СВЕДЕНИЯ О РЕЗУЛЬТАТАХ ПУБЛИЧНОЙ ЗАЩИТЫ

Диссертационный совет: 24.2.327.06

Соискатель: Алендарь Артем Дмитриевич

Тема диссертации: Методика формирования технического облика силовой установки сверхзвукового пассажирского самолета

Специальность: 2.5.15. — «Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов»

Решение диссертационного совета по результатам зашиты диссертации.

На заседании 22 сентября 2025 года диссертационный совет пришел к выводу о том, что диссертация представляет собой научно-квалификационную работу, соответствующую критериям, приведенным в «Положении о присуждении ученых степеней», утвержденном постановлением Правительства Российской Федерации от 24 сентября 2013 года № 842, и принял решение присудить Алендарю Артему Дмитриевичу ученую степень кандидата технических наук.

Присутствовали: председательствующий Хартов С.А., ученый секретарь диссертационного совета Краев В.М., члены диссертационного совета:

Абашев В.М., Иванов А.В., Кочетков Ю.М., Лесневский Л.Н., Молчанов А.М., Мякочин А.С., Надирадзе А.Б., Назаренко И.П., Ненарокомов А.В., Никитин П.В., Попов Г.А., Силуянова М.В., Тимушев С.Ф.

Проректор по научной работе МАИ д.техн.наук, доцент

Иванов А.В.

Ученый секретарь диссертационного совета 24.2.327.06, д.т.н., доцент

Краев В.М.

ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА 24.2.327.06, СОЗДАННОГО НА БАЗЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» МИНИСТЕРСТВА НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ, ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЁНОЙ СТЕПЕНИ КАНДИДАТА НАУК

аттестационное дело	No			
решение диссертационного	совета о	т 22.09	.2025 г	. №104

О присуждении Алендарю Артему Дмитриевичу, гражданину Российской Федерации, ученой степени кандидата технических наук.

Диссертация «Методика формирования технического облика силовой установки сверхзвукового пассажирского самолета» по специальности 2.5.15. — «Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов» принята к защите 16.06.2025 г., (протокол заседания № 96) диссертационным советом 24.2.327.06, созданным на базе федерального государственного бюджетного образовательного учреждения высшего образования «Московский авиационный институт (национальный исследовательский университет)»; 125993, г. Москва, Волоколамское шоссе, д. 4; приказ Министерства науки и высшего образования РФ о создании диссертационного совета № 669/нк от 24.06.2022 г.

Соискатель Алендарь Артем Дмитриевич, 16 июля 1995 года рождения, работает в федеральном автономном учреждении «Центральный институт авиационного моторостроения имени П.И. Баранова» в должности научный сотрудник.

В 2017 году с отличием окончил федеральное государственное бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский университет)» с присвоением квалификации «Бакалавр» по направлению подготовки 24.03.05 Двигатели летательных аппаратов (диплом 107718 0959255, регистрационный номер 3553 от 30 июня 2017 года). В 2019 году с отличием окончил федеральное государственное

бюджетное образовательное учреждение высшего образования «Московский авиационный институт (национальный исследовательский университет)» с присвоением квалификации «Магистр» по направлению подготовки 24.04.05 Двигатели летательных аппаратов (диплом 107718 1120389, регистрационный номер 2019/12М-0175Д от 28 июня 2019 года).

В 2023 году окончил очную аспирантуру в федеральном государственном бюджетном образовательном учреждении высшего образования «Московский авиационный институт (национальный исследовательский университет)» с присвоением квалификации «Исследователь. Преподаватель-исследователь» по направлению подготовки 24.06.01 «Авиационная и ракетно-космическая техника» (диплом 107733 0004328 регистрационный номер 2023/12A-0216Д от 06 июля 2023 года).

В период подготовки диссертации соискатель Алендарь А.Д. работал в федеральном автономном учреждении «Центральный институт авиационного моторостроения имени П.И. Баранова» в отделе «Исследование перспектив развития воздушно-реактивных двигателей (ВРД) для самолетов» отделения «Авиационные двигатели» в должности инженера и научного сотрудника, а также в отделе «НЦМУ «Сверхзвук» в должности научного сотрудника.

Диссертация выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Московский авиационный институт (национальный исследовательский университет)».

Научный руководитель – Силуянова Марина Владимировна, доктор технических наук, профессор, профессор кафедры 1202 «Технология производства Nº 12 Института летательных аппаратов» двигателей эксплуатации «Аэрокосмические наукоемкие технологии и производства» федерального государственного бюджетного образовательного учреждения высшего образования (национальный исследовательский авиационный институт «Московский университет)».

Официальные оппоненты:

Лещенко Игорь Алексеевич, доктор технических наук, старший научный сотрудник, начальник бригады публичного акционерного общества «ОДК Сатурн»;

Зиненков Юрий Владимирович, кандидат технических наук, доцент кафедры аэродинамики и безопасности полета федерального государственного казенного военного образовательного учреждения высшего образования «Военный учебно-

научный центр Военно-воздушных сил «Военно-воздушная академия им. Профессора Н.Е. Жуковского и Ю.А. Гагарина» (г. Воронеж) дали положительные отзывы на диссертацию.

государственное федеральное бюджетное организация Ведущая образовательное учреждение высшего образования «Рыбинский государственный авиационный технический университет имени П.А. Соловьева», г. Рыбинск, в своем положительном отзыве, подписанном Ремизовым Александром Евгеньевичем, заведующим кафедрой «Авиационные двигатели» РГАТУ имени П.А. Соловьёва, И утвержденным Сутягиным доктором технических наук, профессором Александром Николаевичем, первым проректором – проректором по науке и цифровой трансформации РГАТУ имени П.А. Соловьёва, кандидатом технических наук, доцентом, указала, что диссертационная работа Алендаря Артема Дмитриевича «Методика формирования технического облика силовой установки сверхзвукового пассажирского самолета» на соискание ученой степени кандидата технических наук является завершенной научно-квалификационной работой, области авиационного решение актуальной задачи В направленной на двигателестроения, отвечает требованиям, установленным п. 9 Положения о присуждении ученых степеней (утверждено постановлением Правительства Российской Федерации от 24 сентября 2013 г. № 842). Алендарь Артем Дмитриевич заслуживает присуждения ученой степени кандидата технических наук по специальности 2.5.15. – «Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов».

За время работы над диссертацией Алендарем А.Д. опубликовано 6 статей в рецензируемых изданиях Перечня ВАК РФ (в изданиях по специальности 2.5.15), 5 статей в научных журналах, индексируемых базой данных Scopus, 23 работы опубликовано в сборниках международных и всероссийский конференций, симпозиумов, форумов и т.п., получено 1 свидетельство о регистрации программы для ЭВМ.

Данные публикации посвящены исследованиям в области двигателей и силовых установок (СУ) сверхзвуковых пассажирских самолетов (СПС), их проектных параметров, законов управления и методов математического моделирования.

В диссертации отсутствуют недостоверные сведения об опубликованных соискателем ученой степени работах.

Наиболее значимые работы соискателя:

1. Силуянова М.В., Алендарь А.Д., Грунин А.Н. Разработка технического облика и исследование эффективных характеристик силовой установки перспективного сверхзвукового пассажирского самолета // Авиационная промышленность. 2019. № 3-4. С. 9-14.

В работе Алендарем А.Д. выполнено параметрическое исследование влияния проектных параметров двигателя СПС на внутренние и эффективные характеристики СУ с помощью математической модели, а также обработка и анализ полученных результатов.

2. Ланшин А.И., Алендарь А.Д., Грунин А.Н., Силуянова М.В. Исследование способов улучшения экономичности силовой установки сверхзвукового самолёта в условиях дозвукового крейсерского полета // Авиационная промышленность. 2021. № 2. С. 12-19.

В работе Алендарем А.Д. выполнен анализ эффективности различных способов повышения экономичности СУ сверхзвукового самолета на режимах дросселирования двигателя на основе результатов расчета, а также разработаны рекомендации по совместному регулированию воздухозаборника, двигателя и сопла.

3. Алендарь А.Д., Грунин А.Н., Силуянова М.В. Анализ концепций базовых обликов перспективных двигателей сверхзвуковых гражданских летательных аппаратов на основе опыта зарубежных разработчиков // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. 2021. Т. 20. № 3. С. 24-36.

В работе Алендарем А.Д. выполнен обзор открытых источников и анализ зарубежных разработок в части двигателей для сверхзвуковых гражданских самолетов, в том числе схем двигателей, параметров термодинамического цикла и базовых газогенераторов.

4. Алендарь А.Д., Ланшин А.И., Евстигнеев А.А., Якубовский К.Я., Силуянова М.В. Обзор проблем создания сверхзвукового пассажирского самолёта нового поколения в части силовой установки // Вестник Самарского университета. Аэрокосмическая техника, технологии и машиностроение. 2023. Т. 22. № 1. С. 7-28.

В работе Алендарем А.Д. выполнен анализ основных проблем создания СУ перспективных СПС на основе существующих экологических требований к гражданской авиационной технике и открытых научных публикаций.

5. Алендарь А.Д., Евстигнеев А.А., Грунин А.Н. Предварительные исследования по формированию технического облика двигателя – демонстратора технологий силовой установки сверхзвукового гражданского самолета нового поколения // Авиационные двигатели. 2023. № 3 (20). С. 15-30.

В работе Алендарем А.Д. разработаны требования к двигателю демонстратору технологий СУ СПС, а также выполнено параметрическое исследование с использованием математической модели.

6. Алендарь А.Д., Грунин А.Н., Луковников А.В., Евстигнеев А.А., Ланшин А.И., Полев А.С. Анализ влияния исходных требований к сверхзвуковому гражданскому самолету нового поколения на перечень критических технологий для его силовой установки // Авиационные двигатели. 2024. № 4 (25). С. 7-20.

В работе Алендарем А.Д. рассчитаны параметры двух вариантов СУ для СПС, а также выполнен сравнительный анализ технических обликов вариантов двигателей и их узлов.

7. Siluyanova M.V., Kuritsyna V.V., Alendar' A.D., Grunin A.N. Influence of Engine Parameters on the Power-Unit Performance in Supersonic Aircraft // Russian Engineering Research. 2020. T. 40. № 12. pp. 1048-1051.

Личный вклад Алендаря А.Д. заключается в выполнении оценок влияния параметров термодинамического цикла двигателя СПС на внутренние и эффективные характеристики СУ с использованием математической модели.

8. Alendar' A.D., Siluyanova M.V. Mathematical model of a supersonic aircraft propulsion system // Russian Engineering Research, 2021, Vol. 41, No. 7, pp. 676–679.

В работе Алендарем А.Д. разработана математическая модель СУ сверхзвукового самолета, включающей математическую модель сверхзвукового воздухозаборника, ТРДД и сверхзвукового сопла.

9. Siluyanova M.V., Kuritsyna V.V., Alendar' A.D. Engineering Model of a Plug Nozzle for the Engine of a Prospective Supersonic Civilian Airplane // Russian Engineering Research, 2021, Vol. 41, No. 10, pp. 964–966.

В работе Алендарем А.Д. разработана инженерная математическая модель сверхзвукового сопла с центральным телом для двигателя сверхзвукового самолета, а также выполнены расчеты коэффициентов внутренней и эффективной тяги сопла.

10. Alendar A.D., Grunin A.N., Evstigneev A.A., Lanshin A.I., Siluyanova M.V. Influence of Inlet Pressure Distortion on the Engine Performance of a Supersonic Passenger Aircraft // Russian Engineering Research, 2022, Vol. 42, No. 7, pp. 705–709.

В работе Алендарем А.Д. разработана инженерная математическая модель ТРДД с применением метода «параллельных компрессоров», позволяющая учитывать влияние стационарной окружной неравномерности полного давления на входе в двигатель на его характеристики, а также на газодинамическую устойчивость вентилятора и компрессора высокого давления.

11. Alendar A.D., Belova V.G., Polev A.S., Stepanov V.A., Siluyanova M.V. One-Dimensional Model of the Propulsion System Air Intake for a Supersonic Civil Aircraft // Russian Engineering Research, 2023, Vol. 43, No. 3, pp. 316-321.

В работе Алендарем А.Д. разработана и верифицирована инженерная математическая модель сверхзвукового воздухозаборника с шестиугольной формой входного сечения.

На диссертацию и автореферат поступили следующие отзывы (все отзывы положительные).

Отзыв на диссертацию официального оппонента – **Лещенко И.А.**, доктора технических наук, старшего научного сотрудника, начальника бригады публичного акционерного общества «ОДК-Сатурн» содержит следующие замечания:

- 1. В главе 2 представлен алгоритм моделирования реактивного сопла с односторонним расширением, но во всей работе нет ни одного упоминания про конкретную величину внутренних потерь тяги сопла, определяемую с помощью этой методики. В этой связи трудно оценить эффект от применения этой методики в системе математической модели СУ СГС.
- 2. В главе 2 не приведены основания, почему методика согласования воздухозаборника и двигателя по расходу воздуха на нерасчетных режимах основана на итерационном подходе. Такая процедура может быть реализована более рационально путем включения параметра, описывающего положение рабочей точки на характеристике входного устройства, в состав переменных системы уравнений двигателя.
- 3. В главе 3 в основе работы методики лежит задание в качестве граничного условия постоянной величины тяги двигателя на расчетном крейсерском режиме полета. При решении практических задач такой подход требует корректировки с учетом того, что тяга, потребная для выполнения горизонтального установившегося полета на сверхзвуковом крейсерском режиме, в свою очередь может существенно зависеть от площади миделя силовой установки, влияющей на аэродинамическое сопротивление ее и фюзеляжа.

4. В главе 4 при моделировании работы СУ в составе СПС подход с применением постоянного коэффициента массы для учета размеров входного и выходного устройств представляется слишком упрощенным и способным исказить значения получаемых показателей ЛТХ, особенно для двигателей с большими значениями степени двухконтурности.

Отзыв на диссертацию официального оппонента — Зиненкова Ю.В., кандидата технических наук, доцента кафедры аэродинамики и безопасности полета федерального государственного казенного военного образовательного учреждения высшего образования «Военный учебно-научный центр Военновоздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» (г. Воронеж) Министерства обороны Российской Федерации содержит следующие замечания:

- 1. В тексте присутствуют ряд стилистических и пунктуационных ошибок, а также опечаток. К примеру: на стр. 2 в пункте 2 содержания пропущено тире; на стр. 64. в первом абзаце в слове сверхзвуковом допущена опечатка; на стр. 87 в названии подраздела пропущен предлог «на».
- 2. Отсутствует верификация разработанных комплексной математической модели СУ СПС и математической модели реактивного сопла. Это, в свою очередь, вызывает вопрос об обоснованности их применения для дальнейших расчетов и доверии к результатам, полученным с их помощью.
- 3. Не ясно, какой характерный функционал автор вложил в название «комплексная математическая модель СУ СПС». Во-первых, данная математическая модель, исходя из материала диссертации, с точки зрения объекта моделирования, является классической математической моделью СУ с двухконтурным турбореактивным двигателем. Во-вторых, она является изолированной от летательного аппарата, поэтому может быть применена не только для СПС.
- 4. При анализе летно-технических характеристик помимо дальности полета, необходимо учитывать и его продолжительность. Так как набор высоты зависит от тяги СУ, что влияет на продолжительность полета. Также необходимо демонстрировать полученные траектории полета, чтобы проанализировать, как выполняются участки полета СПС с разными СУ.
- 5. Для формирования технического облика СУ давно используют методы оптимизации. Автор тоже приходит к такому выводу на заключительном этапе своей работы, но в методику это не включает.

Отзыв на диссертацию ведущей организации — федерального государственного бюджетного образовательного учреждения высшего образования «Рыбинский государственный авиационный технический университет имени П.А. Соловьева» содержит следующие замечания:

- 1. В таблице 2 (глава 1, страница 19) не указаны источники информации о параметрах сверхзвуковых пассажирских самолетов и их двигателей.
- 2. В первой строке формулы 1 (глава 2, страница 33) перечислены не все составляющие внешнего аэродинамического сопротивления, описываемые интегралами, приведенными во второй строке. Не приведена расшифровка всех составляющих формулы.
- 3. По тексту работы значения тяги и удельного расхода топлива приводятся в системе «МКГСС» вместо системы «СИ».
- 4. Оценки диапазонов параметров двигателя, в которых возможно применение нерегулируемого воздухозаборника, даны только по значению отношения крейсерского и максимального значений приведенного расхода воздуха через двигатель. Следовало бы добавить соответствующие диапазоны по параметрам термодинамического цикла, степени двухконтурности, соотношению крейсерской и взлетной тяги.
- 5. В тексте диссертации и автореферата имеются опечатки, не приведены расшифровки некоторых обозначений и индексов.

Отзыв на автореферат диссертации АО «Уральский завод гражданской авиации», составленный главным конструктором по силовой установке Родюком С.А., содержит следующие замечания:

- 1. Не описана причина изменения характера протекания зависимости относительного запаса тяги двигателя на рисунке 14б и относительного приведенного расхода воздуха на рисунке 17в от проектного соотношения крейсерской и взлетной тяги двигателя;
- 2. Приведены широкие диапазоны значений скорости истечения реактивной струи из сопла, однако, не обозначены значения, обеспечивающие уровни шума, требуемые нормативными документами ИКАО;
- 3. На рисунке 27 подписи значений по оси абсцисс слишком уплотнены, что затрудняет анализ графика.

Отзыв на автореферат диссертации ПАО «ОДК-Сатурн», составленный кандидатом технических наук, главным конструктором по перспективным

разработкам Буровым М.Н. и кандидатом технических наук, главным специалистом службы главного конструктора двигателя ПД-8 Гайдаем М.С., содержит следующие замечания:

- 1. Рекомендации по диапазону проектного отношения крейсерского и максимального значений приведенного расхода воздуха через двигатель, допускающему применение ВЗ с нерегулируемым горлом, основаны только на величине коэффициента восстановления полного давления в ВЗ на крейсерском режиме без рассмотрения, например, других режимов полета, увеличения массы воздухозаборника вследствие наличия органов регулирования и пр.
- 2. При апробации методики в системе ЛА влияние размеров двигателя учтено только на эффективные характеристики СУ без учета влияния интерференции СУ с планером на аэродинамические характеристики ЛА.

Отзыв на автореферат диссертации ФГБОУ ВО «Московский государственный технический университет гражданской авиации» (МГТУ ГА), составленный доктором технических наук, профессором, заведующим кафедрой «Авиатопливообеспечения и ремонта летательных аппаратов» Самойленко В.М., содержит следующие замечания:

- 1. В тексте автореферата не указано, с помощью какого программного комплекса получены характеристики воздухозаборника, использованные для верификации разработанной автором математической модели воздухозаборника;
- 2. В заключении сказано, что работа методики продемонстрирована на примере формирования технических обликов двух силовых установок с различными двигателями, отличающимися проектным значением скорости реактивной струи на режиме отрыва от взлетно-посадочной полосы. В части автореферата, описывающей основное содержание работы, такие результаты отсутствуют.

Отзыв на автореферат диссертации ПАО «ОДК-Кузнецов», составленный доктором технических наук, профессором, главным конструктором Данильченко В.П., содержит следующие замечания:

1. Не приведены параметры термодинамического цикла, а также принятые коэффициенты аэродинамической нагрузки и геометрические параметры проточной части ТРДД, для которых получены результаты, представленные на рисунке 16 автореферата;

2. Из автореферата не ясно, каким образом в главе 4 учитывалось влияние параметров двигателя на его массу, а также на массу входного и выходного устройств.

Отзыв на автореферат диссертации ФГАОУ ВО «Московский государственный технический университет имени Н.Э. Баумана» (национальный исследовательский университет), составленный кандидатом технических наук, доцентом кафедры «Газотурбинные двигатели и комбинированные установки» Бурцевым С.А., содержит следующие замечания:

- 1. В автореферате отсутствует информация о том, каким образом выполнялось описание узлов турбокомпрессора в рамках математической модели двухконтурного турбореактивного двигателя.
- 2. Часть обозначений величин на рисунках (например, на рис. 11, 16 и 22) автореферата, не расшифрованы.

Отзыв на автореферат диссертации ФГБОУ ВО «Казанский национальный исследовательский университет им. А.Н. Туполева – КАИ» (КНИТУ – КАИ), составленный доктором технических наук, профессором кафедры Теплотехники и энергетического машиностроения Алтуниным В.А., содержит следующие замечания:

- 1. Высота крейсерского полета 18 км, принятая автором в ходе параметрических исследований силовой установки, представляется несколько завышенной. Более рациональным значением, наверное, все-таки является (11-15) км.
- 2. В автореферате не сказано, как учитывается масса регулируемых элементов воздухозаборника и сопла при сравнительных оценках дальности полета СПС с различными силовыми установками (глава 4), но, возможно, эта информация есть в самой диссертации.
- 3. Во втором пункте раздела «Научная новизна» автором написано, что «Разработана и верифицирована математическая модель сверхзвукового пространственного воздухозаборника СУ СПС», но почему-то не указано, что на эту модель им получено Свидетельство о регистрации программы для ЭВМ № 2022661658 от 23.06.2022. Данная информация про это Свидетельство появляется только в разделе «Реализация и внедрение результатов работы», хотя оно тоже является подтверждением научной новизны диссертационной работы.

Отзыв на автореферат диссертации ФГБУ «НИЦ «Институт имени Н.Е. Жуковского», составленный кандидатом технических наук, заместителем генерального директора – директором проектного комплекса «Гражданская авиационная техника» Кажаном А.В., содержит следующие замечания:

- 1. В работе рассматривается исключительно схема двухконтурного турбореактивного двигателя со смешением потоков. Следует отметить, что диссертационная работа Алендаря АД. могла быть еще более значимой, если бы автор рассмотрел возможность применения двигателей изменяемого рабочего процесса.
- 2. Часть рисунков автореферата имеет обозначения величин, не расшифрованные, как в подрисуночных подписях, так и в тексте автореферата.
- 3. В автореферате многократно применяются относительные значения тяги авиационного двигателя на различных режимах, отнесенные, по нашему мнению, к различным базовым уровням. Автору следовало бы уточнить, что было принято за базовый уровень.

Отзыв на автореферат диссертации «ОКБ им. А. Люльки» филиала ПАО «ОДК-УМПО», составленный кандидатом технических наук, ведущим конструктором отд. 500 Кизеевым И.С., содержит следующие замечания:

- 1. В главе 3 показаны результаты параметрических исследований, однако в материалах автореферата отсутствует информация по исходным параметрам ТРДД помимо температур за компрессором и в критическом сечении СА ТВД, не описан алгоритм формирования характеристик узлов, не показаны законы регулирования двигателя при переходе с крейсерского режима полёта на режим отрыва и не описаны принципы выбора запасов устойчивости на режиме отрыва;
- 2. При описании методики на Этапе 1 используются исходные требования к ТРДД по тягам и удельным расходам топлива на различных полётных режимах для формирования облика двигателя, на Этапе 2 определяется облик и параметры входного устройства, а на Этапе 3 определяются эффективные характеристики СУ. Отсюда следует, что при выдаче задания для Этапа 1 уже должны быть известны характеристики СУ и воздухозаборника. При описании предлагаемой автором методики в материалах автореферата отсутствуют указания итерационной работы по формированию облика СУ СПС.

Отзыв на автореферат диссертации ФГБОУ ВО «МЭИ», составленный кандидатом технических наук, доцентом кафедры ИТНО Осиповым С.К., содержит следующие замечания:

- 1. Обозначения величин на рисунках 3, 5 и 9 не расшифрованы, что усложняет их интерпретацию.
- 2. В автореферате не представлена информация о параметрах силовых установок СПС, облики которых сформированы с помощью разработанной методики, о чем сказано в пункте 7 заключения.
- 3. Не приведены уровни КПД узлов ТРДД, потерь в переходных каналах и отборов воздуха и мощности на самолетные нужды, что затрудняет оценку количественных показателей силовой установки СПС, таких как эффективный удельный расход топлива.

Отзыв на автореферат диссертации АО «ОДК-Климов», составленный кандидатом технических наук, заместителем главного конструктора по перспективным разработкам — начальником отдела Липиным А.В. и ведущим конструктором — руководителем группы Илюшиным М.Ю., замечаний по диссертационной работе не содержит.

Выбор официальных оппонентов и ведущей организации обосновывается их компетентностью в отрасли науки, к которой относится диссертационная работа Алендаря А.Д., что подтверждается их научными публикациями в данной области.

Выбор Лещенко И.А., доктора технических наук, старшего научного сотрудника, начальника бригады публичного акционерного общества «ОДК-Сатурн» в качестве официального оппонента обосновывается его широкой известностью и компетентностью в вопросах теории воздушно-реактивных двигателей, а также математического моделирования газотурбинных двигателей.

Выбор Зиненкова Ю.В., кандидата технических наук, доцента кафедры аэродинамики и безопасности полета федерального государственного казенного военного образовательного учреждения высшего образования «Военный учебнонаучный центр Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» (г. Воронеж) в качестве официального оппонента обосновывается его большим практическим опытом в области анализа технических параметров и оптимизации авиационных силовых установок различных схем и подтверждается его публикациями, посвященными математическому моделированию и многодисциплинарному поиску оптимальных параметров авиационных силовых установок.

Выбор ведущей организации обусловлен тем, что эта организация является высшим учебным заведением, осуществляющим подготовку кадров высшей

квалификации по данному направлению и проводящим научно-исследовательские и опытно-конструкторские работы по совершенствованию рабочего процесса авиационных двигателей, разработке перспективных конструкторских решений по авиационным силовым установкам. Специалисты ведущей организации, в том числе составившие отзыв на диссертацию, обладают опытом исследований рабочего процесса, расчета параметров, разработки деталей и узлов авиационных двигателей. Это позволяет им объективно и квалифицированно ценность результатов актуальность, научную новизну И практическую практическому диссертации, также сформировать рекомендации ПО использованию этих результатов для предприятий отрасли, занимающихся исследованиями и разработками в области СУ СПС нового поколения.

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

- разработана методика, позволяющая на ранних этапах проектирования формировать технический облик силовой установки (СУ) сверхзвукового пассажирского самолета (СПС) с учетом требований по тяге на нескольких режимах полета, ограничений параметров рабочего тела в основных сечениях двигателя на крейсерском режиме, ограничения по скорости реактивной струи на каком-либо из взлетных режимов, условий согласования воздухозаборника и ТРДД, влияния схемно-геометрических особенностей силовой установки на ее эффективные характеристики;
- разработана комплексная математическая модель силовой установки СПС,
 позволяющая выполнять предварительное проектирование, расчет внутренних и
 эффективных характеристик СУ с учетом ее схемно-геометрических особенностей;
- даны практические рекомендации по способам согласования воздухозаборника и двигателя СПС, в том числе представлены оценки диапазонов проектных параметров двигателя СПС, в которых возможно применение нерегулируемого воздухозаборника;
- получены результаты расчетных исследований технических обликов силовой установки СПС, демонстрирующие способы повышения эффективных характеристик силовой установки за счет выбора рациональных проектных параметров и законов управления.

Теоретическая и практическая значимость исследования обусловлена тем, что:

- предложенная методика формирования технического облика силовой установки СПС позволяет на ранней стадии проектирования учитывать требования ключевых режимов работы двигателя крейсерского и «экологического» с точки зрения шума самолета на местности (например, режима отрыва от взлетно-посадочной полосы), а также конструктивно-схемные особенности компоновок СПС нового поколения при расчете внутренних и эффективных характеристик СУ;
- разработанная методика расчета параметров сверхзвукового пространственного воздухозаборника позволяет увеличить разрешающую способность математических моделей, применяемых для расчета характеристик сверхзвуковых силовых установок, и, тем самым, дает возможность более глубокого анализа процессов, происходящих в силовой установки СПС с формированием рекомендаций по выбору проектных параметров двигателя и силовой установки в целом.
- результаты диссертационной работы использовались в ФАУ «ЦИАМ им.
 П.И. Баранова» при выполнении научно-исследовательских работ по тематике перспективных СПС, что подтверждено актом внедрения.

Оценка достоверности результатов исследования

Достоверность и обоснованность научных результатов достигается:

- анализом опубликованных работ в исследуемой области, сравнением результатов диссертационной работы с опубликованными другими авторами результатами;
- использованием фундаментальных положений теории воздушнореактивных двигателей, математическими обоснованиями и доказательствами, использованием общепринятых допущений при разработке математических моделей;
- верификацией новых разработанных расчетных моделей апробированными методами;
- широким опубликованием результатов диссертации в рецензируемых научных изданиях, а также их обсуждением на различных конференциях, форумах и семинарах.

Личный вклад соискателя состоит в:

- постановке задач исследования;

- выполнении обзора научных работ и анализа проблем создания сверхзвуковых пассажирских самолетов нового поколения в части силовой установки;
- разработке методики формирования технического облика силовой установки сверхзвукового пассажирского самолета;
 - разработке комплексной математической модели силовой установки;
 - выполнении расчетов, анализе результатов и формировании выводов.

В ходе защиты диссертации не было высказано критических замечаний, которые ставили бы под сомнение обоснованность научных положений, выводов и рекомендаций, сформулированных в диссертации, их достоверность и новизну, а также личный вклад соискателя.

На заседании 22 сентября 2025 года диссертационный совет принял решение: за решение научной задачи разработки методики формирования технического облика силовой установки сверхзвукового пассажирского самолета, имеющей значение для развития авиационного двигателестроения, присудить Алендарю А.Д. ученую степень кандидата технических наук.

При проведении тайного голосования диссертационный совет в количестве 15 человек, из них 8 докторов наук по научной специальности рассматриваемой диссертации, участвовавших в заседании, из 19 человек, входящих в состав совета, проголосовали: за – 15, против – нет, недействительных бюллетеней – нет.

Проректор по научной работе,

д.т.н., доцент

А.В.Иванов

Председательствующий заседания

диссертационного совета 24.2.327.06,

д.т.н., профессор

C A Xantor

Ученый секретарь

диссертационного совета 24.2.327.06

д.т.н., доцент

В.М.Краев

22 сентября 2025 г.