На правах рукописи

Augennet

АЙДЕМИР ТИМУР

КОМПОЗИТЫ НА ОСНОВЕ НАНОЧАСТИЦ FeCo: ПОЛУЧЕНИЕ, СТРУКТУРА И СВОЙСТВА

Специальность 2.6.17. «Материаловедение» (технические науки)

Автореферат диссертации на соискание учёной степени кандидата технических наук

Москва, 2022 г.

Работа выполнена на кафедре «Авиационные материалы и технологии в медицине» федерального государственного бюджетного образовательного учреждения высшего образования «Московский авиационный институт (национальный исследовательский университет)»

Научный	доктор химических наук, доцент						
руководитель	Кыдралиева Камиля Асылбековна						
Официальные оппоненты	Шкинев Валерий Михайлович, доктор химических наук, доцент, ФГБУН «Институт геохимии и аналитической химии им. Д.И. Вернадского РАН», ведущий научный сотрудник						
	Суясова Марина Вадимовна, кандидат физико- математических наук, ФГБУ «Петербургский институт ядерной физики им. Б.П. Константинова национального исследовательского центра «Курчатовский институт», и.о. заведующего лабораторией						
Ведущая организация:	Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН), г. Москва						

Защита диссертации состоится «15» декабря 2022 года в 14:00 часов на заседании диссертационного совета 24.2.327.04 (Д 212.125.15) в ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)» по адресу: г. Москва, ул. Оршанская, 3, ауд. 307Б. Отзывы на автореферат в двух экземплярах, заверенные печатью организации, просим направлять по адресу: 125993, г. Москва, Волоколамское шоссе, д. 4, А-80, ГСП-3, МАИ, ученому секретарю диссертационного совета Скворцовой Светлане Владимировне и по электронной почте: <u>skvortsovasv@mai.ru</u>.

С диссертацией можно ознакомиться в библиотеке Университета и на сайте https://mai.ru/upload/iblock/af8/vg4hfq6abphtbhi3wrccxdmtkuev7z5d/Dissertatsiya_AydemirT_.pdf

Автореферат разослан «____» ____ 2022 г.

Ученый секретарь диссертационного Совета

Cuth

Скворцова С.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы.

В настоящее время переход от изучения монометаллических наночастиц, в частности, металлов Fe и Co, к бинарным системам представляется наиболее перспективным благодаря возможности варьирования в широких пределах их химических и физических свойств за счет изменения состава и проявления синергетических эффектов. Биметаллические наночастицы FeCo обладают наибольшими значениями намагниченности насыщения и высокой температурой Кюри, что определяет обширную область их применений в современных технологиях в качестве магнитных материалов, в том числе, в качестве нанодисперсных магнитореологических жидкостей для магнитожидкостных демпферов.

Для получения биметаллических наночастиц в настоящее время используются различные методы, например, в растворе, в газовой фазе или термическое разложение предшественников, при этом некоторые из них аналогичны базовым методам синтеза монометаллических наночастиц. Одним из перспективных способов получения биметаллических наночастиц является разработанный в ИПХФ РАН¹ и использованный в представленной работе метод термолиза многокомпонентных соединений-предшественников, содержащих в необходимых своем составе оба металла (single-source precursor). Применительно к выбранным FeCo наночастицам такими предшественниками являлись акриламидные комплексы Fe(III) И Co(II), фронтальная сополимеризация которых и последующий термолиз в условиях сравнительно низких (400-500 °C) температур приводит к получению наночастиц Fe или Co в графитоподобной оболочке. Перспективным для изменения химических и электрофизических свойств углеродных наноматериалов является модифицирование углеродной структуры гетероатомом – азотом, влияющим на матричную стабилизацию металлических наночастиц и их электронное состояние и функциональные свойства. В настоящей работе для получения FeCo в углеродной матрице, допированной азотом, предлагается использовать подход, основанный на одновременном получении наночастиц FeCo и углеродной допированной азотом, азот-содержащего матрицы, ИЗ молекулярного предшественника – полиакриламидного комплекса металлов. В совокупности, с простотой синтеза биметаллических полимерных комплексов методом фронтальной мономерных полимеризации ИХ прекурсоров И легко контролируемым процессом термолиза эта методика позволяет модифицировать углеродную структуру азотом.

Степень разработанности. Направление по разработке металлополимерных нанокомпозитов непосредственно в ходе фронтальной полимеризации (ФП) металлосодержащих мономеров было сформировано и получило свое развитие в 80-90-х годах в Институте проблем химической физики РАН, ключевые результаты которых отражены в многочисленных работах А.Д. Помогайло и Г.И. Джардималиевой. Фронтальная полимеризация для твердофазного мономерного

¹ Джардималиева Г. И. (Со)полимеризация и термические превращения металлосодержащих мономеров как путь создания металлополимеров и нанокомпозитов: Дисс. ... д.х.н. – 2009

комплекса впервые была описана в 1980 г. В.С. Савостьяновым, А.Д. Помогайло и др. и в 1993 г. J.A. Pojman, I.P. Nagy, С. Salter для акриламидных производных, твердофазными продуктами термических превращений которого являются металлические наночастицы. Позже в 2000-х Е. Maciejewska, Е. Sówka, М. Г.И. А.Д. Помогайло, Джардималиевой были Leonowicz, получены монометаллические Fe-И Со-содержащие нанокомпозиты путем ΦП полиакриламидных комплексов и последующего термолиза продуктов реакции. особенностей работы являлось установление формирования Целью наночастиц FeCo в N-допированной углеродной оболочке при термолизе полиакриламидных комплексов металлов И взаимосвязи между микроструктурой физико-химическими свойствами наночастиц И И наноматериалов на их основе и поиск перспективных приложений полученных материалов. Для достижения цели работы решались следующие задачи:

- 1. Получение металлосодержащих нанокомпозитов FeCo в полимерной матрице путем термолиза Fe(III)Co(II)-полиакриламидных комплексов FeCoPolyAAm и анализ их микроструктуры, морфологии и состава.
- 2. Получение композиционных материалов FeCoPolyAAm/ПЭВД и FeCo/С-N/ПЭВД методом инжекционного формования и анализ их микроструктуры и состава.
- 3. Оценка влияния структурных характеристик наночастиц FeCo/C-N на физико-механические, термические и реологические свойства композиционных материалов.
- 4. Анализ функциональных (магнитных и трибологических) свойств композиционных материалов.
- 5. Разработка концепции демпфера, функционирующего на нанодисперсной магнитореологической жидкости на основе наночастиц FeCo/C-N.

Научная новизна полученных результатов заключается в следующем:

- 1. Впервые получены функциональные материалы на основе биметаллических наночастиц FeCo в углеродной матрице, допированной атомами азота, путем твердофазной термически инициированной фронтальной полимеризации сокристаллизатных полиакриламидных комплексов металлов Fe(III)Co(II) и последующего контролируемого термолиза полимерных продуктов.
- 2. Показано, что использование сокристаллизатов акриламидных комплексов нитратов Fe(III)Co(II) для получения полимерных материалов как FeCo/C-N молекулярных прекурсоров наночастиц является технологически выгодным, поскольку позволяет получать оболочке, биметаллические наночастицы FeCo углеродной В допированной азотом, без каких-либо внешних инициаторов или активаторов.
- 3. Показана термическая стабильность композиционных материалов на основе наночастиц FeCo/C-N в ПЭВД матрице, подтвержденная индексом

термостойкости HRI, который увеличивается с ростом концентрации FeCo/C-N с 237 до 241 °C, а также данными ДСК и ТГА.

- 4. Показаны перспективные направления применения материалов на основе композитов FeCoPolyAAm/ПЭВД в качестве эффективных антифрикционных систем (снижение износа пары трения в 2,5 раза) и наночастиц FeCo/C-N в качестве функциональных магнитоактивных наполнителей для магнитореологических жидкостей.
- 5. Продемонстрирована демпфирующая способность полученных композиционных материалов FeCoPolyAAm/ПЭВД (максимум достигается при концентрации 10 масс.%, температура от 0 до 130°С, демпфирование от 0,14 до 0,21 отн.ед.) и FeCo/C-N/ПЭВД (максимум достигается при концентрации 5 масс.%, температура от -150 до 130°С, демпфирование от 0,15 до 0,2 отн.ед.).
- 6. Разработана концепция демпфирующего устройства с нанодисперсной магнитореологической жидкостью на основе наночастиц FeCo/C-N.

Теоретическая И практическая значимость работы. Разработанные эффективные методы получения функциональных материалов на основе наночастиц FeCo/C-N путем твердофазной термически инициированной фронтальной полимеризации сокристаллизатных полиакриламидных комплексов металлов и последующего контролируемого термолиза полимерных формировать одновременно высокодисперсные продуктов позволяют биметаллические наночастицы и стабилизирующую их С-N оболочку. Полученные композиты на основе ПЭВД матриц, наполненные частицами комплекса FeCoPolyAAm (прекурсорами наночастиц полиакриламидного FeCo/C-N), проявляют повышенные антифрикционные показатели и могут быть пригодны к использованию в технических узлах трения-скольжения (акт внедрения от 04.10.2021 г). Полученные магнитореологические жидкости на основе наночастиц FeCo/C-N способны значительно повышать вязкость растворителя в диапазоне от 0,1 до 1 Гц, что позволяет их использовать для низкочастотных устройств.

Разработанная модель демпфирующего устройства на магнитореологической жидкости с управляемой демпфирующей способностью может позволить осуществлять эффективное гашение низкочастотных колебаний с возможностью механической подстройки демпфирования (патент RU 2 769 591 C1 от 04.04.2022 г.

Методология и методы исследования. Для получения композитов на основе наночастиц FeCo в N-допированной углеродной матрице использован полимеропосредованный синтез металлосодержащих наночастиц, заключающийся в одновременном формировании высокодисперсных частиц и стабилизирующей полимерной матрицы в ходе твердофазной полимеризации металлосодержащих мономеров с последующим контролируемом термолизом. Структуру и состав нанокомпозитов изучали методами инфракрасной спектроскопии (Specord 75 IR) и элементного анализов (AAS3 VEB Feinmesszeug fabrik, Zeiss). Для термического исследования и изучения условия твердофазной термической полимеризации использовали методы термогравиметрического анализа (TGA Q500 V6.7 Build 20) и дифференциальной сканирующей калориметрии (Mettler DSC 30). Фазовый состав и микроструктуру образцов нанокомпозиционных материалов изучали с использованием методов рентгенофазового анализа (ARL просвечивающей электронной микроскопии (НИЦ X'TRA, Cu-Ka) и «Курчатовский институт», институт кристаллографии им. А.В. Шубникова, «Кристаллография и фотоника» РАН). Исследование ФНИЦ физикомеханических свойств композитов проводили на универсальной машине UTS 10, Noske-Kaeser и Zwick/Roel Z010 TC-FR010TH согласно ГОСТ 11262-2017 (ISO 527-2:2012), динамический механический анализ – на приборе DMA 242 С (Netzsch-Gerätebau GmbH) и DMA Q800 (TA Instr.). Образцы для испытаний готовили на двухшнековом мини-экструдере HAAKE Minilab в атмосфере азота с последующим литьем под давлением в прессформу. Трибологические свойства композитов исследовали на торцевой машине трения УМТ 200, реологические на роторном реовискозиметре Rheostress RS150 (HAAKE). Температура образцов контролировалась термоконтроллером НААКЕ DC50. Магнитные свойства изучали с использованием вибрационного магнитометра VSM M4500.

Положения, выносимые на защиту:

- 1. Метод получения наночастиц FeCo в N-допированной углеродной оболочке путем термолиза полиакриамидных комплексов металлов.
- Результаты исследования микроструктуры и состава наночастиц FeCo/C-N, образующихся при термолизе полиакриламидных комплексов металлов, и наноматериалов на его основе, полученные методами рентгенофазового анализа, просвечивающей электронной микроскопии, энергодисперсионной спектроскопии, ИК-спектроскопии.
- 3. Результаты исследования теплофизических, физико-механических, магнитных и реологических свойств нанокомпозитов, полученные методами ДСК, ТГА, СМА, ДМА, вибрационной магнитометрии и ротационной вискозиметрии.
- 4. Моделирование демпфера с нанодисперсной магнитореологической жидкостью на основе наночастиц FeCo/C-N.

Степень достоверности и апробация работы. Достоверность полученных в работе данных обеспечивается высоким теоретическим уровнем исследований и использованием комплекса современных физико-химических методов анализа. Материалы диссертации были доложены в форме устных или стендовых докладов на 8-ой, 9-ой, 10-ой Всероссийских научных конференциях с «Механика композиционных участием материалов международным И конструкций, сложных и гетерогенных сред» (Москва, 2018, 2019, 2020); XXXVI Всероссийском симпозиуме молодых ученых по химической кинетике (Московская обл., 2019); 12-th International Conference on Composite Science and (Италия, 2019), 18-th IUPAC International Symposium Technology on Macromolecular Complexes (MMC-18, Russia, 2019); Международной научной

конференции студентов, аспирантов и молодых учёных «Ломоносов-2021» (Россия, 2021).

Работа выполнялась при финансовой поддержке Российского фонда фундаментальных исследований (проект № 19-38-90138, Аспиранты).

Публикации. По результатам проведенных исследований опубликованы 12 работ, из них 1 в издании, входящем в перечень ВАК и 4 статьи в научных журналах, включенных в международные системы цитирования (Scopus, Web of Science), а также 7 тезисов докладов.

Личный вклад автора. Личный вклад автора в диссертационную работу состоит в постановке цели и задач исследования, получении образцов композитов и магнитореологических жидкостей и их анализа. Автор лично испытаниях образцов, обработке участие В полученных принимал экспериментальных данных, разработке концепции демпфируюшего устройства, полученных результатов формулировании систематизации И выводов диссертационной работы.

Объем и структура диссертации. Диссертационная работа состоит из введения, 3 глав, заключения, списка литературы из 164 наименований и приложений. Работа изложена на 157 страницах и включает 105 рисунков и 10 таблиц.

Основное содержание работы

Во введении обоснована актуальность работы, сформулированы цель и задачи, изложены научная новизна, практическая ценность работы и основные положения, выносимые на защиту.

Глава 1 (обзор литературы) содержит описание проблемы получения физическими и химическими методами и применения материалов, включающих наночастицы FeCo, получения функциональных магнитоактивных наночастиц FeCo в карбонизированной оболочке, допированной атомами азота. Показаны способа лостоинства И перспективы синтеза металлосодержащих нанокомпозитов путем термолиза полимерных металлосодержащих комплексов. Представлены современные исследования в области получения и применения углеродных наноматериалов, допированных азотом, и роль азота в улучшении электрофизических свойств углеродных химических И нанокомпозитов. Приведены методы анализа магнитореологических суспензий И проанализированы математические подходы к оценке внутреннего (вязкостного) трения материалов, которые в дальнейшем применялись в выполненном диссертационном исследовании.

В главе 2 Материалы и методы содержатся описание используемых препаратов, а также методики подготовки образцов нанокомпозитов и проведения экспериментов (рисунок 1). Наночастицы FeCo получены реакцией твердофазной полимеризации металлосодержащих мономеров FeAAm и CoAAm – [(Fe(CH₂=CHCONH₂)₄(H₂O)₃(NO₃)₂] и [(Co(CH₂=CHCONH₂)₄(H₂O)₂(NO₃)₂] при атмосферном давлении в самогенерируемой атмосфере путем кратковременного инициирования тепловым импульсным воздействием подвижного фронта

полимеризации в режиме 453 К на заготовку в течение 10-12 сек с последующим контролируемым термолизом формирующихся металлополимеров.

Рисунок 1 – Схема получения нанокомпозитов

FeCoPolyAAm Термолиз проводили В статических изотермических условиях при 673 К в самогенерируемой атмосфере, в условиях динамического вакуума и в среде аргона. Для получения материалов на основе наночастиц, в качестве матрицы применяли высокого полиэтилен давления (ПЭВД) марки 15803-020, пленочный, сорт высший, ГОСТ 16337-77 (Сибур). Для формования образцов композиционных использовали метод инжекционного литья В разогретую до 423 К пресс-форму. Концентрацию наночастиц FeCo варьировали от 1 до 10 масс. %. Пленочные образцы получали горячего прессования. методом Суспензии получали путем

добавления различных концентраций наночастиц (5, 10, 20, 30 масс. %) в амортизационное масло (LIQUI MOLY 5W Light) на основе полиальфаолефинов (ПАО) и диспергирования в ультразвуковой ванне в течение 5 мин при 300 К. Описаны методы исследования структуры и свойств получаемых нанокомпозиционных материалов с применением современного оборудования.

Глава 3. Результаты и их обсуждение

3.1. Получение, состав и микроструктура биметаллических наночастиц

Среди различных подходов к получению металлополимерных нанокомпозитов наиболее технологичными и интегрируемыми в существующие производственные процессы получения и переработки полимеров являются методы совместного формирования дисперсной фазы и полимерной матрицы в одном реакторе.

Для получения биметаллического нанокомпозита ИЗ комплекса (сокристаллизата) FeCoAAm использовали метод фронтальной полимеризации, при котором проходило автоволновое превращение мономера ААт в полимер локализованной реакционной зоне И послойном режиме, PolyAAm В распространяющимся по всему объему. При этом происходили процессы образования наноразмерных частиц FeCo и стабилизирующей их полимерной оболочки PolyAAm in situ, основанные на реакции сополимеризации металломономера в содержащего твердой фазе. Установлено, что изменение существенно температуры инициирования не влияет скорость на

Рисунок 2 – Температурный профиль полимеризационного процесса во фронтальном режиме для образца FeCoAAm (*T*₃ = 413 К, параметры заготовки: *d*_{oбp} = 1,2 см, *ρ* = 1,45 г/см³)

ПЭВД матриц и ПАО среды.

распространения фронта полимеризации (рисунок 2). Для кристаллического получения образец нанокомпозита комплекса полиакриламидного FeCoPolyAAm высушивали В эксикаторе (25°С, Р₂О₅). Далее высушенный продукт подвергали термолизу при 673 К в атмосфере Термолиз азота. проводили объемным нагреванием в печи в 150 течение МИН. Ha выходе получали высокодисперсный порошкообразный нанокомпозит FeCo/C-N, который в дальнейшем подвергали исследованиям И использовали как наполнитель для

Обработка дифрактограмм с применением различных моделей, основанных на функциях Гаусса, Лоренца, Войта, псевдо-Войта, Пирсона, и идентификация фаз методом Ритвельда (рисунок 3) позволила определить фазу наночастиц FeCo.

Рисунок 3 – Дифрактограмма биметаллических наночастиц FeCo/C-N (термолиз при 673 К)

Данные ПЭМ для образца FeCo/C-N указывают на равномерное распределение наночастиц FeCo сферического типа, среднего размера 10 нм (рисунок 4, а, б). Полученные данные ПЭМ о размере наночастиц согласуются с расчетными данными, полученными из данных РФА и вычисленными по уравнению Дебая-Шеррера. Согласно данным ПЭМ, наночастицы FeCo/C-N состоят из гетерогенной кластерной структуры сферического типа, состоящей из биметаллических наночастиц Fe и Co, распределенной в допированной атомами азота углеродной матрице (что подтверждается комплексным анализом снимков ПЭМ, элементным анализом и данными картирования (рисунок 5).

Рисунок 4 – Фотография просвечивающей электронной микроскопии нанокомпозита FeCo/C-N (а) и гистограмма распределения наночастиц по размеру (б)

Рисунок 5 – Карты распределения элементов и да, нные элементного анализа для наночастиц FeCo/C-N согласно данным ПЭМ

На ИК-спектрах полученного акриламидного комплекса (рисунок 6) наблюдаются интенсивные полосы пропускания в области 1570 см⁻¹ –

асимметричные валентные колебания v_sC=O и 1372 см⁻¹ – симметричные валентные колебания v_{as}C=O, указывающие на координацию металла через кислород карбонильной группы. Уменьшение площади полосы пропускания для H₂O (1620 см⁻¹) и OH (3418 – 3193 см⁻¹) указывает на дегидратацию в структуре мономера и замещение молекул воды в кристаллогидрате нитрата металла молекулами AAm. Интенсивный расход связей CH указывает на полную полимеризацию комплекса с высокой степенью конверсии. При термолизе исходная структура полимерного комплекса разрушается, на что указывает почти полное отсутствие полос CH с сохранением отдельных фрагментов: колебаний малой интенсивности пропускания CH – 2920 см⁻¹, 2825 см⁻¹ и внеплоскостные деформационные колебания NH (3440 см⁻¹), также частично сохраняются C=C и C–O связи и колебания C–N-групп.

Рисунок 6 – ИК-спектры образцов акриламида, моно- и полиакриламидных биметаллических комплексов металлов и нанокомпозита

Все полосы пропускания для FeCoPolyAAm имеют гауссову форму, что указывает на наличие высокой степени сшивок в системе, так как межатомные и деформационные колебания совершаются в ограниченном пространстве. Протекающие реакции превращения мономера в металлополимер и анализ спектров ИК-спектроскопии позволили установить ключевую роль NO₃ группы в инициировании формирования полимерной цепи металлополимера.

3.2. Состав и микроструктура композиционных материалов на основе наночастиц FeCo/C-N в матрице ПЭВД. Данные РФА композиционных материалов на основе FeCo/C-N и FeCoPolyAAm в ПЭВД матрице (рисунок 7, а) показали наличие трех пиков, типичных для полиэтилена низкой плотности, в то время как характерные для наночастиц FeCo пики не были обнаружены вследствие их невысокой концентрации в составе композиционного материала.

Рисунок 7 – Дифрактограммы (а) и ИК-спектры (б) образцов наноматериалов на основе FeCoPolyAAm и наночастиц FeCo/C-N в матрице ПЭВД

Анализ данных ИК-спектроскопии образцов FeCo/PolyAAm/ПЭВД и FeCo/C-N/ПЭВД, полученных в расплаве ПЭВД (рисунок 7, б), указывает на суперпозицию полос поглощения исходного ПЭВД и наполненного полиэтилена: валентных колебаний -CH (2914-2847 см⁻¹) и деформационных колебаний CH₂, CH₃ (1460-718 см⁻¹), что вызвано отсутствием существенных структурных изменений в ПЭВД матрице при введении наполнителей. Результаты элементного анализа состава образцов композиционных материалов указывают на наличие азота. Концентрация металлов Fe и Co закономерно возрастает при увеличении концентрации наполнителя в ПЭВД.

3.3. Термофизический анализ материалов FeCo/C-N/ПЭВД. Термический анализ образцов FeCo/C-N в ПЭВД матрице проводился методами ДСК (в режимах сохранения и удаления технологической предыстории), а также ТГА (рисунок 8, таблицы 1 и 2).

Установлено, что энтальпия плавления, температура стеклования и кристаллизации не изменяются, что указывает на стабильность полиэтилена (устойчивость к температурным перепадам) и совместимость структуры материала ПЭВД при его взаимодействии с наполнителем.

Сравнительный анализ данных ДСК для образцов ПЭВД и нанокомпозита с максимальным наполнением 10 масс. % FeCo/C-N не выявил значительных изменений в теплофизических характеристиках материала, что указывает на низкую степень воздействия наночастиц на термическое поведение полимерной матрицы (рисунок 9).

Рисунок 8 - Сравнение ДСК кривых для ПЭВД и композита 10 масс.% FeCo/C-N

Таблица 1 – Данные ДСК-анализа для образцов FeCo/C-N/ПЭВД

Образец	$T_{\rm CT}$, °C	$T_{\rm \kappa p}, {}^{\rm o}{\rm C}$	$T_{\Pi \pi}^T$, °C	<i>Т</i> ⁰ _{пл} , °С	$\chi^T_{\pi\pi}, \%$	χ ⁰ _{пл} , %
ПЭВД	40,13	94,70	109,24	107,74	29,08	31,18
3% FeCo/C	38,08	95,02	108,23	107,74	24,35	29,98
5% FeCo/C-N	37,91	95,41	108,04	107,38	26,10	29,51
7% FeCo/C-N	39,94	94,73	107,76	107,88	26,78	30,99
10% FeCo/C-N	36,65	94,83	106,42	106,92	23,58	29,08

* T_{cr} – температура стеклования (первичный нагрев); $T_{\kappa p}$ – температура кристаллизации; $T_{n\pi}^{T}$ – температура плавления (первичный нагрев); $T_{n\pi}^{0}$ – температура плавления (вторичный нагрев); $\chi_{n\pi}^{T}$ – степень кристалличности (первичный нагрев); $\chi_{n\pi}^{0}$ – степень кристалличности (вторичный нагрев)

Таблица 2 – Данные ДСК и ТГА анализа образцов FeCo/C-N/ПЭВД

Образец	T_{SD} , °C	T_{FD} , °C	<i>m,</i> %	$\Delta H_{\Pi \pi}^{T}$, Дж/г	Δ <i>H</i> ⁰ _{пл} , Дж/г
ПЭВД	448	494	99	85,21	91,36
3% FeCo/C	458	498	98	71,35	87,86
5% FeCo/C-N	458	498	97	76,48	86,49
7% FeCo/C-N	458	498	95	78,49	90,82
10% FeCo/C-N	460	498	93	69,11	85,23

 $*T_{SD}$ – температура начала термодеструкции; T_{FD} – конец термодеструкции; m – потеря массы; ΔH_{nn}^T – энтальпия плавления (первичный нагрев); ΔH_{nn}^0 – энтальпия плавления (вторичный нагрев)

Термогравиметрический анализ образцов FeCo/C-N в ПЭВД матрице (таблица 2) показал, что температура начала разложения полимерной матрицы без частиц нанокомпозита FeCo/C-N составляет 448 °C, при добавлении наночастиц температура начала термического разложения композиционного

материала повышается на ~10 °C.

Рисунок 9 – ДСК кривые для композитов с различной концентрацией наполнителя в ПЭВД (а), зависимость теплоемкости от концентрации наполнителя в ПЭВД (б)

Согласно данным ДСК анализа образцов нанокомпозитов В полиэтиленовой матрице в режиме широкодиапазонного температурного измерения (рисунок 9а), введение наполнителя незначительно изменяет степень кристалличности ПЭВД матрицы. С увеличением концентрации наночастиц в ПЭВД матрице до 10 масс. % снижается теплоемкость материалов (рисунок 96), что коррелирует со снижением степени кристалличности ПЭВД матрицы с ростом концентрации наполнителя и указывает на увеличение теплопроводности температуропроводности HRI (heat resistance index) композитов И соответственно. Композит с максимальным наполнением 10 масс. % наночастиц индуцирует пик при 286,94 °C при мощности теплового потока 0,51 мВт, вероятно, характерный для начала процессов термической деструкции.

Теплопроводность композитов на основе ПЭВД незначительно увеличивается с увеличением содержания наполнителя с 0,0030 Вт/см·К для незаполненного ПЭВД до 0,0041 Вт/см·К для композита с содержанием 10 масс.% наночастиц, что указывает на хорошие теплоизоляционные свойства полученных композиционных материалов (рисунок 10а).

Анализ на термостойкость полученных композитов (рисунок 10б) показал, что индекс термостойкости повышается с увеличением содержания FeCo/C-N с 237°C для незаполненного ПЭВД до 241 °C для композита, заполненного 10 масс. % FeCo/C-N. Полученные результаты свидетельствуют о том, что введение наночастиц FeCo/C-N повышает термическую стабильность композитов.

Рисунок 10 – Зависимость теплопроводности от концентрации наполнителя в ПЭВД (а), зависимость индекса термостойкости HRI от концентрации наполнителя в ПЭВД (б)

3.4. **FeCo/C-N/ПЭВД.** Физико-механические свойства материалов Установлено, что с увеличением доли наполнителя модуль упругости для образцов FeCo/C-N в ПЭВД матрице уменьшается (рисунки 10а и б), что связано с ограничением подвижности полимерных цепей и многослойной структурой композита, в которой могут образовываться дополнительные плоскости скольжения деформации. Соответственно с ростом концентрации наполнителя (упругость) композитов увеличивается, эластичность при этом более интенсивный рост наблюдается при наполнении ПЭВД наночастицами FeCo/C-N. С увеличением доли наполнителя предел прочности материала (рисунки 11a и в) также снижается, что связано с ростом распределенных концентраторов напряжений в объеме ПЭВД матрицы.

Рисунок 11 – Кривые напряжение-деформация (а), зависимость модуля упругости (б) и предела прочности при растяжении (в) нанокомпозита от содержания наполнителя

3.5. Трибологические свойства материалов FeCoPolyAAm/ПЭВД. Исследования трибологических свойств материалов, проведенные для образцов FeCoPolyAAm, показали снижение коэффициента трения (рисунок 12а) и потери массы на износ (рисунок 12б). Установлено, что добавление в ПЭВД частиц FeCoPolyAAm с концентрацией 1 масс. % способствует уменьшению износа пары трения в 2,5 раза в сравнении с износом при трении ПЭВД, что также коррелирует с результатами антифрикционных испытаний. Дальнейшее увеличение концентрации частиц до 3 и 5 масс. % FeCoPolyAAm в ПЭВД матрице приводит к увеличению износа трибосопряженных материалов, что вызвано увеличением пористости структуры, ростом абразивных конгломератов и уменьшением его прочности.

Рисунок 12 – Зависимость коэффициента трения от времени сдвига (а), зависимость коэффициента износа от концентрации наполнителя (б)

По результатам оптической микроскопии (рисунок 13 а-д) на поверхности заготовок после трения обнаружены пузырьки воздуха и множественные микродефекты, что указывает на образование плоскостей скольжения в поверхностных слоях материала, а также трансформацию механической энергии в тепловой эквивалент в зоне контакта.

Рисунок 13 – Снимки оптической микроскопии поверхности образцов после трения: (а) – ПЭВД гранулы, (б) – ПЭВД (переработка в экструдере), (в) – 1% FeCoPolyAAm/ПЭВД, (г) – 3% FeCoPolyAAm/ПЭВД, (д) – 5%FeCoPolyAAm/ПЭВД

3.6. Динамический механический анализ материалов при амплитуде колебаний 30 мкм. Анализ модуля накопления и потерь для образцов наполненного полиэтилена показывает, что с ростом концентрации наночастиц в ПЭВД матрице растут как потери на внутреннее трение (модуль накопления энергии, рисунок 14а), так и потери на диссипацию энергии во внешнюю среду (модуль потерь энергии, рисунок 14б). С ростом концентрации наполнителя интенсивность нарастания диссипации энергии для композитов, наполненных FeCo/C-N выше, чем для FeCoPolyAAm, что вероятно, обусловлено наличием углеродной матрицы и наноразмерным наполнителем FeCo/C-N. Анализ тангенса угла механических потерь (рисунок 14^B), как комплексной демпфирования, характеристики показал. что максимальная область эффективного вибропоглощения композитов находится в диапазоне температур стеклования. Наименьшим вибропоглощением в полном диапазоне температур (-150...+150 °С) обладает образец без наполнителя (исходный ПЭВД). Образцы ПЭВД, наполненные FeCoPolyAAm, за счет полимер-полимерной структуры характеризуются увеличенной демпфирующей способностью при температурах от 0 до 130°С и концентрациях от 7 до 10 масс.%, тогда как композитный FeCo/C-N, материал, наполненный за счет улучшенной термической стабильности в широком диапазоне температур (-150...+130°C) показывает увеличение демпфирующей способности в среднем на 8% по сравнению с ПЭВД при концентрациях, не превышающих 5 масс. %, а при комнатной температуре стационарно-стабильный лемонстрирует характер концентрационной зависимости (рисунок 14, в), что обусловлено кристаллической структурой наночастиц FeCo/C-N.

Рисунок 14 – Зависимость модуля накопления (а), модуля потерь (б) и тангенса угла механических потерь (в) от концентрации наполнителей для композитов

3.7. Магнитные свойства материалов. Установлено, что биметаллические наночастицы FeCo/C-N совмещают магнитные характеристики обоих металлов - высокую температуру Кюри, характерную для кобальта (до 850 °C), относительно высокие показатели остаточной намагниченности (до 1,5 эме/г), намагниченности насыщения (до 10 эме/г) и коэрцитивной силы (до 120 Э)

характерные для железа.

Исследование магнитных свойств нанокомпозитов в матрице ПЭВД (рисунок 15) показало, что для образцов с содержанием 7 масс. % FeCo/C-N наблюдается наибольшая величина коэрцитивной силы до 114,5 Э с сохранением динамики роста остаточной намагниченности и намагниченности насыщения. Образец с 10 масс. % FeCo/C-N в ПЭВД показал значительное увеличение остаточной намагниченности и намагниченности насыщения. При этом, коэрцитивная сила материала не возросла и составила 110-112 Э. Образцы FeCoPolyAAm/ПЭВД не проявляли магнитных свойств.

Рисунок 15 – Петли гистерезиса для нанокомпозитов FeCo/C-N, Fe/C-N, Co/C-N (а) и наноматериала FeCo/C-N/ПЭВД (б), измеренные при 300 К в магнитном поле 15000 Э

Анализ характера и формы кривых наночастиц FeCo/C-N и композитов на их основе показал, что магнитный гистерезис, полученный вибрационной магнитометрией образца FeCo/C-N, соответствует 2 типам магнетизма, а именно ферромагнетизму с незначительным проявлением суперпарамагнетизма, на что указывают предельно узкая петля гистерезиса, повышенная намагниченность насыщения и предельно близкие к нулю значения остаточной намагниченности.

3.8. Реологические свойства суспензий FeCo/C-N/ПАО. Анализ вязкости суспензий показал, что модуль потерь (G") превышает модуль накопления (G') во всем диапазоне амплитуд напряжений 0-100 Па, что указывает на преобладание вязких свойств суспензии над упругими. Кривые течения, полученные в ходе аппроксимации нативных кривых по математической модели, представлены на рисунке 16 (a, б).

Рисунок 16 – Кривые течения, полученные в ходе аппроксимации исходных кривых по математической модели

Обнаруженные области 0,1-1 Гц интенсивного роста относительной вязкости образцов с ростом концентрации FeCo/C-N (рисунок 17а) и, напротив, относительной вязкости при уменьшения (рисунок 176) повышении концентрации наночастиц FeCo/C-N при дальнейшем увеличении частоты от 1 до 100 Гц, позволяют прогнозировать реологическое поведение ПАО при добавлении наночастиц FeCo/C-N и определить начальные условия разработки МРЖ демпфера. Таким образом, установлено псевдопластичное поведение полученных суспензий. Известно, что при помещении таких суспензий в магнитное поле системы демонстрируют вязкопластичные свойства, что делает их пригодными для работы в функциональных устройствах.

Рисунок 17 – Зависимость относительной вязкости суспензии от концентрации FeCo/C-N в диапазоне 1–100 Гц (а), зависимость относительной вязкости суспензии от концентрации FeCo/C-N в диапазоне 0,1 – 1 Гц (б)

3.9. Концепция магнитореологического демпферного устройства. Принцип работы разработанного устройства основан на перекачке предварительно полученной магнитореологической суспензии FeCo/C-N/ПАО между тремя гидравлическими камерами через калиброванные фильеры. Возврат основного поршня выполняется за счет создаваемого отрицательного давления в камерах, а также за счет вспомогательной возвратной пружины в пневматической камере и избыточного давления воздуха в ней. Подстройка демпфирования устройства осуществляется перемещением (ручным, электроприводным, гидравлическим, пневматическим методом) рамы с контуром постоянных магнитов.

выводы

- 1. Впервые методом полимер-опосредованного синтеза получены матричностабилизированные биметаллические наночастицы в N-допированной углеродной оболочке FeCo/C-N путем контролируемого термолиза Fe(III)Co(II)-акриламидных комплексов. В полученном при 400 °C нанокомпозите кристаллическая наноструктурированная фаза содержит наночастицы Fe и Co со средним размером 10 нм.
- 2. Показано, что полученные нанокомпозиционные материалы на основе наночастиц FeCo/C-N в матрице полиэтилена высокого давления, основные теплофизические характеристики изменяют полимерной матрицы (температуры плавления, кристаллизации, стеклования и степень кристалличности не более чем на 7%, а также коэффициенты температуропроводности, теплопроводности и теплоемкости не более чем на 12%), что указывает на влияние карбонизированной матрицы Индекс термостойкости наночастиц на структуру ПЭВД. HRI увеличивается с 237 до 241°C, что подтверждает увеличение термической устойчивости композита, наполненного 10 масс.% наночастиц, на 5% по сравнению с исходным ПЭВД.
- 3. Установлено, что добавление в полиэтилен металлополимерных прекурсоров FeCoPolyAAm с концентрацией 1 и 2 масс. % способствует уменьшению износа пары трения в 2,5 раза в сравнении с износом при трении полиэтилена, что коррелирует с результатами антифрикционных испытаний и позволяет применить модель многофазного сдвига.
- 4. Показано увеличение демпфирующей способности композиционных материалов FeCoPolyAAm/ПЭВД и FeCo/C-N/ПЭВД на частоте 1 Гц и амплитуде колебаний 30 мкм. Установлено, что композитный материал, наполненный 5 масс. % наночастиц FeCo/C-N, за счет улучшенной термической стабильности в широком диапазоне температур (-150...+130°С) показывает увеличение демпфирующей способности на 8% (в диапазоне от 0,15 до 0,20 отн.ед.) по сравнению с ПЭВД и демонстрирует стационарно-стабильный характер концентрационной зависимости. Наиболее интенсивный прирост демпфирующей способности с повышением концентрации наночастиц до 10 масс.% наблюдается у композитов FeCoPolyAAm/ПЭВД в узком температурном диапазоне от 0 до 130 °C и составляет от 0,14 до 0,21 отн.ед.

соответственно.

- 5. Показано, что полученные наночастицы FeCo/C-N проявляют свойства ферромагнитных и суперпарамагнитных материалов, а также благодаря синергизму свойств, материалы достигают улучшенных магнитных характеристик: значения коэрцитивной силы H_c, остаточной намагниченности M_r и намагниченности насыщения M_s составляют 120 Э, 1.5 эме/г и 10 эме/г соответственно. Композиционные материалы на основе ПЭВД матриц также являются магнитоактивными: значения H_c, M_r и M_s достигают максимума в композиционных образцах с концентрацией 7-10 масс. % наночастиц FeCo/C-N и составляют 110-114 Э и 0,06 эме/г и 0,4 эме/г соответственно.
- 6. Продемонстрировано, что магнитореологические жидкости на основе FeCo/C-N повышают относительную вязкость суспензии от 1 до 1,20 отн.ед в диапазоне от 0,1 до 1 Гц при максимальном наполнении 30 масс.% наночастиц, что позволяет их использовать для низкочастотных механических устройств с прецизионной подстройкой.
- 7. На основе реологических параметров полученных наносуспензий разработана концепция демпфирующего устройства на магнитореологической жидкости FeCo/C-N/ПАО для гашения низкочастотных колебаний с возможностью механической подстройки демпфирования.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

Статьи в рецензируемых научных журналах (ВАК, Scopus, Web of Science):

- 1. Айдемир Т., Голубева Н.Д., Шершнева И.Н., Кыдралиева К.А., Джардималиева Г.И. Получение, строение и магнитные свойства нанокомпозитов, получаемых термическим разложением Fe(III)Co(II) сокристаллизатных комплексов // Вестник Московского авиационного института. 2019. Т. 26. № 2. С. 170-179.
- Aydemir T., Dzhardimalieva G.I., Kasymova E., Rabinskiy L.N., Tushavina O., Kydralieva K.A. Polymer-mediated Synthesis of Fe-Co Nanocrystalline Alloys: Formulation and properties // Materials Today: Proceedings. – 2021. – Vol. 34. – P. 322-325. DOI: 10.1016/j.matpr.2020.05.570.
- Aydemir T., Burlakova V.E., Drogan E.G., Dzhardimalieva G.I., Uflyand I.E., Shershneva I.N., Kydralieva K.A. Mechanical and tribological properties of polymer materials based on heterometallic Fe (III)Co(II) polyacrylamide complexes // Composites: Mechanics, Computations, Applications: An International Journal. – 2021. – Vol. 12. – No. 2. – P. 81-92. DOI: 10.1615/CompMechComputApplIntJ.2021039242.
- Dzhardimalieva G.I., Aydemir T., Prokofiev M.V., Golubeva N.D., Yumashev O., Bubnova M., Zarrelli M., Uflyand U., Kydralieva K.A. FeCo@N-doped nanoparticles encapsulated in polyacrylamide-derived carbon nanocages as a functional filler for polyethylene system // Chemistry Select. 2021. Vol. 6. P. 8546-8559. DOI: 10.1002/slct.2021016.
- 5. Aydemir T., Semenov N.A., Dzhardimalieva G. I., Danilin A.N., Zarrelli M.,

Ozherelkova L., Kydralieva K.A. Rheological properties of nanocomposites FeCo@C-N based on suspensions in PAO liquid phase // Nanoscience and Technology: An International Journal. – 2022. – Vol. 13. – No. 1. – P. 85-97. DOI: 10.1615/NanoSciTechnolIntJ.2021039556.

6. Пат. 2 769 591, С1, Российская Федерация, МПК F16F 9/53 (2006/01). Магнитореологический демпфер / Айдемир Т., Данилин А.Н., Джардималиева Г.И., Кыдралиева К.А., Левин Ю.К.; заявитель и патентообладатель ИПРИМ РАН. – № 2021123385; заявл. 05.08.2021; опубл. 04.04.2022, Бюл. № 10.

Тезисы докладов и материалы конференций:

- 1. Айдемир Т., Джардималиева Г.И., Кыдралиева К.А. Полимеропосредованный синтез нанокристаллических сплавов Fe-Co: получение и свойства // Сборник тезисов докладов 8-ой Всероссийской научной конференции с международным участием им. И.Ф. Образцова и Ю.Г. Яновского, Москва (ИПРИМ РАН), 18-19 декабря 2018. – 2018. – С. 13.
- Aydemir T., Dzhardimalieva G.I, Rabinskiy L.N., Tushavina O., Kydralieva K.A. Polymer-mediated synthesis of Fe-Co nanocrystalline alloys: formulation and properties // Proceedings of the 12-th International Conference on Composite Science and Technology, Sorrento, Italy, May 2019. P. 10.
- **3.** Dzhardimalieva G.I, **Aydemir T.,** Rabinskiy L.N., Tushavina O., Kydralieva K.A. Polymer-mediated synthesis of Fe-Co nanocrystalline alloys: formulation and properties // Proceedings: 18-th IUPAC International Symposium on Macromolecular Complexes (MMC-18), Moscow, Russia, June, 2019. P. 10.
- 4. Айдемир Т., Кыдралиева К.А., Джардималиева Г.И. Полимеропосредованный синтез нанокристаллических сплавов Fe-Co и Fe-Ni: получение и свойства. XXXVI Всероссийский симпозиум молодых ученых по химической кинетике. Сборник трудов. Москва: Московский государственный университет имени М.В. Ломоносова, Химический факультет, 2019. – С. 105.
- 5. Айдемир Т., Шершнева И.Н., Бондаренко Р.А., Джардималиева Г.И., Кыдралиева К.А. Матрично-стабилизированные наночастицы оксидов Fe (III)-Co (II): получение, строение и магнитные свойства // Сборник трудов 9-й Всероссийской научной конференции с международным участием «Механика композиционных материалов и конструкций, сложных и гетерогенных сред», г. Москва (ИПРИМ РАН), 19-21 ноября 2019 г. С. 18.
- 6. Айдемир Т., Джардималиева Г.И., Голубева Н.Д., Кыдралиева К.А. Монои биметаллические нанокомпозиты Fe и Co, полученные фронтальной полимеризацией и термолизом металлосодержащих мономеров // Сборник трудов 10-й Всероссийской научной конференции с международным участием «Механика композиционных материалов и конструкций, сложных и гетерогенных сред», г. Москва (ИПРИМ РАН), 17 ноября 2020 г. – С. 50-54.
- 7. Айдемир Т., Джардималиева Г.И., Кыдралиева К.А. Моно- и

биметаллические наночастицы на основе Fe и Co, полученные фронтальной полимеризаций и последующим термолизом акриламидных комплексов. Материалы Международного молодежного научного форума «ЛОМОНОСОВ-2021» [Электронный ресурс] – М.: МАКС Пресс, 2021, 12-23 апреля 2021.