Аунг Мьё Тху

АНАЛИЗ ДИНАМИЧЕСКОЙ УСТОЙЧИВОСТИ УПРАВЛЕ-НИЯ ПРОМЫШЛЕННЫМ ПРОИЗВОДСТВОМ В КРИЗИСНЫХ СИТУАЦИЯХ

Специальность 05.13.01 – Системный анализ, управление и обработка информации (информатика, управление и вычислительная техника)

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена на кафедре «Системы автоматического и интеллектуального управления» Московского авиационного института (национального исследовательского университета) «МАИ».

Научный руководитель:	доктор технических наук, профессор, заслуженный деятель науки РФ Лебедев Георгий Николаевич
Официальные оппоненты:	доктор технических наук, профессор, Матвеев Михаил Григорьевич, зав. кафедрой Воронежского ГУ
	кандидат технических наук, доцент Канушкин Сергей Владимирович, доцент ВА РВСН им. П. Великого
Ведущая организация:	ФГУП «ГОСНИИАС»
диссертационного совета Д 212.1 ституте (национальном исследова	2013 г. в час. на заседании 25.11 при Московском авиационном ин- ательском университете) «МАИ» по адре- I-3, Волоколамское шоссе, д. 4., зал засе-
С диссертацией можно ознакомит	ъся в библиотеке МАИ.
Автореферат разослан ""	2013 г.
Учёный секретарь Диссертационного совета Д 212.1	25.11
канд. тех. наук, доцент	Горбачев Ю.В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Как показали последние исследования, применение методов автоматического регулирования открывает перспективу эффективного управления производством, если располагать динамическими моделями отдельных звеньев. Особую значимость этот подход приобретает в случае совершенствования технологии и внедрения в производство новой техники, а в кризисных ситуациях анализ условий динамической устойчивости системы имеет исключительную важность. Единственной мерой снижения негативных явлений при спаде производства является оптимальное управление, требующее однако наряду с адекватными моделями объекта использования выбранного критерия эффективности, учитывающего отдельные технико-экономические показатели в свертке.

Существующие методы анализа динамики производства, появившиеся в последнее время в работах Арнольда, Кобринского, Царькова и др, уже используют многозвенные операторные звенья и показали, что в общем случае парадигма саморегулируемой экономики не работает. Можно также констатировать, что методы синтеза оптимального управления, как и критерии эффективности производства, практически отсутствуют. Кроме того, значительная часть работ, посвященных регулированию цены на продукцию при изменении спроса, относится к чисто экономическим задачам, которые в данной диссертации не рассматриваются. Поэтому тема данной диссертационной работы, посвященная задаче оптимального управления производством и последующему анализу динамической устойчивости его развития в кризисных ситуациях, является актуальной.

Целью данной работы является повышение динамической устойчивости развития производства при его переменной рентабельности за счет оптимального управления производственного и технологического звеньев предприятия. Для достижения этой цели в работе осуществлена попытка

перенести основные идеи автоматического управления в сферу промышленного производства, для чего предложены динамические модели производственного и технологического звена и нелинейная свертка терминального критерия эффективности производства, что позволяет поставить и решить задачу оптимизации в обычной постановке задачи.

Очевидно, что возможно лишь поэтапное решение столь сложной задачи, и основной замысел состоит в известном расщеплении процесса на коротко и длинно-периодическое движение-сначала синтезируется процесс управления производственным звеном, затем — технологическим звеном, и далее рассматривается наиболее медленный процесс изменения рентабельности как источник внешних возмущений. В данной работе проводится исследование на первом этапе управления производственным звеном.

На защиту выносятся следующие основные положения:

- терминальный параметрический критерии технико-экономической эффективности управления производством, учитывающий в свертке как достигнутую производственную мощность, так и накопленную прибыль к концу заданного периода;
- постановка и субоптимальное решение задачи синтеза управления производственным звеном при переменной рентабельности предприятия;
- динамическая модель технологического звена и выбор способа управления им с помощью моделирования на ЭВМ;
- анализ динамической устойчивости развития промышленного производства в кризисных ситуациях при использовании найденных способов управления производственным и технологическим звеньями предприятия.

Научная новизна полученных результатов состоит в следующем:

- предложенный критерий эффективности управления имеет вид взвешенной суммы линейной и мультипликативной сверток координат состояния системы, подчеркивающий необходимость баланса технических и экономических показателей предприятия;
- найдено новое субоптимальное управление производственным звеном с помощью аналитического конструирования оптимальных ре-

- гуляторов при использовании функции Беллмана в виде степенного полинома не второго, а третьего порядка;
- показано, что наиболее эффективным является кусочно-постоянное управление производственным звеном в трех случаях расширения производства без отчисления прибыли, простого воспроизводства с отчислением прибыли в благоприятный период, убыточного производства при расходовании накопленной прибыли;
- предложена новая математическая модель технологического звена, влияющего на скорость производства, повышение которой связано с дополнительными затратами на технологическую оснастку. В эту модель, описываемую двумя дифференциальными уравнениями первого порядка, управление входит мультипликативно;
- доказано, что без совершенствования технологии изготовления продукции с целью повышения скорости её производства сохранение в среднем дохода предприятия невозможно в кризисных ситуациях.
 При этом управление технологическим звеном также является кусочно-постоянным;
- установлено, что для анализа динамической устойчивости развития промышленного производства удается использовать функцию Беллмана, найденную при синтезе оптимального управления. Кроме того, при оценке работы производственного и технологического звена впервые используются фазовые траектории, наглядно отображающие условия сохранения эффективности производства при переменной рентабельности.

Практическая ценность работы определяется тем, что найденные способы кусочно-постоянного управления производственным и технологическим звеном предприятия являются эффективной мерой снижения негативного влияния переменной рентабельности в кризисных ситуациях при постоянном спросе на продукцию. Кроме того, предложенный подход был использован в учебном процессе Кафедры 301 МАИ при магистерской подготовке по курсу учебному направлению «информационные технологии в управлении», что подтверждено актом о внедрении.

Достоверность полученных результатов подтверждается использованием научно-обоснованных методов теории оптимального управления -

динамического программирования и аналитического конструирования оптимальных регуляторов, а также результатами моделирования на ЭВМ работы производственного и технологического звена, определившими область устойчивого развития промышленного производства.

Диссертация состоит из 4 глав и заключения, изложенных на 111 страницах, содержит 45 рисунков и список использованной литературы из 44 источников. В первой главе проведен анализ функционирования известных систем управления промышленным производством и сформулирована общая постановка задачи. Во второй и третьей главах решены соответственно задачи субоптимального синтеза кусочно-постоянного управления производственным и технологическим звеном предприятия при переменной рентабельности, допускающей временный спад производства. В четвертой главе проведен анализ динамической устойчивости развития промышленного производства и определены условия сохранения эффективности производства при переменной рентабельности и постоянном спросе на продукцию. В целом показано, что оптимальное управление является одной из эффективных мер принятия решений в кризисных ситуациях.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первой главе работы проведен анализ функционирования систем управления производством в горной и авиационной промышленности, а также системы обогащения алмазоносной руды. На основании рассмотренных примеров сделан общий вывод о закономерности циклических колебаний рентабельности предприятий по разным причинам — падения спроса, различного качества поступающего сырья и др., что является внешним возмущением, мешающим устойчивому развитию производства.

Приведены результаты обзора известных методов экономической кибернетики, когда отдельные динамические звенья производства имеют положительную обратную связь, в которую управление входит мультипликативно. При этом основное внимание в этих работах уделено лишь динамике роста производства, а результаты синтеза оптимального управления отсутствуют. На основании проведенных исследований сформулирована следующая постановка задачи.

Дано:

- 1. Промышленное предприятие представляет совокупность следующих взаимодействующих динамических звеньев:
 - производственное звено, отвечающее за изготовление неизменной продукции одного типа;
 - технологическое звено, решающее задачу совершенствования технологии производства с целью повышения его скорости.
 - звено формирования переменной рентабельности, определяемой из затрат и изменяющегося по внешним причинам дохода после сбыта продукции;
 - звено накопления прибыли;
 - регулятор, формирующий при распределении части дохода сигналы управления U_1 на воспроизводство и U_2 на разработку более совершенной технологии.

Структурная схема системы управления промышленным производством показана на рис.1

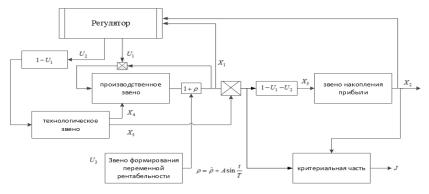


Рис.1 Структурная схема системы управления промышленным про- изводством

где x_1 - скорость выпускаемой и реализованной продукции, x_2 - накопленная прибыль, x_3 - скорость накопления прибыли, x_4 - повышаемая скорость производства, x_5 - параметр учета дополнительных затрат

на технологическую оснастку, ρ - переменная рентабельность, J - параметрический критерий эффективности, U_1 и U_2 - сигналы управления.

2. Производственное звено описывается дифференциальным уравнением первого порядка, а его структура содержит отрицательную и положительную связь, как это показано на рис. 2

$$\dot{x_1} = \frac{x_1}{\tau} [(1+\rho)U_1 - 1] \tag{1}$$

где au- время оборота капитала, ho- рентабельность производства, ho- ho начальный капитал, ho- стоимость выходной продукции в единицу времени; ho- доля стоимости выходной продукции, направляемой для возобновления производства. Если сигнал ho- непрерывный, то при отсутствии накопленной прибыли он ограничен $0 \le U_1 \le 1$. При альтернативном управлении возможны характерные варианты — при ho- простое воспроизводство, при ho- убыточное производство.

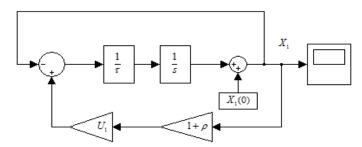


Рис.2. Математическая модель производственного звена

3. В звене формирования рентабельности в общем случае рентабельность ρ производства является переменной

$$\rho = \hat{\rho} + A\sin\frac{t}{T_0} \tag{2}$$

где $\hat{\rho} > 0$ — средняя рентабельность, A — амплитуда колебаний, T_0 — период возникновения кризисных ситуаций. При $\rho < 0$ возникает опасная ситуация спада производства. С учётом вышесказанного принципа декомпозиции движения на данном этапе считается, что в

- течение некоторого ограниченного периода рентабельность ρ есть постоянная величина, либо положительная, либо отрицательная.
- 4. Динамическая модель технологического звено не задана и подлежит определению. Процесс создания новой техники не рассматривается.
- 5. Звено накопления прибыли x_2 является интегрирующим и описывается дифференциальным уравнением первого порядка.

$$\dot{x}_2 = (1 - U_1 - U_2)x_1 \tag{3}$$

- 6. Другие экономические звенья, связанные с описанием процессов ценообразования, спроса и сбыта продукции, в данной работе не учитываются, а скорость получения прибыли x_2 является алгебраической функцией от x_1 , при этом брать взаймы средства после первоначального капитала нельзя. Считается, что цена неизменна, а спрос превышает предложение.
- 7. Объединение перечисленных звеньев в общую структуру позволяет промоделировать её на ЭВМ, используя показанную на рис. 1. схему. Видно, что искомые значения $U_1 u U_2$ влияют на работу звеньев мультипликативно, играя роль либо катализаторов , либо замедлителей процессов развития производства, что в корне отличает систему от классической, в которой управляющий сигнал поступает на вход звеньев. Эта уникальная особенность усложняет решение задачи сохранения устойчивого развития производства и требует особого подхода. **Требуется:**
 - решить задачу выбора такого критерия эффективности системы, который бы учитывал в свертке как производственные, так и экономические показатели и открыл путь к синтезу оптимального управления;
 - найти первую версию оптимального управления предприятием по возможности в виде линейной функции от координат x_1 , x_2 , x_3 , не учитывая пока что факт совершенствования технологии производства[3];
 - уточнить первую версию, решив задачу в классе альтернативного управления $U_{\scriptscriptstyle \rm I}$;
 - сформировать динамическую модель технологического звена;
 - определить аналогичным путем управление U_2 технологическим звеном.

Вторая глава посвящена решению первоочередной задачи синтеза управления производственным звеном без участия технологического звена, и состоит из трех частей. В первой части предложен терминальный параметрический критерий эффективности управления производством, учитывающий в конце заданного общего периода T_0 работы системы три показателя — достигнутую производственную мощность предприятия x_1 , накопленную прибыль x_2 и достигнутую скорость получения прибыли x_3 . Показано, что помимо линейной свертки этих показателей, нечувствительной к недопустимо малым значениях одного из них, нужно дополнительно использовать мультипликативную свертку. В результате предложено два варианта взвешенной суммы линейной и мультипликативной сверток для двух или трех нормированных показателей $y_i = \frac{x_i}{x_{i-m}}$:

$$J_0 = \frac{1}{6}(y_1 + y_2 + y_3) + 0,5\sqrt[3]{y_1y_2y_3}$$
 или $J_0 = \frac{1}{4}(y_1 + y_2) + 0,5\sqrt{y_1y_2}$ (4)

Во второй части главы I проводится предварительный выбор постоянного управления U_1 в течение всего периода для трех случаев — положительной, отрицательной и переменной рентабельности и показано, что возвращать ненулевую долю U_1 дохода для воспроизводства имеет смысл только при положительной рентабельности $\rho > P_{\min} \approx 0.01 \div 0.04$. Кроме того, в случае значительной амплитуды колебаний переменной рентабельности необходимо увеличивать сигнал управления U_1 , чтобы преодолеть нестабильность состояния системы. Вместе с тем показатель эффективности J_0 по формуле (4) остается недопустимо мал, поэтому в третьей части сделана попытка найти решение с помощью теории оптимального управления.

Для использования классического метода АКОР [3] нужно иметь в распоряжении линейные дифференциальные уравнения объекта и квадратичную форму подынтегрального выражения f_0 минимизируемого интегрального функционала J за заданный период T_0 :

$$J = \int_0^{T_0} f_0(\overline{x}_1, u) dt$$

Сделана попытка приспособить этот метод применительно к исследуемой задаче с учётом её особенностей. Во-первых, текущее состояние производства описывается двумя координатами x_1 и x_2 и мультипликативным управлением U_1 , что необходимо учесть.

Во-вторых, помня об ограниченной и выбираемой доле U_1 , зададим-ся следующим видом f_0

$$f_0 = \frac{{}^{q_0}}{2(1+kx_2)}U_1^2 + \frac{{}^{q_1}}{2}[x_1 - m(t)]^2 - {}^{q_2}[x_1 - m(t)]$$
 (5)

Первое слагаемое определяет квадратичный штраф за увеличение доли U_1 , вкладываемой в развитие производства, имеющий весовой коэффициент u_0 и снижающийся при увеличении накопленной прибыли x_2 в банке. Второе слагаемое соответствует стремлению соблюсти расширение производства в соответствии скорости x_1 с некоторым планируемым показателем

$$x_1 \to m(t) = m_0 + m_1 t \tag{6}$$

где параметры m_0 и m_1 заданы, а значит задана и функция роста m(t).

Третье слагаемое по-разному штрафует отклонение x_1 от плана m(t)-превышение плана более благоприятно, чем нежелательное от него отставание.

Тогда, используя метод динамического программирования, можно записать условие оптимальности управления в виде

$$-\frac{\delta\varepsilon}{\delta t} = \min\{f_0 \frac{\delta\epsilon}{\delta x_1} x_1 + \frac{\delta\epsilon}{\delta x_2} \dot{x}_2\} =$$

$$= \{\frac{u_0}{2(1+kx_1)} U_1^2 + \frac{u_1}{2} (x_1 - m)^2 - N_3 (x_1 - m)^2 - N$$

$$+\frac{\delta\varepsilon}{\delta x_2}x_1(1-U_1-\Delta)+\frac{\delta\varepsilon}{\delta x_1}\frac{x_1}{\tau}\left[(1+\rho)U_1-1)\right]\}\tag{7}$$

где $\varepsilon(x_1$, x_2 , t) – искомая функция Беллмана.

Предварительные попытки синтеза уравнения Беллмана (7) показали, что с учётом мультипликативности управления не существует строгого однозначного аналитического решения задачи, а представление функции Беллмана степенным полиномом второго порядка недостаточно. Поэтому представим функцию Беллмана в новом виде, имеющую вид степенного полинома третьего порядка.

$$\varepsilon = \alpha + \beta_1 x_1 + \beta_3 x_2 + \gamma_1 \frac{x_1^2}{2} + \gamma_2 \frac{x_2^2}{2} + \psi x_1 x_2 + \varphi x_1^2 x_2 \tag{8}$$

Также, учитывая неоднозначность искомого решения, в виду малости коэффициента β_1 , обнаруженной в частных случаях расчёта, этим коэффициентом можно пренебречь. Тогда, следуя принятому порядку синтеза в АКОР, получим вначале частные производные

$$\frac{\delta\varepsilon}{\delta x_1} = \beta_1 + \gamma_1 x_1 + \psi x_2 + 2\varphi x_1 x_2, \frac{\delta\varepsilon}{\delta x_2} \cong \beta_2 + \gamma_2 x_2 + \psi x_1 + \varphi x_1^2$$

Подставляя эти производные в уравнение Беллмана(7), можно найти с помощью условия экстремума правой части этого уравнения субоптимальное оптимальное управление U_1 :

$$U_1 = -\frac{x_1(1+kx_3)}{u_0}(A+Bx_3+Dx_1+2\varphi x_1x_2-\rho\varphi x_1^2)$$
 (9)
где $A = -\beta_1$; $B = \frac{\varphi}{\tau}(1+\rho)-\gamma_1$; $D = \frac{\gamma_1}{\tau}(1+\rho)-\psi$

Тогда, приравнивая левые и правые части уравнения (7) при одинаковых степенях x_1 , x_1^2 , x_1x_2 , x_1^3 , $x_1^2x_3$, можно составить дифференциальные уравнения Риккати относительно искомых коэффициентов β_3 , γ_1 , γ_2 , φ , ψ . Это позволяет записать в классе однородных стратегий для стационарного состояния 5 нелинейных алгебраических уравнений

$$\beta_1 \rho (1 - \Delta) - m u_1 - N_3 = 0$$

$$\frac{2}{\tau}\gamma_2 - u_1 - 2(1 - \Delta)\psi + \frac{A^2}{u_0} = 0$$

$$\frac{\psi}{\tau} - \gamma_1(1 - \Delta) = 0 \; ; \; \varphi(1 - \Delta) - \frac{AD}{u_0} = 0$$

$$\frac{2\varphi}{\tau} - A(E + 0.5KA) = 0$$
(10)

Решение этих уравнений дает следующие результаты

$$A \cong -\frac{mu_1 + N_2}{1 - \Delta} \; ; \; B \cong -\frac{(1 + \rho)u_1}{3\tau(1 - \Delta)} - \frac{KA}{6} \; ; \; D \cong \frac{(1 + \rho)u_1}{6} - \frac{KA\tau(1 - \Delta)}{6}$$
$$\varphi = \frac{A}{6u_0} \left[\frac{(1 + \rho)u_2}{(1 - \Delta)} - K\tau A \right]$$

Подставив полученные значения в формулу (9), после ряда упрощений можно записать квазилинейное управление U_1 как функцию координат x_1ux_2 в виде

$$U_1 = M_1(1+\rho)x_1(1+kx_2)\left[M_2m(t) - x_1 + M_3\frac{x_2}{\tau}\right]; 0 \le U_1 \le 1$$
 (11)

где $M_1 < 1$; $M_2 > 1$; $M_3 < 1$ - дополнительные коэффициенты, которые должны быть уточнены в результате моделирования с использованием показанной системы управления на рис.1, чтобы наиболее полно и точно оценить конечный результат по критерию (4) с учётом имеющихся ограничений и переменной рентабельности. Полученная формула (11) указывает, что чем больше накопленных средств x_2 в банке и чем меньше мощность производства x_1 , тем большую часть U_1 получаемого дохода нужно вкладывать в производство. При отрицательной рентабельности ρ эта доля должна быть уменьшена, что отвечает физическому смыслу решаемой задачи.

Однако с учетом ограничения $U_1 \le 1$ оказывается, что в начальный период работы предприятия при малых значениях x_1 управление $U_1 = 1$, что соответствует расширению производства без отчисления прибыли, а это фактически отвечает идее альтернативного управления. Поэтому далее с помощью моделирования на ЭВМ субоптимальной системы управления

было произведено уточнение и найдено кусочно-постоянное управление. Так, в частности при $\tau=0,5;T_0=10;\Delta=0,03;K=0,01;M_1=1,2;M_2m_0=2,5;M_3=0,01$ с учетом дополнительного ограничения при накоплении некоторой ненулевой прибыли в банке удалось добиться максимума терминального критерия J_0 , а величина Δ оказалась равной 0,03. Поэтому найденное кусочно-постоянное управление U_1 имеет окончательный вид, показанный на рис.3, а соответствующие изменения показателей x_1 и x_2 представлены на рис.4.

 x_2 — накопления прибыли

Рис. 4. Результаты моделирования системы управление производственным и технологическим звеном

На рис.3 показаны 5 характерных участков управления производством за период T_0

- 1. расширение производством без отчисления прибыли;
- 2. простое воспроизводство с отчислением сверхприбыли;
- 3. сохранение производства при низкой рентабельности без отчисления прибыли;
- 4. убыточное производство при расходовании накопленной прибыли;
- 5. сохранение производства без отчисления прибыли.

В работе показано, что интервалы Δt_1 и Δt_2 для участков 2 и 4 пониженной и повышенной доли дохода легко определяются в зависимости от параметров $A, \hat{\rho}$ переменной рентабельности и периода T_0 её колебаний.

В конце главы с помощью фазовых траекторий движения системы в период T_0 также выявлено, что анализируемая система управления без технологического звена имеет устойчивую в среднем тенденцию в развитии производства, если переменная рентабельность в среднем положительна. В противном случае оптимальное управление производственным звеном неэффективно и не имеет смысла.

В третьей главе предложена динамическая модель технологического звена, описывающая одновременно два процесса. Первым является процесс желаемого повышения скорости выпуска продукции за счет более совершенной технологии, если на её разработку отводятся ненулевые средства при $U_2 > 0$. В этом случае постоянная времени τ производственного звена уменьшается от τ_{max} до τ_{min} , что можно описать с помощью дифференциального уравнения

$$\dot{x}_4 = \frac{U_2}{T_1} \left(\frac{1}{\tau_{\min}} - x_4 \right); \quad x_4(0) = \frac{1}{\tau_{\max}}$$
 (12)

где $x_4 = \frac{1}{\tau}$ - величина, определяющая скорость выпуска продукции, повышение которой целиком зависит от вложенных средств U_2 , T_1 - постоянная времени задержки в создании новой технологии.

Второй процесс учитывает естественной рост затрат за счет дополнительных расходов на совершенствование технологии, что несколько снижает рентабельность и отражено с помощью другого дифференциального уравнения

$$\dot{x}_5 = \frac{U_2}{T_1} \left(\frac{1}{Z_{\text{max}}} - x_5 \right); \quad x_5(0) = \frac{1}{Z_{\text{min}}}$$
 (13)

где $x_5=\frac{1}{Z}$ - величина, обратная дополнительным затратам, лежащая в пределах $\frac{1}{Z_{\max}} \le x_5 \le \frac{1}{Z_{\min}}$. Структура модели технологического звена представлена на рис 5.

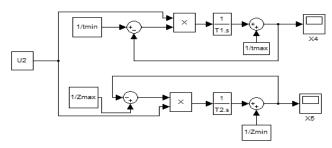
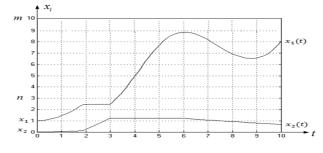
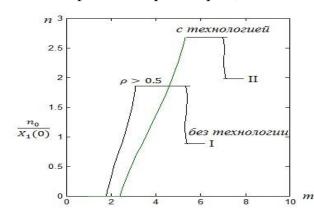



Рис. 5. Математическая модель технологического звена

Из неё видно, что управление U_2 влияет на работу звена также мультипликативно, как и U_1 в производственном звене.

Далее в главе III представлены результаты оптимального выбора кусочно-постоянного управления U_2 с помощью моделирования в среде Matlab системы совместного управления производственным и технологическим звеном при переменной рентабельности. Оказалось, что лучший результат соответствует усилиям в совершенствовании технологии в начале благоприятного периода роста рентабельности, как это показано на рис 6.


 x_1 — стоимость выходной продукции в единицу времени;

 x_2 — накопления в банке

Рис. 6. Результаты моделирования системы управление производственным и технологическим звеном

Из рисунка видно, что в самом начале при $t < t_0$ все средства вкладываются в производственное звено, затем стремление уменьшить время τ

оправдано тем, что пока рентабельность высока, можно получить больше реализованной продукции и накопить максимальную прибыль для последующей компенсации убытков в период упадка производства. В частности, при $\hat{\rho}=0.15$; A=0.2; $T_0=10$ лем; $\tau_{\max}=0.5$; $\tau_{\min}=0.25$ показано, что неуклонный рост производственной мощности x_1 при ненулевой прибыли x_2 в банке приближается к желаемым значениям m и n уже к концу первого периода T_0 колебаний рентабельности, что можно проиллюстрировать с помощью фазовых траекторий, показанных на рис 7.

I— участок расширения производства в течение периода То без технологического звена

II—участок действия производственного и технологического звена без использования конструкторского звена

Рис .7. Фазовые траектории системы управления производственным и технологическим звеном

Таким образом установлено, что использование технологического звена существенно повышает эффективность производства как в благоприятный период роста рентабельности, так и в ожидаемый период спада.

Четвертая глава посвящена практически важному вопросу устойчивости развития промышленного производства. При этом под устойчивостью понимается неуклонное в среднем расширение производства в каждый период T_0 циклических колебаний рентабельности, хотя существуют временные спады, не приводящие к полному упадку производства, т.е. всегда $x_1 > 0$. К концу каждого цикла новый показатель J_0 критерия эффективности должен превышать показатель предыдущего цикла.

Так как динамическая система нелинейная и для неё непригодны обычные критерии Гурвица и Найквиста, применим лишь универсальный

метод Ляпунова. Для использования этого метода пригодна функция Беллмана ε , найденная согласно условию оптимальности управления в установившемся состоянии.

$$O = \min_{U_1 U_2} \left\{ f_0 + \sum \frac{\partial \varepsilon}{\partial x_i} \dot{x}_i \right\}$$
 (14)

В выражении (14) второе слагаемое есть производная $\frac{\partial \mathcal{E}}{\partial t}$. Значит, если управления U_1 и U_2 таковы, что знак f_0 положителен, то $\frac{\partial \mathcal{E}}{\partial t} < 0$. Если сама функция \mathcal{E} , оценивающая достигнутый уровень критерия J_0 , положительна, а это именно так, то система устойчива. Поэтому важно убедиться в факте того, что $f_0 > 0$. Так как управление U_1 кусочно-постоянно, был проведен анализ поведения f_0 на каждом из 5 участков периода T_0 , имеющей вид

$$f_0 = (\beta - \phi)U_1 + \phi \tag{15}$$

где
$$\beta = \frac{\rho}{\tau}(1+K_3\sqrt{\frac{x_2}{x_1}}); \ \phi = K_3(\sqrt{\frac{x_1}{x_2}}-\frac{1}{\tau}\sqrt{\frac{x_2}{x_1}})$$
 - функции, меняющие свой знак на периоде T_0 .

Рассмотрено 6 случаев поведения этих функций и показано, что при выбранном субоптимальном управлении фактически на всех участках, кроме участке 4, условие устойчивости соблюдается. На участке 4 спада производства борьба с этим спадом тем труднее, чем больше значения амплитуды A колебаний и меньше среднее значение $\hat{\rho}$ рентабельности. Приближенно условие сохранения устойчивости на этом участке можно описать в виде неравенства.

$$\sqrt{\frac{x_1}{x_2}} - \frac{1}{\tau} (2 - \frac{A}{\hat{\rho}}) \sqrt{\frac{x_2}{x_1}} > \frac{1 - A/\hat{\rho}}{\hat{\rho}/K_2 \tau} \quad \text{или} \quad \sqrt{\frac{x_1}{x_2}} > \frac{2\hat{\rho} - A}{2\tau^2 (A/\hat{\rho} - 1)}$$
 (16)

Согласно условию (16) чем больше скорость x_1 производства, тем лучше, что указывает на первоочередность задачи сохранения производст-

венной мощности в кризисных ситуациях. Вместе с тем раздельный анализ, приближенность сделанных оценок и главное - неточное описание поведения системы на участке спада производства требуют дополнительного установления границ сохранения эффективности производства с помощью моделирования.

Считая за нижнюю границу допустимой эффективности условие, когда к концу периода T_0 достигнутое значение $x_1(T_0)$ не меньше начального $x_1(0)$, т.е. $D = \frac{x_1(T_0)}{x_1(0)} = 1$, а за верхнюю границу - значение больше единицы уровня D = 5, были получены графики областей устойчивого развития производства для двух случаев — с использованием технологического звена и без него.

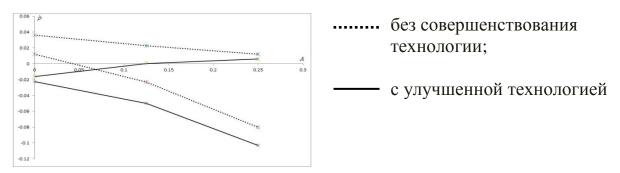


Рис. 8. Области сохранения эффективности производства при переменой рентабельности

Показанные на рис. 8 графики позволяют сделать два важных вывода:

- с помощью технологического звена область эффективного производства в период кризисов существенно расширяется;
- если время нерентабельного производства даже превышает время его расширения, то путем быстрого технологического переоснащения удается сохранить предприятие при $\hat{\rho} < 0$.

В частности, это удается сделать, если время работы нерентабельного предприятия достигает 60% от общего периода T_0 . Без технологического звена эффективность производства сохраняется лишь при $\hat{\rho} > 0.01 \div 0.04$.

ЗАКЛЮЧЕНИЕ

На основании проведенных исследований можно сделать следующие выводы.

- 1. Сформулирована математическая постановка задачи оптимального управления промышленным производством при переменной рентабельности. Показано, что в динамическую модель предприятия управление входит мультипликативно в виде множителей в положительных обратных связях, что требует новых подходов в решении задачи.
- 2. Сформирован терминальный критерий эффективности управления производством в виде взвешенной суммы линейной и мультипликативной свёрток координат состояния системы, учитывающих производственные и экономические показатели.
- 3. С помощью метода АКОР получено субоптимальное кусочнопостоянное управление производственным звеном предприятия, содержащее 5 участков расширения производства, его стабилизации и сокращения при использовании сверхприбыли в период падения рентабельности, при сохранении требуемого уровня развития предприятия.
- 4. Предложена динамическая модель технологического звена предприятия, состоящего из двух параллельно действующих апериодических звеньев с целью повышения скорости производства. Показано, что его действие наиболее эффективно при быстром совершенствовании технологии до наиболее благоприятного периода роста рентабельности, чтобы накопленную прибыль использовать позднее в период спада производства.
- 5. Установлено, что для анализа динамической устойчивости производства в методе Ляпунова можно использовать функцию Беллмана. Выявлено, что при найденном альтернативном управлении нелинейная технико-экономическая система обладает запасом устойчивости в своем развитии.
- 6. Результаты моделирования на ЭВМ показали, что без технологического звена устойчивое развития производства возможно лишь при положительной в среднем средней рентабельности предприятия. С использованием технологического звена область эффективного производства существенно расширяется и даже в случае, если время не-

рентабельного производства достигает 60% от общего периода колебаний рентабельности.

Предложенный подход был использован в учебном процессе на кафедре 301 МАИ при магистерской подготовке по учебному направлению «Информационные технологии в управлении» что подтверждено актом о внедрении.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ Публикации в изданиях, рекомендованных ВАК РФ:

- 1. Лебедев Г.Н., Дегтярёв Ю.И, Степанянц Г.А., Аунг Мьё Тху «Оценка устойчивости управления высоко-технологичным проектированием и производством авиационной техники в кризисных ситуациях». М., Изд. «Труды МАИ», 2011, №49.
- 2. Лебедев Г.Н., Аунг Мьё Тху, Пашкевич А.Г «Динамические модели производственного и технологического звена в задаче оптимального управления предприятием в кризисных ситуациях». М., Изд. «системы управления и информационные технологии», 2011, №3(45), стр. 36-40.
- 3. Лебедев Г.Н., Аунг Мьё Тху, Дао Нгок Тхай «Оценка услоуий устойчивого сохранения эффективности промышленного производства авиационной техники в кризисных ситуациях за счет совершенствования технологии её изготовления». М., Изд. «Вестник», 2012, стр. 13-19.

Публикации в других изданиях:

1. Лебедев Г.Н., Аунг Мьё Тху «Оптимальное управление промышленным производством в кризисных ситуациях с учетом совершенствования технологии выпуска продукции». Изд. Сборник трудов международного научно-технического семинара «Современные технологии в задачах управления, автоматики и обработки информации», Алушта. 2012, стр 5.