}(x,y) \cdot V(k,m,x,y)$$

и найдем коэффициенты системы уравнений *АС*=*В* для нахождения коэффициентов пробных решений *C*_k

$$i = 1...n_{1}$$

$$j = 1...n_{1}$$

$$B_{i-1+n_{1}(j-1)} = \int_{0}^{a} \int_{0}^{b} (f(x, y) - L(0, 0, x, y, V)) \cdot W(i, j, x, y) dxdy$$
(2)

$$i_{1} = 1...n_{1}$$

$$j_{1} = 1...n_{1}$$

$$i_{2} = 1...n_{1}$$

$$j_{2} = 1...n_{1}$$

$$j_{2} = 1...n_{1}$$

$$A_{i_{1}-1+n_{1}(j_{1}-1),i_{2}-1+n_{1}(j_{2}-1)} = \int_{0}^{a} \int_{0}^{b} L(i_{2}, j_{2}, x, y, V) \cdot W(i, j, x, y) dxdy$$
(3)

Для дальнейшего получения передаточной функции объекта управления с распределенными параметрами введем в рассмотрение матрицы *AC=B*, элементы которой являются коэффициентами системы дифференциального уравнения

$$C = A^{-1} \cdot B$$

которые при *n*₁=3 равны

$$A = \begin{pmatrix} -0.026 & -1.896 & -1.72 & -1.896 & -1.773 & -1.609 & -1.72 & -1.609 & -1.459 \\ -1.896 & -2.432 & -2.629 & -1.773 & -2.275 & -2.459 & -2.275 & -2.056 & -2.218 \\ -1.72 & -2.629 & -3.202 & -1.609 & -2.459 & -2.995 & -1.459 & -2.218 & -2.693 \\ -1.896 & -1.773 & -1.609 & -2.432 & -2.275 & -2.056 & -2.629 & -2.459 & -2.218 \\ -1.773 & -2.275 & -2.459 & -2.275 & -2.837 & -3.022 & -2.459 & -3.022 & -3.192 \\ -1.609 & -2.459 & -2.995 & -2.056 & -3.022 & -3.607 & -2.218 & -3.192 & -3.767 \\ -1.72 & -1.609 & -1.459 & -2.629 & -2.459 & -2.218 & -3.202 & -2.995 & -2.693 \\ -1.609 & -2.056 & -2.218 & -2.693 & -2.218 & -3.192 & -2.995 & -3.607 & -3.767 \\ -1.459 & -2.218 & -2.693 & -2.218 & -3.192 & -3.767 & -4.377 \end{pmatrix}$$

$$B = \begin{pmatrix} -8.117 \\ -7.593 \\ -6.722 \\ -9.112 \\ -8.523 \\ -7.545 \\ -9.411 \\ -8.803 \\ -7.793 \end{pmatrix}$$

 $C^{T} = \begin{pmatrix} 2.115 & 0.932 & -0.602 & 0.415 & 0.72 & -0.465 & 1.037 & 2.274 \cdot 10^{-12} & -9.095 \cdot 10^{-13} \end{pmatrix}$

Следовательно пробное решение U(x,y) при $n_1=3$ выглядит следующим образом

$$U(x, y) = V(0, 0, x, y) + \sum_{k=1}^{n_1} \sum_{m=1}^{n_1} c_{k-1+n_1(m-1)} \cdot V(k, m, x, y)$$

Получим матрицу получившегося точного решения, разбивая область D на сто частей

$$i = 0...10$$
$$j = 0...10$$
$$U_{2i,j} = U\left(a \cdot \frac{i}{10}, b \cdot \frac{j}{10}\right)$$

Матрица приближенного решения имеет вид

	10	10	10	10	10	10	10	10	10	10	10
	10	10.186	10.357	10.513	10.651	10.757	10.816	10.803	10.687	10.434	10
	10	10.35	10.672	10.969	11.227	11.427	11.534	11.506	11.286	10.81	10
	10	10.477	10.919	11.324	11.677	11.948	12.092	12.05	11.748	11.099	10
	10	10.557	11.075	11.549	11.962	12.278	12.445	12.393	12.039	11.281	10
$U_{2} =$	10	10.585	11.128	11.626	12.06	12.391	12.565	12.511	12.139	11.343	10
	10	10.557	11.075	11.549	11.962	12.278	12.445	12.393	12.039	11.281	10
	10	10.477	10.919	11.324	11.677	11.948	12.092	12.05	11.748	11.099	10
	10	10.35	10.672	10.969	11.227	11.427	11.534	11.506	11.286	10.81	10
	10	10.186	10.357	10.513	10.651	10.757	10.816	10.803	10.687	10.434	10
	10	10	10	10	10	10	10	10	10	10	10

Для сравнения получившихся точного и приближенного решения найдем

разность получившихся матриц

	0	0	0	0	0	0	0	0	0	0	0
	0	-0.285	-0.584	-0.872	-1.119	-1.296	-1.372	-1.316	-1.092	-0.666	0
	0	-0.525	-1.076	-1.604	-2.058	-2.383	-2.524	-2.421	-2.012	-1.228	0
	0	-0.716	-1.466	-2.183	-2.799	-3.243	-3.437	-3.301	-2.746	-1.679	0
	0	-0.852	-1.741	-2.592	-3.324	-3.853	-4.089	-3.933	-3.28	-2.01	0
$U_{12} = U_1 - U_2 =$	0	-0.925	-1.889	-2.81	-3.606	-4.185	-4.45	-4.293	-3.592	-2.211	0
	0	-0.927	-1.891	-2.815	-3.614	-4.203	-4.483	-4.343	-3.654	-2.265	0
	0	-0.849	-1.729	-2.574	-3.311	-3.86	-4.135	-4.031	-3.422	-2.145	0
	0	-0.677	-1.379	-2.054	-2.647	-3.098	-3.338	-3.283	-2.825	-1.808	0
	0	-0.399	-0.812	-1.212	-1.565	-1.84	-1.998	-1.998	-1.749	-1.164	0
	0	0	0	0	0	0	0	0	0	0	0

Отсюда максимальное значение $|U_{12}| = \varepsilon_{11} = 4.483$

Для сравнения, найдем предыдущее пробное решение при

$$i=1...n_{1}-1$$

 $j=1...n_{1}-1$

Используя формулу (2) и при

$$i_1 = 1 \dots n_1 - 1$$

 $j_1 = 1 \dots n_1 - 1$
 $i_2 = 1 \dots n_1 - 1$

 $j_2=1...n_1-1$

Используя формулу (3). Решая систему уравнений $A_1 \cdot C_1 = B_1$ матричным методом, получим вектор коэффициентов C_{1k} .

$$C_{1} = A_{1}^{-1} \cdot B_{1}$$

$$C_{1}^{T} = \begin{bmatrix} 1.849 & 2.132 \cdot 10^{-14} & 2.306 & 0 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} -2.026 & -1.896 & -1.896 & -1.773 \\ -1.896 & -2.432 & -1.773 & -2.275 \\ -1.896 & -1.773 & -2.432 & -2.275 \\ -1.773 & -2.275 & -2.275 & -2.837 \end{bmatrix}$$

$$B_{1} = \begin{bmatrix} -8.117 \\ -7.593 \\ -9.112 \\ -8.523 \end{bmatrix}$$

Получим матрицу предыдущего (для *n*₁=2) пробного решения, разбив область *D* на 100 частей

$$UP(x, y) = if \left[n_{1} \neq 1, V(0, 0, x, y) + \sum_{k=1}^{n_{1}-1} \sum_{m=1}^{n-1} c_{1 k-1+(n_{1}-1)(m-1)} \cdot V(k, m, x, y), V(0, 0, x, y) \right]$$
(4)

$$i=0...10$$

$$j=0...10$$

$$U_{3 i, j} = UP \left(a \cdot \frac{i}{10}, b \cdot \frac{j}{10} \right)$$
(5)

Построим матрицу сравнения полученных решений для $n_1=3$ и $n_1=2$ при U_3

	[10	10	10	10	10	10	10	10	10	10	10	
	10	10.176	10.373	10.567	10.737	10.861	10.915	10.879	10.729	10.443	10	
	10	10.314	10.663	11.008	11.311	11.53	11.627	11.562	11.296	10.788	10	
	10	10.412	10.87	11.324	11.72	12.008	12.136	12.05	11.701	11.034	10	
	10	10.47	11.036	11.513	11.966	12.295	12.441	12.343	12.943	11.182	10	
$U_{3} =$	10	10.49	10.994	11.576	12.048	12.391	12.542	12.441	12.024	11.231	10	
	10	10.47	11.036	11.513	11.966	12.295	12.441	12.343	12.943	11.182	10	
	10	10.412	10.87	11.324	11.72	12.008	12.136	12.05	11.701	11.034	10	
	10	10.314	10.663	11.008	11.311	11.53	11.627	11.562	11.296	10.788	10	
	10	10.176	10.357	10.567	10.737	10.861	10.915	10.879	10.729	10.443	10	
	10	10	10	10	10	10	10	10	10	10	10	

Отсюда максимальное значение $|U_{23}|$ = ϵ_{21} =0.114

Найдем невязку полученного пробного решения

$$R(x,y) = \sum_{k=1}^{n_1} \sum_{m=1}^{n_1} \left[c_{k-1+n_1\cdot(m-1)} \cdot L(k,m,x,y,V) + L(0,0,x,y,V) - f(x,y) \right]$$
(6)

Получим матрицу невязки пробного решения, разбив область D на 100 частей

$$U_{4i,j} = R\left(a \cdot \frac{i}{10}, b \cdot \frac{j}{10}\right) \tag{7}$$

$$U_4 = \begin{bmatrix} 0 & -0.04 & -0.044 & -0.048 & -0.072 & -0.121 & -0.189 & -0.253 & -0.278 & -0.215 & 0 \\ -0.221 & 2.136 & 4.465 & 6.748 & 8.979 & 11.168 & 13.34 & 15.53 & 17.791 & 20.188 & 22.8 \\ -0.376 & 3.829 & 7.957 & 12.001 & 15.97 & 19.884 & 23.78 & 27.708 & 31.731 & 35.927 & 40.387 \\ -0.478 & 5.039 & 10.442 & 15.736 & 20.937 & 26.075 & 31.194 & 36.354 & 41.627 & 47.098 & 52.87 \\ -0.535 & 5.764 & 11.93 & 17.97 & 23.907 & 29.775 & 35.625 & 41.521 & 47.57 & 53.774 & 60.328 \\ -0.554 & 6.006 & 12.426 & 18.714 & 24.895 & 31.006 & 37.099 & 43.24 & 49.507 & 55.994 & 62.809 \\ -0.535 & 5.764 & 11.93 & 17.97 & 23.907 & 29.775 & 35.625 & 41.521 & 47.57 & 53.774 & 60.328 \\ -0.478 & 5.039 & 10.442 & 15.736 & 20.937 & 26.075 & 31.194 & 36.354 & 41.627 & 47.098 & 52.87 \\ -0.376 & 3.829 & 7.957 & 12.001 & 15.97 & 19.884 & 23.78 & 27.708 & 31.731 & 35.927 & 40.387 \\ -0.376 & 3.829 & 7.957 & 12.001 & 15.97 & 19.884 & 23.78 & 27.708 & 31.731 & 35.927 & 40.387 \\ -0.221 & 2.136 & 4.465 & 6.748 & 8.979 & 11.168 & 13.34 & 15.53 & 17.791 & 20.188 & 22.8 \\ 0 & -0.04 & -0.044 & -0.048 & -0.072 & -0.121 & -0.189 & -0.253 & -0.278 & -0.215 & 0 \\ \end{bmatrix}$$

Отсюда максимальное значение $|U_4| = \epsilon_{31} = 62.809$

Введем пробные функции, в качестве которой будет функция V₁(*k*,*m*,*x*,*y*), а в качестве поверочных функций возьмем многочлены Лежандра [19].

$$V_1(k,m,x,y) = x^k \cdot (a-x) \cdot y^m \cdot (b-y)$$

Вычислим нормировочные коэффициенты.

$$i=1...n_{1}$$

$$j=1...n_{1}$$

$$VV_{i-1,j-1} = \sqrt{\int_{0}^{a} \int_{0}^{b} (V_{1}(i,j,x,y))^{2} dx dy}$$

Получим нормированные пробные функции

$$V(k,m,x,y) = \left(k + m \neq 0, \frac{V_1(k,m,x,y)}{VV_{k-1,m-1}}, d\right)$$

Введем поверочные функции

$$P(k,t) = \left(k \neq 0, \frac{1}{2^{k} \cdot k!} \cdot \frac{d^{k}}{dt^{k}} (t^{2} - 1)^{k}, 1\right)$$

 $k=1\dots n_1$ $m=1\dots n_1$

И

$$W(k,m,x,y) = \frac{P\left(k-1,\frac{2}{a}\cdot\left(x-\frac{a}{2}\right)\right)}{\sqrt{\int_{0}^{a}\left(P\left(k-1,\frac{2}{a}\cdot\left(x-\frac{a}{2}\right)\right)\right)^{2}dx}} \cdot \frac{P\left(m-1,\frac{2}{b}\cdot\left(x-\frac{b}{2}\right)\right)}{\sqrt{\int_{0}^{b}\left(P\left(m-1,\frac{2}{b}\cdot\left(x-\frac{b}{2}\right)\right)\right)^{2}dy}}$$

Далее найдем коэффициенты системы уравнений *АС*=*В* для определения коэффициентов пробных решений *c_k* при

$$i=1...n_1-1$$

 $j=1...n_1-1$

Используя формулу (2) при

$$i_1 = 1 \dots n_1 - 1$$

 $j_1 = 1 \dots n_1 - 1$
 $i_2 = 1 \dots n_1 - 1$
 $j_2 = 1 \dots n_1 - 1$

Используя формулу (2.3). Решая систему уравнений $A \cdot C = B$ матричным методом, получим вектор коэффициентов C_k .

$$C = A^{-1} \cdot B$$

	-2.026	-1.896	-2.349	-1.896	-1.773	-2.198	-2.349	-2.198	-2.553
	$1.492 \cdot 10^{-13}$	-1.97	-3.052	$1.048 \cdot 10^{-13}$	-1.843	-2.855	$1.099 \cdot 10^{-13}$	-1.903	-2.948
	0.453	0.424	-1.032	0.424	0.396	-0.965	0.657	0.614	-0.734
	$9.251 \cdot 10^{-14}$	$9.824 \cdot 10^{-14}$	$7.597 \cdot 10^{-14}$	-1.97	-1.843	-1.903	-3.052	-2.855	-2.948
<i>A</i> =	$5.251 \cdot 10^{-14}$	$3.05 \cdot 10^{-14}$	$2.674 \cdot 10^{-14}$	$4.45 \cdot 10^{-14}$	-1.064	-1.648	$6.094 \cdot 10^{-14}$	-1.648	-2.553
	$-6.851 \cdot 10^{-14}$	$-3.424 \cdot 10^{-14}$	$-4.111 {\cdot} 10^{-14}$	0.734	0.687	0.03	1.137	1.064	0.047
	0.453	0.424	0.657	0.424	0.396	0.614	-1.032	-0.965	-0.732
	$-1.217 \cdot 10^{-13}$	0.734	1.137	$-5.945\!\cdot\!10^{-14}$	0.687	1.064	$-\!4.498\!\cdot\!10^{-14}$	0.03	0.047
	$8.919 \cdot 10^{-13}$	$7.765 \cdot 10^{-13}$	0.587	$7.184 \cdot 10^{-13}$	$6.997 \cdot 10^{-13}$	0.549	0.587	0.549	0.73

$$B = \begin{bmatrix} -8.117 \\ 0 \\ 3.63 \\ -4.687 \\ 0 \\ 2.096 \\ -6.972 \cdot 10^{-12} \\ 0 \\ 3.118 \cdot 10^{-12} \end{bmatrix}$$

 $C^{T} = \begin{bmatrix} 2.013 & 0.92 & -0.594 & 0.465 & 0.797 & -0.515 & 1.075 & 2.973 \cdot 10^{-13} & -3.545 \cdot 10^{-13} \end{bmatrix}$

Следовательно, пробное решение U(x, y) для $n_1=3$ равно

$$U(x, y) = V(0, 0, x, y) + \sum_{k=1}^{n_1} \sum_{m=1}^{n_1} c_{k-1+n_1(m-1)} \cdot V(k, m, x, y)$$

Построим матрицу решений U₂, разбив область D на 100 частей

$$i=0...10$$

$$j=0...10$$

$$U_{2i,j} = U\left(a \cdot \frac{i}{10}, b \cdot \frac{j}{10}\right)$$

Для сравнения получившихся точного и приближенного решения найдем разность получившихся матриц при U₂

	[10	10	10	10	10	10	10	10	10	10	10
	10	10.179	10.346	10.503	10.642	10.754	10.817	10.808	10.696	10.441	10
	10	10.337	10.654	10.951	11.215	11.423	11.54	11.52	11.304	10.825	10
	10	10.46	10.895	11.302	11.663	11.946	12.103	12.072	11.775	11.12	10
	10	10.539	11.048	11.525	11.947	12.277	12.459	12.421	12.072	11.307	10
$U_{2} =$	10	10.565	11.101	11.601	12.045	12.391	12.581	12.54	12.174	11.37	10
	10	10.539	11.048	11.525	11.947	12.277	12.459	12.421	12.072	11.307	10
	10	10.46	10.895	11.302	11.663	11.946	12.103	12.072	11.775	11.12	10
	10	10.337	10.654	10.951	11.215	11.423	11.54	11.52	11.304	10.825	10
	10	10.179	10.346	10.503	10.642	10.754	10.817	10.808	10.696	10.441	10
	10	10	10	10	10	10	10	10	10	10	10

	0	0	0	0	0	0	0	0	0	0	0]
	0	-0.287	-0.557	-0.807	-1.024	-1.189	-1.274	-1.246	-1.059	-0.664	0
	0	-0.548	-1.068	-1.547	-1.962	-2.276	-2.437	-2.379	-2.02	-1.264	0
	0	-0.765	-1.491	-2.161	-2.742	-3.18	-3.405	-3.323	-2.821	-1.765	0
	0	-0.92	-1.795	-2.604	-3.305	-3.835	-4.108	-4.011	-3.409	-2.135	0
$U_{12} = U_1 - U_2 =$	0	-1	-1.953	-2.836	-3.602	-4.185	-4.489	-4.392	-3.741	-2.35	0
	0	-0.996	-1.945	-2.827	-3.596	-4.185	-4.502	-4.421	-3.783	-2.39	0
	0	-0.898	-1.755	-2.553	-3.253	-3.798	-4.103	-4.053	-3.496	-2.231	0
	0	-0.701	-1.37	-1.996	-2.551	-2.99	-3.251	-3.241	-2.834	-1.844	0
	0	-0.402	-0.786	-1.147	-1.47	-1.733	-1.9	-1.919	-1.715	-1.161	0
	0	0	0	0	0	0	0	0	0	0	0

Отсюда максимальное значение $|U_{12}|{=}\;\epsilon_{12}{=}4.502$

Далее найдем коэффициенты системы уравнений *АС*=*В* для определения коэффициентов пробных решений *c_k* при

 $i=1...n_1-1$ $j=1...n_1-1$

Используя формулу (2) при

$$i_1 = 1 \dots n_1 - 1$$

 $j_1 = 1 \dots n_1 - 1$
 $i_2 = 1 \dots n_1 - 1$
 $j_2 = 1 \dots n_1 - 1$

Используя формулу (3). Решая систему уравнений $A_1 \cdot C_1 = B_1$ матричным методом, получим вектор коэффициентов C_k

$$C_1 = A_1^{-1} \cdot B_1$$

$$C_{1}^{T} = \begin{bmatrix} 36.808 & -30.654 & -23.538 & 20.445 \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} -2.026 & -1.896 & -1.896 & -1.773 \\ -1.896 & -2.432 & -1.773 & -2.275 \\ -1.896 & -1.773 & -2.432 & -2.275 \\ -1.773 & -2.275 & -2.275 & -2.837 \end{bmatrix}$$

$$B_{1} = \begin{bmatrix} -8.117 \\ 0 \\ -4.687 \\ 0 \end{bmatrix}$$

Получим матрицу предыдущего для (n₁=2 пробного решения, разбив область *D* на 100 частей

Используя формулу (4) и (5). Построим матрицу сравнения полученных решений для n₁=3 и n₁=2 при U₃

	10	10	10	10	10	10	10	10	10	10	10
	10	12.118	13.259	13.611	13.367	12.714	11.845	10.949	10.216	9.836	10
	10	13.076	14.741	15.269	14.932	14.002	12.752	11.454	10.381	9.806	10
	10	13.131	14.842	15.404	15.09	14.171	12.918	11.603	10.497	9.872	10
	10	12.543	13.955	14.45	14.237	13.531	12.542	11.483	10.564	10	10
$U_{3} =$	10	11.57	12.476	12.836	12.768	12.391	11.822	11.18	10.584	10.151	10
	10	10.472	10.799	10.996	11.077	11.059	10.956	10.784	10.557	10.291	10
	10	9.507	9.318	9.36	9.56	9.846	10.143	10.38	10.484	10.382	10
	10	8.934	8.429	8.361	8.612	9.058	9.58	10.057	10.366	10.388	10
	10	9.012	8.524	8.431	8.627	9.007	9.467	9.901	10.205	10.273	10
	10	10	10	10	10	10	10	10	10	10	10

	0	0	0	0	0	0	0	0	0	0	0
	0	-1.939	-2.913	-3.109	-2.724	-1.961	-1.028	-0.14	0.48	0.605	0
	0	-2.739	-4.087	-4.318	-3.717	-2.579	-1.212	0.66	0.923	1.019	0
	0	-2.67	-3.947	-4.103	-3.427	-2.225	-0.815	0.469	1.278	1.248	0
	0	-2.004	-2.907	-2.925	-2.29	-1.254	-0.83	0.939	1.508	1.307	0
$U_{23} = U_2 - U_3 =$	0	-1.005	-1.376	-1.235	-0.724	$2.824 \cdot 10^{-13}$	0.759	1.36	1.59	1.219	0
	0	0.066	0.249	0.529	-0.87	1.218	1.503	1.637	1.516	1.016	0
	0	0.953	1.577	1.942	2.103	2.1	1.96	1.692	1.291	0.739	0
	0	1.403	2.226	2.59	2.603	2.365	1.96	1.463	0.938	0.437	0
	0	1.166	1.822	2.072	2.016	1.747	1.351	0.907	0.491	0.168	0
	0	0	0	0	0	0	0	0	0	0	0_

Отсюда максимальное значение $|U_{23}| = \epsilon_{22} = 4.318$

Найдем невязку полученного пробного решения используя формулу (6) Получим матрицу невязки пробного решения, разбив область *D* на 100 частей используя формулу (7).

	- 0	-0.023	-0.01	0.001	-0.011	-0.054	-0.122	-0.193	-0.232	-0.189	0
	-0.182	2.19	4.528	6.812	9.038	11.215	13.367	15.553	17.767	20.125	22.719
	-0.301	3.916	8.044	12.078	16.026	19.911	23.772	27.661	31.644	35.802	40.231
	-0.373	5.152	10.549	15.823	20.991	26.087	31.159	36.268	41.491	46.918	52.655
	-0.411	5.894	12.049	18.063	23.959	29.778	35.573	41.41	47.373	53.558	60.076
$U_4 =$	-0.423	6.142	12.549	18.808	24.947	31.006	37.041	43.12	49.329	55.766	62.544
	-0.411	5.894	12.049	18.063	23.959	29.778	35.573	41.41	47.373	53.558	60.076
	-0.373	5.152	10.549	15.823	20.991	26.087	31.159	36.268	41.491	46.918	52.655
	-0.301	3.916	8.044	12.078	16.026	19.911	23.772	27.661	31.644	35.802	40.231
	-0.182	2.19	4.528	6.812	9.038	11.215	13.367	15.553	17.767	20.125	22.719
	0	-0.023	-0.01	0.001	-0.011	-0.054	-0.122	-0.193	-0.232	-0.189	0

Отсюда максимальное значение $|U_4| = \epsilon_{32} = 62.544$

Введем пробные функции, в качестве которой будет функция V₁(*k*,*m*,*x*,*y*), а в качестве проверочных функций возьмем из [21]

$$V_1(k,m,x,y) = \sin\left(\frac{\pi kx}{a}\right) \cdot \sin\left(\frac{\pi my}{b}\right)$$

Нормируем их

$$VV_{i-1,j-1} = \sqrt{\int_{0}^{a} \int_{0}^{b} \left(V_{1}(i,j,x,y)\right)^{2} dx dy}$$

Получим нормированные пробные функции

$$V(k,m,x,y) = \left(k + m \neq 0, \frac{V_1(k,m,x,y)}{VV_{k-1,m-1}}, d\right)$$

Для примера в качестве поверочных возьмем пробные функции

$$W(k,m,x,y) = V(k,m,x,y)$$

Далее найдем коэффициенты системы уравнений *АС*=*В* для определения коэффициентов пробных решений *c_k* при

$$i=1...n_{1}-1$$

 $j=1...n_{1}-1$

Используя формулу (2) при

$$i_1 = 1 \dots n_1 - 1$$

 $j_1 = 1 \dots n_1 - 1$
 $i_2 = 1 \dots n_1 - 1$
 $j_2 = 1 \dots n_1 - 1$.

Используя формулу (2.3). Решая систему уравнений $A \cdot C = B$ матричным методом, получим вектор коэффициентов C_k

$$C = A^{-1} \cdot B$$

	-2.	$-4.038 \cdot 10^{-14}$	$4.901 \cdot 10^{-13}$	$-1.643 \cdot 10^{-13}$	$-8.123 \cdot 10^{-15}$	$-1.354 \cdot 10^{-14}$	$4.75 \cdot 10^{-13}$	$-8.447 \cdot 10^{-15}$	$-1.379 \cdot 10^{-13}$
	$-2.118 \cdot 10^{-13}$	-5	$5.9 \cdot 10^{-13}$	$-1.257 \cdot 10^{-14}$	$-8.623 \cdot 10^{-14}$	$1.969 \cdot 10^{-14}$	$-8.246 \cdot 10^{-14}$	$3.748 \cdot 10^{-13}$	$-1.291 \cdot 10^{-13}$
	$-1.705 \cdot 10^{-13}$	$-6.218 \cdot 10^{-13}$	-10	$5.72 \cdot 10^{-14}$	$4.524 \cdot 10^{-14}$	0	$2.789 \cdot 10^{-14}$	$7.429 \cdot 10^{-14}$	$9.121 \cdot 10^{-14}$
	$-7.044 \cdot 10^{-14}$	$-6.817 \cdot 10^{-15}$	$-4.822 \cdot 10^{-14}$	-5	$1.775 \cdot 10^{-13}$	$4.965 \cdot 10^{-13}$	$6.955 \cdot 10^{-13}$	$-2.138 \cdot 10^{-14}$	$-3.083 \cdot 10^{-14}$
<i>A</i> =	$-1.865 \cdot 10^{-14}$	$-5.342 \cdot 10^{-13}$	$-7.351 \cdot 10^{-14}$	$-2.413 \cdot 10^{-13}$	-8	$6.669 \cdot 10^{-13}$	$-1.805 \!\cdot\! 10^{-14}$	$7.266 \cdot 10^{-13}$	$-2.609 \cdot 10^{-14}$
	$-2.355 \cdot 10^{-14}$	$7.25 \cdot 10^{-14}$	$4.593 \cdot 10^{-14}$	$-1.714 \cdot 10^{-13}$	$-7.632 \cdot 10^{-13}$	-13	$1.028 \cdot 10^{-13}$	$8.482 \cdot 10^{-15}$	$8.036 \cdot 10^{-13}$
	$-2.901 \cdot 10^{-14}$	$0.687 \cdot 10^{-15}$	$-1.68 \cdot 10^{-14}$	$-7.228 \cdot 10^{-13}$	$-1.794 \cdot 10^{-14}$	$-3.992\!\cdot\!10^{-14}$	-10	$-8.764 \cdot 10^{-15}$	$4.465 \cdot 10^{-13}$
	$-1.501 \cdot 10^{-14}$	$-2.799 \cdot 10^{-13}$	$1.33 \cdot 10^{-13}$	$-3.452 \cdot 10^{-14}$	$-7.043 \cdot 10^{-13}$	$-8.41 \cdot 10^{-14}$	$-4.327 \cdot 10^{-13}$	-13	$7.226 \cdot 10^{-13}$
	$3.047 \cdot 10^{-15}$	$1.476 \cdot 10^{-13}$	$-8.554 \cdot 10^{-14}$	$6.683 \cdot 10^{-14}$	$6.345 \cdot 10^{-14}$	$-7.706 \cdot 10^{-13}$	$-1.799 \cdot 10^{-13}$	$-4.524 \cdot 10^{-14}$	-18

$$B = \begin{bmatrix} -8\\0\\-0.296\\4\\0\\0.148\\-2.667\\0\\-0.1 \end{bmatrix}$$

 $C^{T} = \begin{bmatrix} 4 & -1.684 \cdot 10^{-13} & 0.03 & -0.8 & -1.298 \cdot 10^{-14} & -0.01 & 0.267 & -1.07 \cdot 10^{-14} & 0.005 \end{bmatrix}$

Следовательно, пробное решение U(x, y) для $n_1=3$ равно

$$U(x, y) = V(0, 0, x, y) + \sum_{k=1}^{n} \sum_{m=1}^{n} c_{k-1+n(m-1)} \cdot V(k, m, x, y).$$

Построим матрицу решений U₂, разбив область D на 100 частей

$$i=0\dots 10$$
$$j=0\dots 10$$
$$U_{2i,j} = U\left(a \cdot \frac{i}{10}, b \cdot \frac{j}{10}\right)$$

Для сравнения получившихся точного и приближенного решения найдем разность получившихся матриц при U₂

	10	10	10	10	10	10	10	10	10	10	10
	10	10.197	10.369	10.511	10.634	10.747	10.826	10.821	10.679	10.389	10
	10	10.371	10.697	10.966	11.2	11.412	11.56	11.549	11.28	10.732	10
	10	10.507	10.952	11.32	11.64	11.928	12.127	12.108	11.74	10.994	10
	10	10.592	11.112	11.543	11.917	12.251	12.481	12.456	12.025	11.156	10
$U_{2} =$	10	10.621	11.166	11.619	12.011	12.361	12.601	12.574	12.121	11.211	10
	10	10.592	11.112	11.543	11.917	12.251	12.481	12.456	12.025	11.156	10
	10	10.507	10.952	11.32	11.64	11.928	12.127	12.108	11.74	10.994	10
	10	10.371	10.697	10.966	11.2	11.412	11.56	11.549	11.28	10.732	10
	10	10.197	10.369	10.511	10.634	10.747	10.826	10.821	10.679	10.389	10
	10	10	10	10	10	10	10	10	10	10	10

	0	0	0	0	0	0	0	0	0	0	0]
	0	-0.305	-0.58	-0.815	-1.016	-1.182	-1.283	-1.258	-1.043	-0.611	0
	0	-0.583	-1.11	-1.562	-1.947	-2.264	-2.457	-2.408	-1.996	-1.171	0
	0	-0.811	-1.548	-2.18	-2.719	-3.162	-3.429	-3.359	-2.785	-1.638	0
	0	-0.973	-1.859	-2.622	-3.274	-3.809	-4.13	-4.046	-3.361	-1.984	0
$U_{12} = U_1 - U_2 =$	0	-1.056	-2.019	-2.853	-3.569	-4.155	-4.509	-4.426	-3.689	-2.19	0
	0	-1.049	-2.009	-2.845	-3.565	-4.159	-4.524	-4.456	-3.736	-2.239	0
	0	-0.944	-1.811	-2.571	-3.23	-3.78	-4.127	-4.089	-3.461	-2.105	0
	0	-0.735	-1.413	-2.012	-2.536	-2.979	-3.271	-3.27	-2.809	-1.751	0
	0	-0.42	-0.808	-1.155	-1.462	-1.726	-1.909	-1.932	-1.699	-1.109	0
	0	0	0	0	0	0	0	0	0	0	0

Отсюда максимальное значение $|U_{12}| = \epsilon_{13} = 4.524$.

Далее найдем коэффициенты системы уравнений *АС*=*В* для определения коэффициентов пробных решений *c*^{*k*} при

 $i=1...n_1-1$ $j=1...n_1-1$

Используя формулу (2) при

$$i_1 = 1 \dots n_1 - 1$$

 $j_1 = 1 \dots n_1 - 1$
 $i_2 = 1 \dots n_1 - 1$
 $j_2 = 1 \dots n_1 - 1$

Используя формулу (3). Решая систему уравнений $A_1 \cdot C_1 = B_1$ матричным методом, получим вектор коэффициентов C_k

$$C_{1} = A_{1}^{-1} \cdot B_{1}$$

$$C_{1}^{T} = \begin{bmatrix} 4 & -1.673 \cdot 10^{-13} & -0.8 & 1.477 \cdot 10^{-14} \end{bmatrix}$$

$$A_{1} = \begin{bmatrix} -2 & -4.038 \cdot 10^{-14} & -1.642 \cdot 10^{-13} & -8.123 \cdot 10^{-15} \\ -2.118 \cdot 10^{-13} & -5 & -1.257 \cdot 10^{-14} & -8.623 \cdot 10^{-14} \\ -7.044 \cdot 10^{-14} & -6.817 \cdot 10^{-15} & -5 & 1.775 \cdot 10^{-13} \\ -1.865 \cdot 10^{-14} & -5.342 \cdot 10^{-13} & -2.413 \cdot 10^{-13} & -8 \end{bmatrix}$$

$$B_{1} = \begin{bmatrix} -8 \\ 0 \\ 4 \\ 0 \end{bmatrix}$$

Получим матрицу предыдущего для (*n*₁=2 пробного решения, разбив область *D* на 100 частей используя формулу (4) и (5).

Построим матрицу сравнения полученных решений для *n*₁=3 и *n*₁=2

	10	10	10	10	10	10	10	10	10	10	10
	10	10.151	10.313	10.487	10.656	10.787	10.841	10.786	10.612	10.336	10
	10	10.287	10.595	10.926	11.248	11.497	11.599	11.496	11.164	10.638	10
	10	10.394	10.819	11.275	11.717	12.06	12.201	12.059	11.603	10.879	10
	10	10.464	10.963	11.499	12.019	12.422	12.588	12.42	11.884	11.033	10
$U_{3} =$	10	10.488	11.012	11.576	12.122	12.546	12.721	12.545	11.981	11.086	10
	10	10.464	10.963	11.499	12.019	12.422	12.588	12.42	11.884	11.033	10
	10	10.394	10.819	11.275	11.717	12.06	12.201	12.059	11.603	10.879	10
	10	10.287	10.595	10.926	11.248	11.497	11.599	11.496	11.164	10.638	10
	10	10.151	10.313	10.487	10.656	10.787	10.841	10.786	10.612	10.336	10
	10	10	10	10	10	10	10	10	10	10	10

	0	0	0	0	0	0	0	0	0	0	0
	0	0.046	0.056	0.024	-0.021	-0.04	-0.015	0.035	0.067	0.053	0
	0	0.085	0.102	0.04	-0.048	-0.085	-0.039	0.053	0.115	0.093	0
	0	0.112	0.133	0.045	-0.077	-0.133	-0.075	0.05	0.137	0.115	0
	0	0.128	0.149	0.044	-0.102	-0.17	-0.107	0.036	0.141	0.123	0
$U_{23} = U_2 - U_3 =$	0	0.133	0.154	0.043	-0.111	-0.185	-0.12	0.029	0.14	0.124	0
	0	0.128	0.149	0.044	-0.102	-0.17	-0.107	0.036	0.141	0.123	0
	0	0.112	0.133	0.045	-0.077	-0.133	-0.075	0.05	0.137	0.115	0
	0	0.085	0.102	0.04	-0.048	-0.085	-0.039	0.053	0.115	0.093	0
	0	0.046	0.056	0.024	-0.021	-0.04	-0.015	0.035	0.067	0.053	0
	0	0	0	0	0	0	0	0	0	0	0

Отсюда максимальное значение $|U_{23}| = \epsilon_{23} = 0.185$.

Найдем невязку полученного пробного решения используя формулу (6). Получим матрицу невязки пробного решения, разбив область *D* на 100 частей используя формулу (7).

	0	0	0	0	0	0	0	0	0	0	0]
	0	2.02	4.282	6.781	9.25	11.407	13.258	15.285	17.709	21.097	25.115
	0	3.561	7.568	12.01	16.396	20.209	23.461	26.852	31.339	37.415	44.649
	0	4.67	9.927	15.757	21.513	26.515	30.778	35.223	41.114	49.096	58.602
	0	5.349	11.363	18.026	24.606	30.332	35.219	40.314	47.046	56.146	66.974
$U_4 = 0$	0	5.58	11.848	18.789	25.644	31.613	36.714	42.03	49.042	58.508	69.764
	0	5.894	11.363	18.026	24.606	30.332	35.219	40.314	47.373	56.146	66.974
	0	5.349	9.927	15.757	21.513	26.515	30.778	35.223	47.046	49.096	58.602
	0	4.67	7.568	12.01	16.396	20.209	23.461	26.852	31.339	37.415	44.649
	0	2.02	4.282	6.781	9.25	11.407	13.258	15.285	17.709	21.097	25.115
	0	10^{-14}	0	$1.7 \cdot 10^{-14}$	0	0	$-3.2 \cdot 10^{-15}$	$1.7 \cdot 10^{-13}$	$1.348 \cdot 10^{-13}$	0	0

Отсюда максимальное значение $|U_4| = \varepsilon_{33} = 69.764$.

Выпишем полученные максимальные значения решений.

$$\varepsilon_{11} = 4.487 \quad \varepsilon_{21} = 0.114 \quad \varepsilon_{31} = 62.809$$

$$\varepsilon_{12} = 4.502 \quad \varepsilon_{22} = 4.318 \quad \varepsilon_{32} = 62.544$$

$$\varepsilon_{13} = 4.524 \quad \varepsilon_{23} = 0.185 \quad \varepsilon_{33} = 69.764$$

На основании полученных результатов следует вывод о том, что первая система ε_{11} , ε_{21} , ε_{31} пробных и поверочных функций дает лучшее приближение решения дифференциального уравнения.

ПОЛУЧЕНИЕ ПЕРЕДАТОЧНОЙ ФУНКЦИИ БЛОКА С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

Поскольку решение удовлетворяет заданным параметрам, для примера используем полученные матрицы пространства состояний *A*, *B*, *C* для получения передаточной функции системы автоматического управления с распределенными параметрами аналогично. Зададим матрицы

$$C = \begin{bmatrix} 1.849 & 2.132 \cdot 10^{-14} & 2.306 & 0 \end{bmatrix}$$
$$A = \begin{bmatrix} -2.026 & -1.896 & -1.896 & -1.773 \\ -1.896 & -2.432 & -1.773 & -2.275 \\ -1.896 & -1.773 & -2.432 & -2.275 \\ -1.773 & -2.275 & -2.275 & -2.837 \end{bmatrix}$$
$$B = \begin{bmatrix} -8.117 \\ -7.593 \\ -9.112 \\ -8.523 \end{bmatrix}$$

Найдем передаточную функцию объекта управления с распределенными параметрами, заданную матрицами

$$\begin{split} W(p) = C\left(pI - A\right)^{-1} B = \begin{bmatrix} 1.849 & 2.132 \cdot 10^{-14} & 2.306 & 0 \end{bmatrix} \times \\ & \times \left(\begin{bmatrix} p & 0 & 0 & 0 \\ 0 & p & 0 \\ 0 & 0 & p \end{bmatrix} - \begin{bmatrix} -2.026 & -1.896 & -1.773 \\ -1.896 & -2.432 & -1.773 & -2.275 \\ -1.896 & -1.773 & -2.275 \\ -1.773 & -2.275 & -2.287 \end{bmatrix} \right)^{-1} \begin{bmatrix} -8.117 \\ -7.593 \\ -8.523 \end{bmatrix} = \\ & = \begin{bmatrix} 1.849 & 2.132 \cdot 10^{-14} & 2.306 & 0 \end{bmatrix} \times \\ & \times \left[\begin{array}{c} p + 2.026 & 1.896 & 1.896 & 1.773 \\ 1.896 & p + 2.432 & 1.773 & 2.275 \\ 1.896 & 1.773 & p + 2.432 & 2.275 \\ 1.896 & 1.773 & p + 2.432 & 2.275 \\ 1.773 & 2.275 & 2.275 & p + 2.837 \end{bmatrix} \right]^{-1} \begin{bmatrix} -8.117 \\ -7.593 \\ -8.523 \end{bmatrix} = \\ & = \begin{bmatrix} 10^{-3}p^2 + 0.007p + 0.0015 \\ 10^{-3}p^3 + 0.009p^2 + 0.006p + 0.0002 \\ \hline 10^{-3}p^3 + 0.009p^2 + 0.006p$$

Таким образом получим передаточную функцию звена с распределенными параметрами

$$W_{pn}(p) = \frac{-21.01p^3 - 153.13p^2 - 121.29p - 33.73}{0.001p^3 + 0.009p^2 + 0.005p + 0.0002}$$

Решение задачи синтеза обобщенным методом Галеркина

Переходя к задаче синтеза технических систем обобщенным методом Галеркина, которая предполагает под собой известную структуру и параметры синтезируемой САУ. Структура регулятора системы управления задается в общем виде и определяется из условия приближенного обеспечения заданных показателей качества работы системы в переходном режиме ($T_{п.п.}$ – время переходного процесса, σ – перерегулирование (выброс), μ – колебательность). Устойчивость и грубость САУ должна обеспечиваться по варьируемым параметрам системы.

Используя схему из [2], внесем изменения в объект управления. Объектом управления будем считать пластину.

На рисунке 1 представлена схема, моделирующая нелинейную непрерывную систему автоматического управления процессом изгиба пластины.

Рисунок 1 – Структурная схема нелинейной непрерывной САУ процессом

изгиба пластины

где передаточная функция регулятора

$$W_k(c_k, p) = \frac{K(T_1p+1)(T_2p+1)(T_3p+1)}{(T_4p+1)(T_5p+1)^2},$$

здесь $K, T_1, ..., T_5$ – варьируемые параметры системы.

Система управления описывается относительно координаты входа нелинейного звена следующим дифференциальным уравнением

$$\left((T_4p+1)(T_5p+1)^2 \cdot \left(0.001p^3 + 0.009p^2 + 0.005p + 0.0002 \right) \right) x(t) + K(T_1p+1)(T_2p+1)(T_3p+1) \left(-21.01p^3 - 153.13p^2 - 121.29p - 33.73 \right) \cdot F[x(t)] = \\ = \left((T_4p+1)(T_5p+1)^2 \cdot \left(0.001p^3 + 0.009p^2 + 0.005p + 0.0002 \right) \right) f(t)$$

Функция $F[x(t), \dot{x}(t)]$ описывает нелинейную характеристику типа «люфт без ограничения», параметры которой заданы как b=0.01 рад, k=0.01.

Динамика системы описывается следующим уравнением движения

$$Q(c_k, p)x(t) + \overline{f}(p)x(t) \cdot F[x(t), \dot{x}(t)] = S(c_k, p)f(t),$$

где $x(t), \dot{x}(t)$ – координата входа нелинейного звена и её первая производная; f(t) = 1(t) – внешнее воздействие на входе; c_k – варьируемые параметры, $\overline{f}(p) = \frac{\varphi(p)}{\psi(p)} = \frac{a_0 + a_1 p + a_2 p^2 + ...}{b_1 p + b_2 p^2 + ...}$ – обобщенные полиномы САУ с распределенными параметрами [24], $Q(c_k, p), S(c_k, p)$ – полиномы оператора

обобщенного дифференцирования (*p=d/dt*).

Необходимо определить значения варьируемых параметров регулятора, которые будут обеспечивать устойчивый переходной процесс, и иметь перерегулирование $\sigma \leq 20\%$, со временем затухания $T_{\text{п.п.}} \leq 0.4$ с.

Исходя из заданных показателей качества работы САУ в переходном режиме в соответствии с рекомендациями, изложенными в [1], были определены параметры желаемого программного движения вида

$$x^{0}(t) = x_{v} - H_{1}e^{-\alpha t}\cos(\beta t - \varphi_{0}),$$

где $x_y = 1; H_1 = 1.1; \alpha = 12; \beta = 23 pad / c; \varphi_0 = 0.5$ рад.

Получим график программного движения системы (рисунок 2)

Рисунок 2 - График переходных процессов

где процесс 1 – желаемое программное движение, полученное в соответствии с рекомендациями, изложенными в [1], процесс 2 – переходной процесс, полученный в результате синтеза.

В результате решения задачи синтеза параметров определены следующие варьируемые параметры: K=0.2; $T_1=0.02$ c; $T_2=0.125$ c; $T_3=0.1$ c; $T_4=2$ c, $T_5=0.0025$ c.

Полученный график программного движения показывает, что найденные параметры приближенно обеспечивают заданные показатели качества работы САУ в переходном режиме.

Список источников

1. Никитин А.В., Шишлаков В.Ф. Параметрический синтез нелинейных систем автоматического управления: монография. - СПб.: ГУАП, 2003. - 358 с.

 Шишлаков В.Ф., Шишлаков А.В., Тимофеев С.С. Синтез САУ при различных видах аппроксимации нелинейных характеристик: теория и практика. - СПб. ГУАП, 2017. – 151 с.

3. Shankar Sarty. Nonlinear Systems: Analysis, Stability, and Control, USA, Springer-Verlag, New York, 1999, 675 p.

4. Haskara I., Ozguner U., Winkelman J. Extremum control for optimal operating point determination and set point optimization via sliding modes // Journal Dynamic System, Measurement and Control, 2000, vol. 122, pp. 719-724. DOI: <u>10.1115/1.1317231</u>

5. Vladislav Shishlakov, Elizaveta Vataeva, Natalia Reshetnikova, Dmitriy Shishlakov. Synthesis of control laws of electromechanical systems under polynomial approximation of characteristics of nonlinear elements // MATEC Web of Conferences, 2018, vol. 161 (2), pp. 02006. DOI: <u>10.1051/matecconf/201816102006</u>

6. Гончарова В.И. Выбор оптимального метода аппроксимации статической характеристики усилителя // I Международный форум «Математические методы и модели в высокотехнологичном производстве» (Санкт-Петербург, 10–11 ноября 2021): тезисы докладов. – СПб.: Санкт-Петербургский государственный университет аэрокосмического приборостроения, 2021. С. 56-57.

7. Гончарова В.И. Определение достаточного числа значений для построения математических моделей нелинейных звеньев // IV Международный форум «Метрологическое обеспечение инновационных технологий» (Санкт-Петербург, 04 марта 2022): сборник статей. – СПб.: Санкт-Петербургский государственный университет аэрокосмического приборостроения, 2022. С. 48-49.

8. Шишлаков В.Ф., Гончарова В.И. Построение математических моделей нелинейных звеньев // XVII Международная конференция по электромеханике и робототехнике. «Завалишинские чтения 22» (Санкт-Петербург, 12–14 апреля 2022): сборник докладов. – СПб.: Санкт-Петербургский государственный университет аэрокосмического приборостроения, 2022. С. 103-109. DOI: <u>10.31799/978-5-8088-</u>1705-0-2022-17-103-109

9. Гончарова В.И. Программа выбора оптимального метода аппроксимации по коэффициенту детерминации. Свидетельство о государственной регистрации программы для ЭВМ № 2022663274 РФ, 13.07.2022.

 Гончарова В.И. Программа выбора оптимального метода аппроксимации по коэффициенту корреляции. Свидетельство о государственной регистрации программы для ЭВМ № 2022663275 РФ, 13.07.2022.

11. Гончарова В.И. Программа выбора оптимального метода аппроксимации по средней ошибке аппроксимации. Свидетельство о государственной регистрации программы для ЭВМ № 2022663276 РФ, 13.07.2022.

 Гончарова В.И. Программа для различных видов аппроксимации нелинейных характеристик. Свидетельство о государственной регистрации программы для ЭВМ № 2022619027 РФ, 26.05.2022.

13. Ибрагимов Д.Н. Аппроксимация множества допустимых управлений в задаче быстродействия линейной дискретной системой // Труды МАИ. 2016. № 87. URL: <u>https://trudymai.ru/published.php?ID=69797</u>

14. Урюпин И.В. Синтез оптимальных кусочно-гладких аппроксимаций траекторий движения летательных аппаратов // Труды МАИ. 2018. № 100. URL: https://trudymai.ru/published.php?ID=93292

15. Ватутин М.А., Ключников А.И. Методика повышения стабильности работы нелинейного звена с запаздыванием для автоколебательного акселерометра // Труды МАИ. 2022. № 127. URL: <u>https://trudymai.ru/published.php?ID=170355</u>. DOI: 10.34759/trd-2022-127-22

16. Эзрохи Ю.А., Каленский С.М. Применение методов математического моделирования для определения в полете степени ухудшения характеристик узлов газотурбинного двигателя // Труды МАИ. 2022. № 123. URL: https://trudymai.ru/published.php?ID=165500. DOI: 10.34759/trd-2022-123-23

17. Вельмисов П.А., Покладова Ю.В., Мизхер У.Д. Математическое моделирование нелинейной динамики трубопровода // Автоматизация процессов управления. 2019. № 3 (57). С. 93-101. DOI: <u>10.35752/1991-2927-2019-3-57-93-101</u>

18. Vel'misov P.A., Ankilov A.V., Pokladova Y.V. On The Stability of Solutions of Certain Classes of Initial-Boundary-Value Problems in Aerohydroelasticity // Journal of Mathematical Sciences. 2021, vol. 259, no. 3, pp. 296-308. DOI: <u>10.1007/s10958-021-</u>05618-6

19. Айда-Заде К.Р., Абдуллаев В.М. Управление процессом нагрева стержня с использованием текущей и предыдущей по времени обратной связи // Автоматика и телемеханика. 2022. № 1. С. 130-149.

20. Гончарова В.И. Программа для реализации перехода от дифференциальных эллиптических уравнений в частных производных к обыкновенным дифференциальным уравнениям. Свидетельство о государственной регистрации программы для ЭВМ № 2023666043 РФ, 25.07.2023.

21.Анкилов А.В., Вельмисов П.А. Об устойчивости решений одной нелинейной начально-краевой задачи в аэрогидроупругости // Вестник Дагестанского государственного университета. Серия 1: Естественные науки. 2020. Т. 35. № 3. С. 45-52. DOI: <u>10.21779/2542-0321-2020-35-3-45-52</u>

22. Abdelbaki A.R., Paidoussis M.P., Misra A.K. A nonlinear model for a hanging cantilevered pipe discharging fluid with a partially-confined external flow // International Journal of Non-Linear Mechanics, 2020, vol. 118. DOI: 10.1016/j.ijnonlinmec.2019.103290

23. Velmisov P.A., Ankilov A.V. Mathematical modeling in problems about dynamics and stability of elastic elements of wing profiles // Cybernetics and Physics, 2021, vol. 10, no.
3, pp. 201-212. DOI: <u>10.35470/2226-4116-2021-10-3-201-212</u>

24. Иванов Д.В., Сандлер И.Л., Дилигенская А.Н. Идентификация двигателя постоянного тока независимого возбуждения методом расширенных инструментальных переменных // Вестник Самарского государственного технического университета. Серия: Технические науки. 2022. Т. 30. № 3 (75). С. 45-57. DOI: <u>10.14498/tech.2022.3.4</u>

References

1. Nikitin A.V., Shishlakov V.F. *Parametricheskii sintez nelineinykh sistem avtomaticheskogo upravleniya* (Parametric synthesis of nonlinear automatic control systems), Saint Petersburg, GUAP, 2003, 358 p.

2. Shishlakov V.F., Shishlakov A.V., Timofeev S.S. *Sintez SAU pri razlichnykh vidakh approksimatsii nelineinykh kharakteristik: teoriya i praktika* (Synthesis of automatic control systems for various types of approximation of nonlinear characteristics: theory and practice), Saint Petersburg, GUAP, 2017, 151 p.

3. Shankar Sarty. Nonlinear Systems: Analysis, Stability, and Control, USA, Springer-Verlag, New York, 1999, 675 p.

4. Haskara I., Ozguner U., Winkelman J. Extremum control for optimal operating point determination and set point optimization via sliding modes, *Journal Dynamic System*, *Measurement and Control*, 2000, vol. 122, pp. 719-724. DOI: <u>10.1115/1.1317231</u>

5. Vladislav Shishlakov, Elizaveta Vataeva, Natalia Reshetnikova, Dmitriy Shishlakov. Synthesis of control laws of electromechanical systems under polynomial approximation of characteristics of nonlinear elements, *MATEC Web of Conferences*, 2018, vol. 161 (2), pp. 02006. DOI: <u>10.1051/matecconf/201816102006</u>

6. Goncharova V.I. *I Mezhdunarodnyi forum «Matematicheskie metody i modeli v vysokotekhnologichnom proizvodstve»*: tezisy dokladov. Saint Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2021, pp. 56-57.

7. Goncharova V.I. *IV Mezhdunarodnyi forum «Metrologicheskoe obespechenie innovatsionnykh tekhnologii»*: sbornik statei. Saint Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2022, pp. 48-49.

 8. Shishlakov V.F., Goncharova V.I. XVII Mezhdunarodnaya konferentsiya po elektromekhanike i robototekhnike. «Zavalishinskie chteniya 22»: sbornik dokladov. Saint Petersburg, Sankt-Peterburgskii gosudarstvennyi universitet aerokosmicheskogo priborostroeniya, 2022, pp. 103-109. DOI: <u>10.31799/978-5-8088-1705-0-2022-17-103-109</u>
 9. Goncharova V.I. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2022663274 RF, 13.07.2022.

10. Goncharova V.I. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2022663275 RF, 13.07.2022.

11. Goncharova V.I. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2022663276 RF, 13.07.2022.

12. Goncharova V.I. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2022619027 RF, 26.05.2022.

13. Ibragimov D.N. *Trudy MAI*, 2016, no. 87. URL: https://trudymai.ru/eng/published.php?ID=69797

14. Uryupin I.V. *Trudy MAI*, 2018, no. 100. URL: https://trudymai.ru/eng/published.php?ID=93292

15. Vatutin M.A., Klyuchnikov A.I. *Trudy MAI*, 2022, no. 127. URL: <u>https://trudymai.ru/eng/published.php?ID=170355</u>. DOI: <u>10.34759/trd-2022-127-22</u>

16. Ezrokhi Yu.A., Kalenskii S.M. *Trudy MAI*, 2022, no. 123. URL: https://trudymai.ru/eng/published.php?ID=165500. DOI: <u>10.34759/trd-2022-123-23</u>

 Vel'misov P.A., Pokladova Yu.V., Mizkher U.D. Avtomatizatsiya protsessov upravleniya, 2019, no. 3 (57), pp. 93-101. DOI: <u>10.35752/1991-2927-2019-3-57-93-101</u>
 Vel'misov P.A., Ankilov A.V., Pokladova Y.V. On The Stability of Solutions of Certain Classes of Initial-Boundary-Value Problems in Aerohydroelasticity, *Journal of Mathematical Sciences*, 2021, vol. 259, no. 3, pp. 296-308. DOI: <u>10.1007/s10958-021-</u> 05618-6

19. Aida-Zade K.R., Abdullaev V.M. Avtomatika i telemekhanika, 2022, no. 1, pp. 130-149.

20. Goncharova V.I. Svidetel'stvo o gosudarstvennoi registratsii programmy dlya EVM № 2023666043 RF, 25.07.2023.

21.Ankilov A.V., Vel'misov P.A. Vestnik Dagestanskogo gosudarstvennogo universiteta. Seriya 1: Estestvennye nauki, 2020, vol. 35, no. 3, pp. 45-52. DOI: <u>10.21779/2542-0321-</u> 2020-35-3-45-52

22. Abdelbaki A.R., Paidoussis M.P., Misra A.K. A nonlinear model for a hanging cantilevered pipe discharging fluid with a partially-confined external flow, *International Journal of Non-Linear Mechanics*, 2020, vol. 118. DOI: <u>10.1016/j.ijnonlinmec.2019.103290</u>

23. Velmisov P.A., Ankilov A.V. Mathematical modeling in problems about dynamics and stability of elastic elements of wing profiles, *Cybernetics and Physics*, 2021, vol. 10, no. 3, pp. 201-212. DOI: <u>10.35470/2226-4116-2021-10-3-201-212</u>

24. Ivanov D.V., Sandler I.L., Diligenskaya A.N. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki, 2022, vol. 30, no. 3 (75), pp. 45-

57. DOI: <u>10.14498/tech.2022.3.4</u>

Статья поступила в редакцию 05.12.2023 Одобрена после рецензирования 08.12.2023 Принята к публикации 27.02.2024 The article was submitted on 05.12.2023; approved after reviewing on 08.12.2023; accepted for publication on 27.02.2024