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Аннотация. В работе осуществлена постановка задачи гидроупругости для 

цилиндрической оболочки типа Кирхгофа-Лява, материал которой обладает 

обобщенным законом Гука, учитывающим его нелинейность в виде комбинации 

квадратичной функции и степенной функции с показателем 3/2. Изучен случай 

бесконечно протяженной оболочки, заполненной вязкой ньютоновской 

жидкостью постоянной плотности. Проведен асимптотической анализ 

поставленной краевой задачи математической физики методом двухмасштабных 

разложений. Рассматривая первое (линейное) приближение по малому параметру 

задачи установлено, что жидкость, заполняющая оболочку, не влияет на волновой 
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процесс. Профиль фронта волны продольной деформации в оболочке является 

произвольной функцией, а волны деформации в оболочке распространяются со 

звуковой скоростью. Рассматривая задачу во втором приближении получено 

нелинейное эволюционное уравнение, обобщающее уравнение Кортевега-де 

Вриза-Шамеля (КдВШ), которое позволяет исследовать нелинейные уединенные 

гидроупругие волны продольной деформации в оболочке. Показано, что данное 

уравнение в частном случае при рассмотрении материала оболочки 

несжимаемым, а течение жидкости в оболочке ползущим имеет точное решение в 

виде солитона. При этом вязкая жидкость, заполняющая оболочку, не оказывает 

влияние на волновой процесс в ее стенках, а скорость солитонов оказывается 

выше звуковой. Для исследования общего случая предложена новая разностная 

схема для перехода к дискретному аналогу обобщенного уравнения КдВШ, 

которая получена в рамках интегроинтерполяционного подхода, базирующегося 

на применении техники построения базисов Грёбнера. Проведено численное 

исследование данного уравнения при задании начальных условий в виде точного 

частного солитонного решения. Вычислительные эксперименты позволили 

установить, что скорость уединенных волн продольной деформации в оболочке 

оказывается ниже звуковой, а первоначально возбуждаемый солитон разрушается 

с течением времени, если осуществляется учет инерции движения жидкости и 

материал оболочки сжимаем.  

Ключевые слова: цилиндрическая оболочка, комбинированная нелинейность, 

вязкая жидкость, гидроупругость, солитоны деформации, вычислительный 

эксперимент.  
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Abstract. This paper presents the hydroelasticity problem formulation for a 

KirchhoffLove cylindrical shell whose material obeys a generalized Hooke's law, 

accounting for its nonlinearity in the form of a combination of a quadratic function and a 

power function with exponent 3/2. The case of an infinitely extended shell filled with a 

viscous Newtonian fluid of constant density is studied. An asymptotic analysis of the 

boundary value problem of mathematical physics is carried out using the multiscale 

perturbation method. Considering the first (linear) approximation with respect to a small 

parameter of the problem, it is established that the fluid filling the shell does not affect 

the wave process. The profile of the longitudinal strain wave front in the shell is an 

arbitrary function, and the strain waves in the shell propagate at the speed of sound. 

Considering the problem in the second approximation, a nonlinear evolution equation is 

obtained, generalized Schamel–Korteweg– de Vries equation, which allows one to study 

nonlinear solitary hydroelastic waves of longitudinal strain in the shell. It is shown that, 

in the particular case of an incompressible shell material and a creeping fluid flow in the 

shell, this equation has an exact soliton solution. The viscous fluid filling the shell has no 

effect on the wave process in its walls, and the soliton velocity is higher than the speed of 

sound. To study the general case, a new difference scheme is proposed for converting to 

a discrete analog of the generalized Schamel–Korteweg–de Vries equation. This scheme 

is obtained using an integro-interpolation approach based on the Gröbner base 

construction technique. A numerical study of this equation is performed with initial 

conditions specified as an exact particular soliton solution. Computational experiments 

revealed that the velocity of solitary longitudinal deformation waves in the shell is lower 

than the speed of sound, and the initially excited soliton decays over time if the shell 

material is compressible and the inertia of the fluid motion is taken into account.  

Keywords: cylindrical shell, combined nonlinearity, viscous fluid, hydroelasticity, 

deformation solitons, computational experiment.  
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Введение  

Исследование эволюции нелинейных волн деформации в упругих элементах 

конструкций представляет собой актуальную и практически важную задачу. Это 

связано с тем, что с одной стороны, нелинейная волновая динамика в ряде 

вопросов находится в стадии своего становления, а с другой стороны, на практике 

все чаще находят применение конструкции, выполненные из современных 

материалов с существенно нелинейными физическими свойствами. Поэтому 

дальнейшее развитие технологий неразрушающей волновой диагностики [1] 

состояния упругих конструкций авиакосмической техники требует постановки и 

решения задач по изучению и моделированию нелинейных волновых процессов в 

таких элементах конструкций как цилиндрические оболочки. Данные оболочки 

часто являются основными несущими элементами, а также стенками 

трубопроводов, заполненных вязкой жидкостью. Можно отметить, что в рамках 

линейной волновой динамики [2], например, могут быть рассмотрены проблемы 

гидроудара [3] или пульсирующего движения вязкой жидкости в упругой 

оболочке-трубке [4, 5], выполненной из материала, работающего в пределах 

линейной теории упругости, т.е. подчиняющегося линейному закону Гука.   

Учет нелинейных эффектов, физической или геометрической нелинейности 

материала упругой конструкции, открывает возможность исследования 

нелинейной волновой динамики в упругих средах [6, 7], и в частности, 

распространения солитонов деформации в стержнях, пластинах и оболочках [8-

10]. Приведем ниже ряд исследований, наиболее близких к теме предлагаемой 

работы, по моделированию распространения солитонов деформации в 

цилиндрических оболочках, заполненных жидкостью. Геометрически нелинейная 

цилиндрическая оболочка, содержащая идеальную несжимаемую жидкость 

исследована в [11, 12]. Автором сформулирована осесимметричная задача 

гидроупругости для рассматриваемой оболочки, и проведен ее асимптотический 

анализ. В результате получено уравнение Кортевега–де Вриза (КдВ) для прогиба 

оболочки, используя которое выполнены расчеты распространения солитонов 

прогибов на оболочке при отсутствии/наличии в оболочке жидкости, а также при 

движении в ней стационарного потока жидкости с постоянной скоростью. 
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Цилиндрическая оболочка типа Кирхгофа-Лява, заполненная вязкой 

несжимаемой жидкостью и выполненная из материала с физически жесткой 

кубической нелинейностью, рассмотрена в [13] с дополнительным учетом 

конструкционного демпфирования. В [14] изучен случай, когда материал 

оболочки обладает квадратичной физической нелинейностью, а оболочка, 

содержащая вязкую жидкость, окружена упругой средой Винклера. В этих работах 

осуществлена постановка задач гидроупругости, а для их асимптотического 

анализа применен метод двухмасштабных разложений, позволивший изучить 

солитоны продольной деформации. В результате в [13], получено эволюционное 

уравнение, обобщающее модифицированное уравнение КдВ, а в [14] – 

интегродифференциальное эволюционное уравнение, обобщающее уравнение 

КдВ. Моделирование распространения солитонов продольной деформации в двух 

соосных оболочках, выполненных из материала с дробной жесткой физической 

нелинейностью и содержащих вязкую жидкость между оболочками и во 

внутренней оболочке, выполнено в [15]. Авторами на основе асимптотического 

анализа сформулированной осесимметричной задачи гидроупругости двух 

соосных оболочек получено новое эволюционное уравнение, обобщающее 

уравнение Шамеля, а также предложен подход для перехода к его дискретному 

аналогу на базе использования техники построения базисов Грёбнера. 

Аналогичные оболочки, но из несжимаемого материала с физической 

комбинированной квадратичной и дробной нелинейностью, исследованы в [16] 

для случая ползущего течения вязкой жидкости, заполняющей оболочки.  

В предлагаемой статье предложена математическая модель для 

исследования эволюции солитонов продольной деформации в цилиндрической 

оболочке, содержащей вязкую жидкость постоянной плотности и выполненной из 

сжимаемого материала, связь напряжений и деформаций в котором представлена 

обобщенным законом Гука в виде суммы квадратичной функции и дробно-

степенной функции, а также с учетом инерции движения вязкой жидкости в 

оболочке.  
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Постановка задачи гидроупругости оболочки из физически нелинейного 

материала, имеющего квадратичную и дробно-степенную нелинейность   

Рассмотрим цилиндрическую оболочку, изготовленную из физически 

нелинейного сжимаемого материала, т.е. считаем коэффициент Пуассона 

материала отличным от 1/2. Полагаем, что оболочка полностью заполнена вязкой 

жидкостью. Изучая волновой процесс в оболочке исходим из того, что ее 

протяженность можно принять бесконечно большой и исключать из 

рассмотрения отражение волн на ее торцах.   

Ведем декартовы координаты xyz, направляя ось x вдоль оси симметрии 

оболочки и считая, что точка начала декартовой системы находится в 

центральном поперечном сечении оболочки. С этой же точкой совместим центр 

цилиндрической системы координат rθx. Рассматриваем осесимметричную 

постановку задачи, принимая во внимание осевую симметрию рассматриваемой 

механической системы, и ограничимся изучением волнового процесса в 

положительном направлении оси х. Обозначим как R1 – радиус внутренней 

поверхности оболочки, h0 – толщину оболочки, которую считаем постоянной, а 

радиус срединной поверхности оболочки как R = R1 + h0/2, и принимаем, что 

отношение  h0/R 1. Полагаем, что упругие волны деформаций в оболочке, 

вызваны начальным возбуждением в виде солитона, а движение вязкой жидкости 

в оболочке приходит за счет взаимодействия с ее стенками.   

Исходим из того, что для оболочки справедливы гипотезы Кирхгофа-Лява и 

уравнения ее динамики согласно [17] можно представить в виде  

Nxx  h0 2~tU2 qx U qxx W qrx  R,   (1)  
0 

2Mx x  x Wx Nx  1 N  0h0 
2~tW2 qn U qxn W qrn  R .  

 2     R  
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В уравнениях (1) приняты следующие обозначения: W  – прогиб оболочки, 

его положительное направление принято к центру кривизны оболочки, U - 

продольное упругое перемещение оболочки, qx, qn – касательное и нормальное 

напряжения жидкости на границе ее контакта с оболочкой, ~
t – время, ρ0 – 

плотность материала оболочки, Mx, Nx, Nθ – момент и усилия, действующие на 

элемент срединной поверхности оболочки в направлении осей х и θ 

соответственно.   

Mx и Nx, Nx выражаются через нормальные напряжения σx, σθ [17]   

h02 
h02h02 

Mх 
= 

xzdz , Nx = xdz, N  = dz.  (2)  
 h

02 h02 h02 

Аналогично [16], исходим из того, что материал оболочки имеет жесткую 

комбинированную физическую нелинейность в виде суммы квадратичной и 

дробно-степенной функций, но учитываем сжимаемость материала  

x =1  E 2 ( x 0 ) 1  mE u12  mE2 u  ,  (3)  

 0  

 =1  E 2 ( 0 x ) 1  mE u12  mE2 u  ,    

0  

 
u 1 0 [ 1( 2x 2) 2 x ]12, 1  13 1  (1 00)2  , 2  13 1  (1 2 00)2  .  

Здесь E – модуль Юнга, μ0 – коэффициент Пуассона, m, m2 – положительные 

константы материала, имеющие размерность напряжений и определяемые из 

опытов на растяжение-сжатие [18, 19]. В частном случае при μ0 = 1/2 

осуществляется переход к несжимаемому физически нелинейному материалу 

рассмотренному в [16], а если дополнительно считать m <0, m2 = 0 или m < 0, m2 < 

0 получим несжимаемые материалы с мягкой физической квадратичной или 

комбинированной нелинейностью, соответственно, которые рассмотрены в [20,  

3 
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21].  

Деформации элемента оболочки выражаются через упругие перемещения  

как [15, 16]  

 U 2W W W 

x  x  
z 

x2 ,  =  R  
z 

R2 ,  (4)  

где z – локальная координата перпендикулярная срединной поверхности 

оболочки и изменяющаяся от – h0/2 до h0/2 (на срединной поверхности оболочки 

z=0).  

Учитывая (2)-(4) в (1) и рассматривая аналогично [16] интенсивность 

деформаций  на  срединной  поверхности  оболочки  (при  z = 0), 

 получили уравнения движения оболочки в перемещениях  

Ux 
 
12WR mE 1 30 1Eh 00

2 x Ux 0 WR 

12
1 Ux 2 WR 2   (5)  

   

2 Ux WR 14  mE2 1 3 0 1 Ux 2 WR 2 2 Ux 

WR 12   0h0 2~tU2 qx U qxx W qrx  R,  

   

12h02 2xW2 0 WR2  1Eh 002 x x Ux 0 WR     

14 
12 

3 
  

U 2 W 2  U W  

1 

Ux 0 WR mE 1 0    x   R  

 2 x R      

  

 
 

  x 
Eh 

2 
2 

2 
0 

0 
) 1 ( 12 
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 2 2 12  Eh 1 

 mE2 1 3 0  Ux  WR  2 Ux WR   

1 002 R 0 Ux WR    1  

 U W m  3 12 1 Ux 2 WR 2 2 Ux WR 

14  mE2 1 3 0 1 Ux 2 WR 2   0 

 xR E 1 0    

 

2 Ux WR 12  0h0 2~tW2 qn U qxn W qrn  R .  

     

  r x  r 

Для определения напряжений (6) совместно с уравнениями оболочки (5) 

запишем уравнения динамики вязкой несжимаемой жидкости [22]  

Vr Vr Vr Vx Vr 1 p 2rV2r 1r Vrr 2xV2r Vr2r  ,    (7) ~ 

t r x  r  

Vx Vr Vx Vx Vx 1 p 2rV2x 1r Vrx 2xV2x , Vrr  

1rVr Vxx 0, ~ 

t r x  x  

где Vx, Vr – проекции скорости жидкости на оси цилиндрической системы 

координат, p – давление в жидкости, ρ – плотность жидкости, ν – кинематический 

коэффициент вязкости.   

Дополним (7) краевыми условиями на границах контакта оболочки и 

жидкости, т.е. условиями совпадения скоростей элемента оболочки и жидкости  

Выражения qx, qn имеют вид [22]   

qx = Vx Vr   при r=R,  qn = p 2 Vr при 

r=R.   (6)  
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Vx U V~x W V~tx = U~t , Vr U V~tr W V~tr = W~t 

при r=R1 W , t 
(8)  

а также условиями для компонент скорости жидкости на оси симметрии, 

сформулированными и обоснованными в [15] в следующем виде  

Vx =0 
при r=0. rVr 0, r 

r 

  

Асимптотический анализ задачи. Эволюционное уравнение  

Пусть имеют силу следующие отношения малости  

h

 R2 w u R m m 

W  wmu3 , U umu1 , x*  x l , t*  t c0 l , r*  r R,  (11)  

где c0  E ( 0(1 0
2)) – скорость звука в материале оболочки, l – длина волны, 

принимаемая за характерный линейный масштаб, um, wm – характерные масштабы 

упругих перемещений оболочек, ε – малый параметр задачи.  

Проведем анализ уравнений (5) методом возмущений [23], рассматривая 

асимптотические разложения функций упругих перемещений оболочки   

u1 u10 12u11 ..., u3 u30 12u31 ...,  (12)  

и вводя бегущую переменную ξ и медленное время τ  

 x* с*t* , 12t*,  (13)  

O( 12), h0m O(1) , lm , E O(1), E2  0 1, 2  h0  O(1) 

O( 12),  
R l 

и используем безразмерные переменные  

~ 

(10)  
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В данном случае принимаем во внимание работу [10], в которой показано, что с*  

1 0
2 – безразмерная скорость нелинейного волнового процесса в оболочке, 

которой с учетом (11) соответствует размерная скорость звука в стержне E 0 .  

Подставляя (10)-(13) в (5) в нулевом приближение по ε (оставляя первый 

член в (12)) имеем   

u30 (1 02) 2u210 , 0 u10 u30 ,  (14)   u10  
0 

   

а в следующем приближении по ε, т.е. удерживая два члена в (12), получим  

1232 

 
 

u11 u 
 
m  3  

0 0   31  E 1 0  (1 0
2)( 1 2 0 1 0

2)14 u 10    

 mE2 121 3 0 (1 02)( 1 2 0 1 02)1 2  R ,  (15)  

0 u 11 u31 0(1 02) 3 u103 32 Rh0c02 qn R .    
0 

Сведем (14) к одному уравнению, подставляя прогиб из второго уравнения  

в первое, в результате имеем тождество u 10 02 u 10 

(1 02) 2 u210 . Поэтому,  

продольное перемещение u10 - произвольная функция и линейный волновой 

процесс, как отмечено выше, распространяется со скоростью звука E 0 .  

Следовательно, второй член в (12) соответствует нелинейному волновому 

процессу, скорость распространения которого добавляется (или вычитается) к 

скорости линейного волнового процесса.  

x q 
c h 

l u u 
2 
0 0 0 

2 3 
10 

2 
2 
0 

2 
10 1 2 
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Исключим из (15) u11, u31 продифференцировав второе уравнение по ξ и после 

этого вычтя его из первого уравнения. В результате имеем   

  12 12 2u10 m2 12 3 1 02   (16)  

2u 10  mE  3  3 1 02( 1 2 0 1 02)14 u10  2  E 1 0 

 1 0  4   

( 1 2 0 1 02)1 2 qx 0 14 q n  R .  

   

Полученное уравнение является обобщением уравнения Кортевега–де  

Вриза-Шамеля  (КдВШ)  для  продольной  деформации u10 .  Отметим,  что  

 

исключение из рассмотрения жидкости в оболочке эквивалентно полаганию qx = 

qn = 0. В этом случае (16) представляет собой однородное уравнение КдВШ.   

Для определения qx, qn проведем асимптотический анализ уравнений 

динамики жидкости (7)-(9) аналогично [15, 16]. Для этого вводим безразмерные 

переменные вида  

Vr = h0 cl0 vr , Vx =h0 cR0 vx , r* = Rr , t* = cl0 ~t , x* =1 l x, p = Rc03lh0 P.  (17)  

В рассматриваемой постановке для задачи динамики жидкости имеют место 

следующие соотношения   

R 
=  = O( 14), =

h0 = .  (18) l R 

Тогда, переходя в (6)-(9) к безразмерным переменным (17) с учетом (18), 

рассматривая следующие асимптотические разложения искомых функций   

c h 
l u u u 

     
  

  
    

 
  

 
  

 
2 
0 0 0 

2 3 2 
0 

4 
10 

4 2 
0 

2 
0 

2 
10 

2 
10 

1 2 

1 
2 

1 
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P = P0 12P1 ..., vr = vr
0 12v1

r ..., vx = vx
0 12v1

x ..., (19) и ограничиваясь в (19) первым 

членом, получим линеаризованные уравнения движения вязкой жидкости, 

заполняющей оболочку,   

r* r*vr0 vxx0* =0 , (20)  P0 R1c0 vx0 P0 1 r r* vrx*0 , r1* 

=0,  
r*   t*  x*  r*  *  

  
и соответствующие им краевые условиями  

vx0 0 при r* =0, v0 = u(2) 

r*vr
0 0 , r* r*  r  t3* , vx0 = ut1(2)* при r* =1.  (21)  

Решение задачи (20), (21) проведено в [15] и определены выражения для qx, 

qn с точностью до ψ, ε1/2 в следующем виде  

qx =  Rc  c02 vrx*0  qn =  Rc 0 c02P0 ,  (22) 0  r*=1  

где  

P0  t* 16 12u10 u30dx*  23  Rc 0 t* 12u10 4 u30dx* dx*, (23)  

   

vrx*0  t* 8 12u10 u30dx* 13  Rc 0 t* 

12u10 u30dx* . r*=1    

Принимая во внимание (22), (23) и что согласно второму уравнению (14) u30 

0 u10 , а также учитывая малость параметров ψ, λ получаем следующее  
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выражение, определяющее правую часть (16)  

qx 0 R qn = 4  c02 1 02(1 2 0)2 u10  Rl 6c02 (1 02)[(1 2 0)2 12 02] 2 u210 .   

(24) l  Rc0  

  

Численное моделирование эволюции солитонов продольной деформации   

Учитывая (24), представим уравнение (16) в виде   

* 

0h0 

12Rc0 0 c2 

 3 m 2 3 2)12, c1 = 1 c33 12, c2 = 1 6 02 c3c1.  

где c3 = 4 E  1 0 ( 1 2 0 1 0 0  

 

Нижний индекс в (25) обозначает соответствующую частную производную. 

Если положить α0 = 0, α1 = 1, осуществляется переход к обобщенному уравнению 

КдВ, при α0 = 1, α1 = 0 – к обобщенному уравнению Шамеля, а при α0 = α1 = 1 – к 

обобщенному уравнению КдВШ. Данные уравнения описывают распространение 

уединенных волн продольной деформации в физически нелинейной оболочке, 

заполненной вязкой жидкостью.  

Заметим, если материал оболочки несжимаем, то σ* = 0 (вследствие того, что 

в этом случае μ0 = ½), а если исключается инерция движения жидкости, то σ = 0. 

При выполнении допущения σ* = 0 в (25) осуществляется переход к уравнению 

КдВШ, имеющему точное солитонное решение вида   

2 

(t, )  k 

t 6 0 1 2 (1)  6 1    * =0, используя 

следующие обозначения   

(25)  

u10 = c3  , = c1 , t =c2 ,  c1 R 12 1 02 [(1 2 0)2 12 02],   

 c2 0h0 12 

 = 
l  

2 1 2  2 1 ,  

(26)  
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 2544
0  0

2  258 k2
1ch(k( (4k2 )t))  .  (27)  

Отметим, что в представленном решении k – волновое число, является 

произвольным, решение справедливо и при σ* = σ = 0. В общем случае уравнение 

(25) не имеет точного решения, поэтому требуется подход, позволяющий прейти 

к дискретному аналогу (25), а частное решение (27) можно использовать в 

качестве начального условия при реализации численного решения.  

В качестве такого подхода используем интегро-интерполяционный метод 

построения новых разностных схем для дискретизации эволюционных уравнений 

в частных производных с помощью техники базисов Грёбнера, предложенный в 

[24, 25]. Последовательность получения разностной схемы, проверка ее 

адекватности и устойчивости аналогична [15], а полученная новая разностная 

схема для обобщенного уравнения КдВШ (25), т.е. при α0 = α1 = 1, имеет вид  

unj 1 unj (u3 2nj 11 u3 2nj 11) (u3 2nj 1 u3 2nj 1) 

 4   (28)  
  4h 
n 1 u2n 1) (u2nj 1 u2nj 1) (unj 12 2unj 11 2unj 11 

unj 21) j 1 

3 4h  4h3   

(unj 2  2unj 1  2unj 1 unj 2) (unj 11 unj 11)  (unj 1 unj 1) unj 1 unj 

 4h3 * 4h  2  0.  

Здесь введены дискретные сеточные функции un
j = (tn, j ) и обозначено tn 1 tn = ,  

 j 1  j =h.  

Для решения разностной схемы (27) при ее программной реализации 

использован метод итераций, что потребовало линеаризации нелинейных 

степенных сеточных функций с показателем степени 3/2 и 2 для следующего 

временного слоя. Процедура линеаризации основана на применении 

предложенных расчетных соотношений вида  



16  
  

vk3 12  vk3 21 vk32 vk32  (v1k 21 v1k 2)(vk 1 k1 21v1k 2 k ) vk32   (29)  

 (v1k 21 v1k 2)( k1 21 k1 2) (vk 1 1 2k1 21 v1k122 k ) vk3 2  (vk 1 k) 32 v1k 2 vk3 2  32 k12 k 1  

12 k32 ,  

 k 1 k 

vk2 1  vk2 1 vk2 vk2  (vk 1 vk )(vk 1 k ) vk2  (vk 1 k )2vk vk2  2 k k 1 k2.  

На базе разностной схемы (28) с линеаризацией по (29) реализован алгоритм 

и программа численного решения и проведены вычислительные эксперименты по 

моделированию процессов распространения солитонов продольной деформации 

в оболочке с жидкостью. При этом использовали представленные ниже, и 

полученные из (27), виды начальных условий (первоначальных возбуждений в 

виде солитонов).  

При первоначальном (момент времени t = 0) возбуждении в оболочке одного 

солитона деформации, начальные условия задаем как   

2 

k 

(0, )  
254 1  1  

25
8 k 2ch(k )  .  (30)  

 4  

При первоначальном (момент времени t = 0) возбуждении в оболочке двух 

солитонов (1) и (2) (имеющих разные амплитуды), смещенных в пространстве друг 

относительно друга, для первой волны начальные условия записываем в виде  

2 

25 k14 1  1  258 k12ch(k1 ( *))  ,  (31)  (1)(0, *)  

 
4 

а для второй как  

2 

254 k24 1  1  258 k2
2ch(k2 )  .  (32)  (2)(0, )  
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Здесь k1, k2 – волновые числа, соответствующие первой и второй уединенным 

волнам, а η* – начальное запаздывание одной волны относительно другой по 

координате η.  

Результаты расчета эволюции в оболочке из несжимаемого материала (μ0 = 

½, т.е. σ* = 0) двух солитонов деформации, разной амплитуды и смещенных друг от 

друга по координате η представлены на рис. 1 для случая исключения из 

рассмотрения инерции вязкой жидкости, т.е. при σ = 0.   

При расчете использовали начальные условия (31), (32), в которых для φ(1) 

полагали k1 = 0,225 и начальное смещение η* = 50, для φ(2) полагали k2 = 0,2. В 

указанном случае, солитоны деформации в оболочке распространяются в 

положительном направлении оси пространственной координаты η. Учитывая, что 

солитоны деформации соответствуют второму члену асимптотического 

разложения (12) их скорость оказывается выше звуковой, т.к. первому члену (12) 

соответствуют линейные волны, распространение которых происходит со 

скоростью звука. Отметим, что случай, представленный на рис. 1, также 

соответствует варианту отсутствия жидкости в оболочке, т.к. переход к нему 

подобен полаганию в (25) σ = σ* =0. Следовательно, при несжимаемом материале 

оболочки и исключении из рассмотрения инерции движения жидкости, ее 

заполняющей, наличие жидкости в оболочке не влияет на нелинейный волновой 

процесс и он подобен процессу в оболочке без жидкости. При этом эволюция двух 

первоначально возбужденных солитонов деформации вида (31), (32) разной 

амплитуды и смещенных в пространстве друг относительно друга происходит по 

классическому сценарию. Солитон с большей амплитудой догоняет солитон с 

меньшей амплитудой и наблюдается их упругое взаимодействие как частиц.  

  



18  
  

  
Рисунок 1- Результаты численного решения уравнения (25) при σ= σ* = 0 с начальными 

условиями (31), (32), в которых k1 = 0,225, k2 = 0,2, η* = 50.  

  

Результаты расчета эволюции солитона деформации в оболочке, 

выполненной из сжимаемого материала при учете инерции движения жидкости, 

заполняющей оболочку, представлены на рис. 2. При расчете использовали 

начальное условие (30), в котором полагали k=0,2, а также задавали в (28) 

значения коэффициентов σ = 0,2, σ* = 0,4. Моделирование позволило определить, 

что в этом случае наблюдается достаточно быстрое разрушение солитона 

деформации, а его скорость распространения оказывается дозвуковой, т.к. 

уединенная волна распространяется в отрицательном направлении оси 

пространственной координаты η.  
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Рисунок 2 - Результаты численного решения уравнения (25) при σ = 0.2, σ* = 0.4 с начальными 

условиями (30) с волновым числом k = 0,2.  

  

Результаты расчета эволюции солитона деформации в оболочке, 

выполненной из сжимаемого материала без учета инерции движения жидкости, 

заполняющей оболочку, представлены на рис. 3. При расчете использовали 

начальное условие (30), в котором полагали k=0,2, а также задавали в (28) 

значения коэффициентов σ = 0, σ* = 0,4. Как следует из приведенного на рисунке 

сценария эволюции солитона скорость его распространения выше звуковой, но 

наблюдается разрушение уединенной волны с течением времени.  

  
Рисунок 3 - Результаты численного решения уравнения (25) при σ = 0, σ* = 0.4 с начальными 

условиями (30) с волновым числом k = 0,2.  
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Выводы и заключение  

Данные расчетов, позволяют утверждать, что солитоны деформации в 

оболочке из несжимаемого материала, заполненной вязкой жидкостью, инерцией 

движения которой пренебрегают, распространяются со скоростью выше скорости 

звука, не меняя своей амплитуды и скорости. В этом случае наличие вязкой 

жидкости в оболочке не влияет на волновой процесс, и он подобен процессу в 

«сухой» оболочке, т.е. оболочке без жидкости.  

В случае наличия в оболочке из сжимаемого материала жидкости, при учете 

инерции движения последней, наблюдается разрушение солитонов деформации, 

а их скорость распространения оказывается дозвуковой. С другой стороны, если 

инерция движения вязкой жидкости исключается из рассмотрения, а материал 

оболочки считается сжимаемым, то скорость солитона будет выше звуковой, но 

его разрушение сохраняется. Следовательно, при сжимаемом материале оболочки 

вязкость жидкости в рассматриваемой механической системе обуславливает 

диссипацию энергии и ведет к разрушению солитонов деформации. Учет инерции 

жидкости приводит к изменению скорости солитона – она становится дозвуковой. 

В то же время, при рассмотрении вязкой жидкости без учета инерции ее движения, 

и использовании несжимаемого материала оболочки, диссипативные свойства 

вязкой жидкости не проявляются, а скорость распространения солитонов 

становится выше скорости звука.   

Полученные результаты могут быть использованы для дальнейшего 

развития методов акустической диагностики состояния цилиндрических 

оболочек, содержащих вязкую жидкость. Например, в ходе решения обратных 

задач при оценке механических свойств и состояния трубопроводов систем 

гидропривода, подачи топлива и охлаждения, входящих в состав современных 

изделий авиакосмической промышленности, и выполненных из материалов с 

существенно нелинейными физическими свойствами.  
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