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ВВЕДЕНИЕ 

Необходимость использования обобщённых теорий упругости связана с наличием 

микроструктуры у материалов. Различные неоднородности, такие как поры, зёрна, включения, 

трещины в естественных материалах, формируют подобные микроструктуры. В искусственно 

созданных материалах (метаматериалах) микроструктура может проектироваться и создаваться 

целенаправленно. В результате, из-за наличия микроструктуры, напряжённо-деформированное 

состояние в телах может отличаться от предсказанного в классической теории упругости. В 

классической теории упругости нет масштабных параметров, но с масштабными параметрами 

связаны многие методы расчёта длительной прочности, масштабные эффекты могут оказывать 

сильное влияние на уровень концентрации напряжений. При рассмотрении материалов на микро- 

и наноуровне зачастую нельзя целиком игнорировать наличие микроструктуры, так характерные 

размеры неоднородностей уже могут быть сравнимы с размерами рассматриваемого тела. 

Масштабные эффекты могут наблюдаться во многих композитных материалах или 

биоматериалах. 

Одной из обобщённых моделей континуума является теория упругости с микро-

дилатацией, рассматриваемая в настоящей диссертации. Эта теория позволяет получить 

уточненное описание процессов деформирования упругих пористых сред, в которых объемное 

содержание пористости (или плотность) линейно и обратимо зависит от прикладываемой 

внешней нагрузки. Подобное поведение сред может быть характерным для задач биомеханики, 

геомеханики, механики композиционных материалов, ячеистых сред и в задачах с 

метаматериалами. 

Актуальность темы исследования 

Тема исследования связана с изучением особенностей деформирования пористых 

материалов при статическом и динамическом нагружении. Актуальность темы определяется тем, 

что с одной стороны пористые среды с заданной пористостью представляют специальный класс 

материалов со специальными эксплуатационными свойствами (например, в  задачах связанных с 

фильтрацией, термо- и шумо-защите, в медицине и др) а с другой стороны модели пористых сред 

привлекаются  для адекватного моделирования и объяснения  особенностей деформирования 

многих  конструкционных материалов в определенных условиях когда требуется учитывать 

появление микроструктурных особенностей связанных с полями дефектов типа пористости, 

появляющимися в процессе изготовления (композиты при пультрузии),  а также  при описании 

эффектов накопления повреждений и пластического  поведения  в областях концентрации 

напряжений, когда привлекаются дислокационных модели со скалярной характеристикой 

дефектности - свободной дилатацией), а также в сравнительно новых областях когда требуют 

развития континуальные модели  метаматериалов. Теоретическое и экспериментальное изучение 
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в этой области далеко от завершения, многие вопросы, например, градиентные масштабные 

эффекты в теории пористых сред и вовсе почти не изучены. 

Цель исследования состоит в развитии новых адекватных моделей пористых сред, в 

уточнении известных моделей типа Ковина, в построении новых методов расчета 

конструктивных элементов из пористых материалов (тонкостенные стержни), в 

экспериментальном изучении динамических свойств элементов пористых конструкций, а также 

получения численных и аналитических решений для пористых изделий.  

Объект и предмет исследований 

Пористые материалы, работающие в условии динамических, высокоинтенсивных 

нагрузок различной физической природы. Предметом исследования является расширенный 

вариант моделей пористых сред, учитывающий и дефектность (свободные – неинтегрируемые 

дилатации) и градиентную дилатацию-масштабные эффекты варианта градиентной упругости, 

связанной лишь с шаровым тензором деформаций. 

Методы исследования 

Для определения динамических свойств рассматриваемых материалов применялись 

аналитические и численные методы, включающие в себя классическую и градиентную теорию 

упругости, теорию дифференциальных уравнений. Реализация поставленной задачи 

осуществлялась на основе математического пакета MATLAB. При выполнении численного 

моделирования задач с использованием метода конечных элементов применялся программный 

комплекс Ansys Workbench. Статические испытания проводились с использованием 

универсальной разрывной машины Instron, динамические испытания проводились с 

использованием вибростенда TIRA TV, а исследование микроструктуры проводилось с 

использованием растровый электронный микроскоп Karl Zeiss.  

Научная новизна определяется в области построения модели тем, что представлено 

общее решения уравнений дефектных пористых сред, предложена идентификация 

неклассических физических параметров, построена вариационная модель обобщенных 

градиентных пористых сред со свободной и стесненной дилатацией, установлен вид 

инерционных составляющих для обобщенной пористой среды. Установлены новые свойства 

пористых материалов, связанные с возможностью проектирования, композитов с высокими 

демпфирующими свойствами. Предложен и апробирован проектировочный расчет модели 

ударного взаимодействия преграды и тела, основанная на теории деформации Генки-Ильюшина. 

Практическая ценность работы заключается в разработке метода проведения 

динамических испытаний и численно-аналитического расчета динамических свойств пористых 

материалов. Важность представленных результатов на практике связана с точными оценками 
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динамических характеристик пористых материалов, используемых в авиационных и 

аэрокосмической промышленности. 

Достоверность научных положений, выводов и полученных результатов подтверждается 

использованием строгих и апробированных подходов классической и градиентной теории 

упругости, теории колебаний, результатами аналитического и численного моделирования, а 

также результатами экспериментальных исследований, выполненных с использованием 

высокоточного оборудования и с соблюдением стандартов проведения испытаний.  

Апробация работы 

Результаты диссертационного исследования докладывались и обсуждались на научно-

практических конференциях и симпозиумах, в том числе, международных: 

1. Международная научно-практическая конференция, посвященная 70-летию БелИИЖТа 

- БелГУТа «Инновационное развитие транспортного и строительного комплексов». Гомель, 2023 

г. 

2. Международный симпозиум им. А.Г. Горшкова «Динамические и технологические 

проблемы механики конструкций и сплошных сред». Кремёнки, 2023, 2024, 2025 гг. 

Публикации 

По теме диссертационной работы опубликовано 11 работ, в том числе 3 научные работы 

в журнале, включенном в перечень рецензируемых научных изданий, рекомендованных ВАК РФ 

(категории К1), 3 работы в журнале, индексируемом базой данных Scopus, 5 публикаций в виде 

тезисов докладов на научно-практических конференциях и симпозиумах: 

Публикации в изданиях, входящих в перечень ВАК РФ: 

1. Калягин, М. Ю. Моделирование приборных отсеков летательных аппаратов 

пористо-смесевыми ударниками / М. Ю. Калягин // Труды МАИ. – 2018. – № 98. – С. 8. – EDN 

YVGDUH. 

2. Калягин, М. Ю. Исследование влияния пористости на физико-механические 

характеристики полиимидного пенопласта / М. Ю. Калягин, Л. Н. Рабинский, С. А. Шумская // 

Труды МАИ. – 2024. – № 138. – EDN DHHIVK. 

3. Егорова, М. С. Теория стержней (пластин), построенная для неклассических 

моделей пористой среды механики деформируемого тела / М. С. Егорова, М. Ю. Калягин, Л. Н. 

Рабинский // Труды МАИ. – 2025. – № 142. – EDN HUNGID. 

Публикации в изданиях, входящих в международную систему цитирования Scopus: 

1. Babaytsev, A. V. Defect Development in Multilayer Composites under Static Loads / A. 

V. Babaytsev, M. Yu. Kalyagin, L. N. Rabinskiy // Russian Engineering Research. – 2024. – Vol. 44, 

No. 1. – P. 112-115. – DOI 10.3103/S1068798X24010064. – EDN EFLZME. 
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2. Rabinskiy, L. N. Numerical Estimates of the Physicomechanical Properties of Porous 

Composites / L. N. Rabinskiy, S. A. Shumskaya, M. Yu. Kalyagin // Russian Engineering Research. – 

2025. – Vol. 45, No. 1. – P. 133-135. – DOI 10.3103/S1068798X24703404. – EDN WHTRLJ. 

3. Babaytsev, A. V. Dynamic Behavior of Materials with Different Porosity / A. V. 

Babaytsev, M. Yu. Kalyagin, L. N. Rabinskiy // Russian Engineering Research. – 2025. – Vol. 45, No. 

4. – P. 539-541. – DOI 10.3103/S1068798X2570039X. – EDN IKEYJW. 

Прочие публикации, входящие в РИНЦ: 
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Современное состояние проблемы 

Теория упругого материала с порами (микродилатационная упругость) была впервые 

сформулирована Ковином и Нунциато [1] и Марковым [2]. Эта теория является частным случаем 

сред с микроструктурой [3,4], в предположении, что тензор микроискажений является 

сферическим [5,6]. В этом случае в средах существуют только свободные расширения. Таким 

образом, вектор смещения и скалярная функция микродилатации неизвестны. С физической 

точки зрения, микродилатация связана с изменением объемной доли пористости в среде. 

Следовательно, линейная теория упругости с учетом пустот может быть использована для 

описания обратимых малых деформаций и связанных с ними небольших изменений объемной 

доли пористости в средах под нагрузкой. Фактически, в таких средах реализуется 

перераспределение пористости. В растянутых/сжатых частях корпуса объемная доля пористости 

либо увеличивается, либо уменьшается. Закрытие или образование пустот связано со знаком 

первого инварианта тензора бесконечно малых деформаций.  

В теории упругих материалов с пустотами известны следующие аналитические решения: 

для задачи однородных деформаций [1]; для задач Сен-Венана для изотропных [1, 7] и 

ортотропных [8-10] балки, задача Кирша [6]; задача Ламе [11]; некоторые контактные задачи [12]; 

некоторые задачи о разрушении [13] и т.д. Принцип Сен-Венана для теории микродилатации был 

доказан Батрой и Янгом [14]. Теоремы существования и единственности в этой теории были 

представлены Иесаном [15]. Теория пластин и оболочек с пустотами была рассмотрена Бирсаном 

[16], а теория тонких балок с пустотами была представлена Бирсаном и Альтенбахом [8]. 

Расширенная теория микродилатации с поверхностными эффектами, аналогичная модели 

Гуртина-Мердока, впервые была представлена в работе Чандрасекарахии [17]. Теория упругих 

материалов с пустотами и микродилатационными свойствами поверхности была исследована 

Беловым и другими учеными. Лурье [18], Соляев и Лурье [19] и Соляев и др. [20]. Согласно этой 

теории, поверхностная часть энергии деформации зависит только от микродилатации. Как 

следствие, граничные условия типа Робина (вместо обычного типа Неймана) для функции 

микродилатации возникают на свободных от напряжений поверхностях тела.  

Сначала были получены численные решения двумерных (2D) статических и 

динамических задач в основы теории упругости пустот были представлены Иоване и 

Наседкиным [21, 22]. Авторы провели конечно-элементное моделирование с использованием 

решателя с алгоритмами прямой оценки. В недавних работах [23-26] были представлены 

результаты анализа различных растворов FE для однородных нелинейных деформаций [26], 

деформаций пластины с отверстием [23], деформации толстого полого цилиндра под давлением 

[23] и усадки прямоугольных пористых балок [24]. Оценка неклассического затем был проведен 

численный анализ материальных констант на основе численного анализа. В работе Тюрио [27] 



8 

 
 

авторы модифицировали метод граничных элементов, чтобы получить численное решение 

теории микродилатации, а также изучить проблемы равномерной и неравномерной деформации 

толстого полого цилиндра. В недавней работе [28] авторы использовали бессеточный локальный 

метод Петрова–Галеркина [29] для решения различных двумерных задач в теории 

микродилатации, включая задачу об изгибе консольной балки.  

Обычно упоминается, что теория упругих материалов с порами может быть полезна для 

описания деформированного состояния пористой керамики, металлов, полимеров, 

геоматериалов, пенопластовых структур и сред с точечными дефектами [1, 2, 23]. Существует 

мнение [30, 2], что эта теория может быть применена только к материалам с низкой объемной 

долей пористости. Кроме того, теория упругих материалов с пустотами может предсказать 

отрицательные эффекты Пуассона в средах из-за связанных эффектов микродилатации. Таким 

образом, это могло бы может быть полезен для описания материалов с отрицательным 

коэффициентом Пуассона [27, 31].  

На сегодняшний день существует несколько экспериментальных попыток определить 

неклассические параметры упругости при микродилатации. На основе экспериментальных 

данных установлена связь между двумя неклассическими параметрами. Математика и механика 

твердых тел (модуль упругости связи и параметр жесткости пустот) были впервые обнаружены 

Джонгом и соавторами [23]. Лейкс [30], Сиарлетта и др. [31], а также Рюгер и Лейкс [32] 

показали, что при испытаниях на изгиб и испытания пенополиуретанов на кручение. Было 

отмечено, что эти результаты противоречат теоретическим предсказаниям, вытекающим из 

теории микродилатации [1]. Однако работа [33] продемонстрировала возможность 

взаимодействия эффектов микродилатации и сдвиговых деформаций как эффектов более 

высокого порядка. Естественно, для описания таких эффектов можно было бы также 

использовать более обобщенные модели сред с микроструктурой [32, 34, 35] или, например, 

вторую градиентную упругость с соответствующими методами идентификации [36]. 

Постановка краевой задачи статической теории упругих материалов с пустотами и 

поверхностными эффектами может быть получена с использованием вариационного подхода, 

как это было сделано в работе [18]. Мы используем стандартные обозначения, введенные 

Ковином и Нунциато [1]. 

В обзоре Кнудсена [38] посвященном прочности различных хрупких материалов, 

предлагается модель [39] для описания зависимости прочности от пористости, приводящая к 

уравнению [40]: ( )expj kd bP− = − . Здесь d  - средний диаметр зерна, P  - пористость, 

, ,k b  - константы. Используя соотношение Даквортса, автор обзора нашел серию значений 

константы b , проанализировав полученные различными экспериментаторами данные для ряда 
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материалов. Вероятно, колебания величины b  сложным образом связаны с одновременными 

колебаниями таких факторов, как фазы включения, размер, форма и распределение пор и другие. 

Зависимость прочности от размера зерна обсуждалась выше в связи с механизмами разрушения, 

при этом было показано, что эта зависимость в виде 1/ 2d −  выполняется для ряда материалов. 

Для большинства образцов абсолютная величина показателя степени меньше 1/2. В более 

ранней работе Коблал [41] дается показатель степени -1. Вообще различные показатели степени 

могут быть объяснены изменениями в механизмах разрушения с изменением пористости и 

температуры, как это обсуждалось выше в связи с отклонениями от критериев Гриффитса и 

Гриффитса - Орована. Ясно, что до тех пор, пока конкретный механизм разрушения не известен. 

Влияние пористости на прочность в том виде, в каком оно учитывается записанной формулой, 

наблюдалось на многих материалах. Падение прочности по экспоненте можно рассматривать по 

аналогии с экспоненциальным уменьшением модуля упругости. Кнудсен [ 3 8 ]  обнаружил, что 

практически все опубликованные данные, по модулю упругости (обычным образом 

приготовленных образцов) описываются формулой: ( )0 exp 3.95E E P= −  Известно, что в случае 

малых величин пористости (менее 10%) упругие модули должны уменьшаться линейно с 

пористостью: ( ) ( )0 0/ / 1 15 1 7 5G G E E P= = − −  −     (см., например, [42]). Если принять 

коэффициент Пуассона 0.25 = , то величина - коэффициента при P  будет приблизительно 2, 

т.е. 0/ 1 2E E P= − . Такой наклон кривой, равный теоретическому, зафиксирован в работах [43] 

и [44] которых специальным образом приготовленные образца непрерывной керамики, 

содержащей поры, по форме близкие к сферическим, испытывались с целью проверки 

теоретических моделей. Следует заметить, что начальные наклоны теоретической и 

эмпирической формул для упругого модуля в зависимости от пористости не совпадают. Поэтому 

для описания сложного поведения керамики с пористостью выше 10%, когда упомянутая теория 

уже неприменима, необходимо искать выражение, отличное от обоих приведенных выше. Одна 

из таких формул, предложенная Сприггсои [45], в которой фигурирует произведение двух 

экспонент (одна - для открытой, вторая - для закрытой пористости), очевидно, также неприме-

нима, и опять из-за того, что коэффициенты в экспонентах, определенные по опытным точкам, 

не укладываются в теоретическую модель при малой пористости. Анализируя влияние 

пористости на прочность, можно принять эмпирическое соотношение между модулем упругости 

и пористостью с целью получить связь между средним напряжением в пористой керамике и 

пористостью, т. е. можно положить 0/ /E E =   (где  - среднее напряжение в теле, 

ослабленном порами). Среднее напряжение, а тогда можно считать зависящим от некоторого 

критерия разрушения, например соответствующего первой формуле. 
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Хассельман и Фулрат [46] высказали предположение, что если размер дефекта (или 

структуры) намного больше размера поры, то для такой Структуры характерно плавное падение 

прочности с ростом пористости, пропорциональное падению модуля упругости. И наоборот, если 

размер дефекта мал по сравнению с размером поры, появление первой же поры приводит к 

резкому уменьшению прочности, линейно связанному с коэффициентом концентрации 

напряжений в окрестности поры. С дальнейшим ростом пористости прочность падает плавно, 

пропорционально падению модуля упругости. В обеих этих моделях молчаливо подразумевается 

наличие многочисленных пор, так что не возникает проблемы в связи со статистическим 

взаимодействием пор и дефектов. Другое обстоятельство, анализ которого в настоящее время не 

проведен, заключается в том, что структура пористости не постоянна по объему материала. 

Следовательно, возможна ситуация, когда напряжение, ответственное за начало разрушения, 

оказывается выше того значения, которое связано со средним напряжением, определенным по 

зависимости модуля упругости от пористости. 
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ГЛАВА 1 ТЕОРИЯ ПОРИСТЫХ МАТЕРИАЛОВ КАК 

СПЕЦИАЛЬНЫЙ СЛУЧАЙ ДЕФОРМИРУЕМЫХ СРЕД СО 

СВОБОДНЫМИ (НЕИНТЕГРИРУЕМЫМИ) ДЕФОРМАЦИЯМИ 

 

1.1 Об обобщенной теории сред с полями дефектов 

В главе сформулирована и исследована обобщенная модель градиентной пористой среды. 

Обобщенной она названа в связи с учетом в плотности потенциальной энергии билинейного 

слагаемого относительно градиентов совместного и несовместного изменения объёма, что 

отличает модель и от градиентной теории Тупина, и от теории Миндлина. Показано, что они 

являются частными случаями обобщенной модели. Так же показано, что классическая теория 

упругости и теория среды с алгебраической пористостью так же являются частными случаями 

обобщенной модели.  

 

1.1.1  Кинематическая модель 

Запишем известные соотношения для вектора перемещений iR , получаемые формальным 

интегрированием несимметричных соотношений Коши: 

0

0 1
( )

3

xM

i i ij ij k ijk j

M

R R Э dx= +  +  −     (1.1) 

Здесь 
ij  - тензор девиатор деформации,   - объемная деформация, k  - вектор упругих 

поворотов (псевдовектор), 
ijkЭ  - псевдотензор Ливи-Чивиты.  

Описание кинематических моделей неклассических сред начнем с анализа однородных 

уравнений Папковича, которые являются условиями существования криволинейного интеграла 

в определении вектора перемещений (1.1): 

,( / 3 ) 0in in k ink m nmjЭ Э +  − =      (1.2) 

Однородные уравнения Папковича (1.2.) можно трактовать как критерий существования 

векторного потенциала (1.1) iR . Следовательно, при выполнении (1.2) вектор перемещений iR  

является векторным потенциалом для тензора дисторсии 
1

ijD : 

1

,/ 3ij ij ij k ijk i jD Э R=  +  −  =      (1.3) 

В этом случае дифференциальная форма 
1

i ij jdR D dx=  является полным дифференциалом.  

Рассмотрим теперь неоднородные уравнения Папковича: 

,( / 3 )in in k ink m nmj ijЭ Э +  − =       (1.4) 
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Величина 
ij  является псевдотензором-источником дислокаций [13] второго ранга, его 

знак меняется при замене правой тройки ортов на левую. Этот псевдотензор подчиняется 

дифференциальному закону сохранения, который легко следует из (1.4): 

, 0ij j =       (1.5) 

Как и в случае с однородными уравнениями Папковича можно формально ввести вектор 

дефектных перемещений 2

iD  как разность смещений двух бесконечно близких точек с помощью 

соотношения 
2 2

i ij jdD D dx= . Однако здесь линейная дифференциальная форма 2

idD  уже не 

является полным дифференциалом и записанное уравнение для дефектных перемещений 2

iD  не 

интегрируемо. Будем говорить, что вектором iD   определяется дефектное поле перемещений, в 

котором наряду с непрерывной частью iR  имеет место и разрывная часть 2

iD  (вектор разрывов 

перемещений или вектор дислокаций). Решение ijD  неоднородных уравнений Папковича (1.4) 

можно представить в виде суммы решения однородного уравнения Папковича 
1

,ij i jD R=  и 

частного решения 
2

ijD  неоднородных уравнений Папковича: 
2

,ij i j ijD R D= + . Несимметричный 

тензор 
1

ijD  представим в виде разложения на тензор девиатор 
1

ij , шаровой тензор 
1

ij   и 

антисимметричный тензор -
1

k ijkЭ . В свою очередь антисимметричный тензор запишем через 

псевдовектор поворотов 1

k : 
1 1 1 1/ 3ij ij ij k ijkD Э=  +   −  , где: 

1

, , ,/ 2 / 2 / 3ij i j j i k k ijR R R = + −  ,            
1

,k kR = ,            
1

, / 2k i j ijkR Э = −  

Для частного решения неоднородного уравнения Папковича (1.4) не существует 

непрерывного векторного потенциала, т.е. его невозможно представить в форме (1.3). Для него 

можно записать только следующее симметрированное представление: 
2 2 2 2/ 3ij ij ij k ijkD Э=  +   −   

Очевидно, что наряду с 
2

ijD  в качестве независимых «обобщенных перемещений» можно 

рассматривать величины 
2

ij , 2

k  и 2 . Общее решение неоднородного уравнения Папковича (1.4) 

можно записать в симметрированном виде:
1 2 / 3ij ij ij ij ij k ijkD D D Э= + =  +  −  . 

1 2 2

, , ,

1 2 2

,

1 2 2

,

( / 2 / 2 / 3)

/ 2

ij ij ij i j j i k k ij ij

k k k i j ijk k

k k

R R R

R Э

R

 =  +  = + −  + 

 =  +  = − + 

 =  +  = + 

 

Пользуясь терминологией кинематики сред Коссера, будем называть 
1

, / 2k i j ijkR Э = −  

стесненным вращением, а 2

k  - свободным вращением или спином. Аналогично будем называть 
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1

ij , и 1  - стесненными или совместными деформациями, а 
2

ij , и 2  - свободными или 

несовместными деформациями. Соответственно, введем определения тензоров 

свободной/несовместной 
2

ijD  и стесненной/совместной 
1

ijD  дисторсии. 

Обобщенными соотношениями Папковича (1.4) и соотношениями Коши для стеснённой 

дисторсии (1.3) описывается кинематика сред с сохраняющимися дислокациями.  

Из приведенного анализа (см. также [22]) следует, что понятие дефекта сплошной среды 

является сложным и может быть определено с помощью комплекса тензорных объектов. Для 

дислокаций таким комплексом объектов являются: псевдотензор-источник дислокаций 
ij ; 

тензор свободной дисторсии второго ранга 
2

ijD ; вектор (тензор первого ранга) разрывных 

перемещений 2

iD , имеющий физический смысл вектора дислокаций.  

Кинематический анализ модели позволяет установить полный набор обобщенных 

кинематических переменных, необходимых для формулировки функционала и 

соответствующего вариационного уравнения модели среды. В рассматриваемом случае, для 

среды с полем сохраняющихся дислокаций, обобщенными кинематическими переменными 

являются непрерывные величины 
2,i ijR D  и их градиенты 

1 2 2

, ,,i j ij ij k ijkR D D D= = . По существу, 

предлагается новая естественная классификация дислокаций. 

Нетрудно показать, что потенциальные энергии типов дислокаций, пропорциональные 

2 2

ij ij  , 2 2   и 2 2

k k   не имеют перекрестных членов. Поэтому потенциальные энергии введенных 

типов дислокаций аддитивны, они могут существовать изолированно и независимо от других 

типов дислокаций.  

В дальнейшем исключим из списков аргументов для плотностей потенциальной энергии 

вектор перемещений. Тогда рассматриваемая обобщенная модель среды с масштабными 

эффектами не будет противоречить в частном случае классической теории и известным 

экспериментальным данным. Этот вопрос далее будет обсуждаться дополнительно.  

В результате получаем: 

1 2

2

( , , )

( )

V F

V V ij ij ij

F F ij

U U dV U dF

U U D D

U U D

= +

= 

=

 
     (1.6) 

Учитывая список аргументов в (1.6) и интегрируемость возможной работы внутренних 

сил U  в объёме с очевидностью получим: 

1 2

1 2
, ,V V V

ij ij ij

ij ij ij

U U U
m

D D

  
 =  = =

  
    (1.7) 
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Формулы (1.7) следует трактовать как обобщенные формулы Грина для объемных 

силовых факторов. Эти соотношения позволяют записать лагранжиан и найти соответствующие 

уравнения Эйлера: 

1 2 2

, ,

1 2 2

[( ) ( ) ]

[( ) ( ) ] 0

V

ij j i i in m nmj ij ij

F

i ij j i in m nmj ij ij

L P R m Э D dV

P n R m n Э a D dF

 =  +  − +   +

+ −   + −  =




   (1.8) 

1.1.2  Определяющие соотношения 

Ограничимся рассмотрением физически линейных сред. Тогда VU  определяется как 

квадратичная форма своих аргументов: 

1 2

11 1 1 12 1 2 22 2 2

2 2 ( ; ; )

2

V V ij ij ij

BL

ijnm ij nm ijnm ij nm ijnm ij nm ijnm ij nm

U U D D

C D D C D D C D D C

=  =

= − + +  
  (1.9) 

При получении (1.9) были введены следующие вполне обоснованные упрощения: 

1.  Коэффициент при слагаемом 
i iR R  принят равным нулю в (1.9). Иначе оператор 

уравнений равновесия имел бы вид уравнений Гельмгольца, что исключает существование 

однородных напряженно-деформированных состояний; 

2. Приняты равными нулю также коэффициенты при всех остальных билинейных 

составляющих, включающих вектор перемещений. В противном случае, в отсутствие слагаемого, 

квадратичного относительно перемещений объёмная плотность потенциальной энергии не была 

бы положительно определенной. 

Структура тензоров модулей упругости 
pq

ijnmС  и тензора 
BL

ijnmC  в (1.9) определяется их 

разложением по изотропным тензорам четвертого ранга, построенным как произведение пары 

тензоров Кронекера со всеми возможными перестановками индексов: 

1 2 3

1 2 3

pq pq pq pq

ijnm ij nm in jm im jn

pq pq pq pq pq pq pq pq

С C C C

C C C

=   +   +  

=  =  +  =  − 
   (1.10) 

Здесь 
11 11,   - коэффициенты Ламе, 

11  - третий, неклассический, коэффициент Ламе, 

остальные коэффициенты , ,pq pq pq    являются их неклассическими аналогами. Структура 

тензора 
BL

ijnmC  аналогична (1.10). 

Окончательно, можем записать следующее выражение для объёмной плотности 

потенциальной энергии VU : 

11 1 1 12 1 2 22 2 2

11 11 1 1 12 12 1 2 11 11 2 2

11 1 1 12 1 2 22 2 2 2 2

, ,

2 2

1
[(2 3 ) 2(2 3 ) (2 3 ) ]

3

4[ 2 ] ( )( )

V nm nm nm nm nm nm

BL

nm nm nm nm nm nm ijnm ia b abj nc d cdm

U

C D Э D Э

=    −    +    +

+  +    −  +    +  +    +

+    −    +    +
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Заметим, что часть объёмной плотности потенциальной энергии, связанная с 

псевдотензором-источником дислокаций: 

2 2 2 2 2 2

, , , , , ,( )( ) ( )BL BL BL BL

ijnm ij nm ijnm ia b abj nc d cdm ijnm abj cdm ia b nc d iabncd ia b nc dC C D Э D Э C Э Э D D C D D  = = =  

определяет быстроменяющуюся, локальную часть потенциальной энергии дислокаций. 

Остальная часть объёмной плотности потенциальной энергии является медленно меняющейся и 

определяется как сумма потенциальных энергий трех типов дислокаций:   - дислокаций,  - 

дислокаций и -дислокаций. Следовательно, медленно меняющаяся часть энергии деформации 

не содержит перекрестных членов от указанных типов дислокаций и является аддитивной 

формой относительно компонент свободной дисторсии.  

Обобщенные уравнения закона Гука (1.7) для объёмных силовых факторов запишем в 

виде: 

1 11 12 2 2 21 22 2

, ,, , BL

ij ijnm n m ijnm nm ij ijnm n m ijnm nm ij ijnm nmC R C D C R C D m C = −  = − + =    (1.11) 

Заметим, что для гладкой поверхности всегда существует естественно выделенное 

направление - нормаль к поверхности. Обобщенные уравнения закона Гука на поверхности 

даются соотношениями (1.7). Заметим, что так же, как и объёмная, поверхностная плотность 

потенциальной энергии не зависит от вектора перемещений. Иначе это приводит к 

систематическим поправкам в статические граничные условия классического решения. Это 

противоречит имеющимся экспериментальным данным. 

Представленный в форме разложения тензор свободной дисторсии на поверхности, 

преобразует потенциальную энергию адгезии к "каноническому" виду: 

2 2 2 2 2 2 2 2 2 22 ( )( ) 2 ( ) 2 ( ) ( )F F F F F

F ijnm ij nm ij ij ij ij k kU A D D= =  +    +    +    +     (1.12) 

Каноничность потенциальной энергии (1.12) дает основание утверждать о существовании 

четырех энергетически независимых типов адгезионных взаимодействий (отсутствие 

перекрестных членов). Каждое взаимодействие характеризуется своим адгезионным модулем.  

Таким образом, на основе проведенного кинематического анализа предложена иная 

классификация дислокаций, позволяющая выделить три типа дислокаций:  -дислокации,  -

дислокации, -дислокации. Эта классификация, дает новую как физическую, так и 

кинематическую трактовку дислокаций, так как отражает связь дислокаций с формоизменением 

-  , с изменением объема   (пористость) и со скручиванием   (спины). Предложенная 

классификация, фактически позволяет прогнозировать частные случаи сред с сохраняющимися 

дислокациями, когда в среде доминируют лишь один или два типа дислокаций.  

Рассмотрим далее частный случай, когда доминирующими являются дислокации, 

порожденные только свободным изменением объёма 2 . Это - модель пористой среды с 
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четырьмя степенями свободы iR , 2 . В такой среде 2 0k =  и 
2 0ij = . Тензор свободной дисторсии 

определяется соотношением 
2 2 / 3ij ijD =   .  

 

1.2 Модель среды с полями свободных (неинтегрируемых) дилатаций 

Данная модель является аналогом модели сред COWIN. 

Рассмотрим следующий частный случай общей теории, в котором доминируют только 

   - дислокации. Для этого сформулируем упрощающие гипотезы, где принимается, что 

девиатор ( ij

  ) свободной дисторсии равен нулю, спины (
k

 ) равны нулю: 

0

0

ij

k





 =

 =
       (1.13) 

Свободная дисторсия принимает вид: 

1

3
ij ijd  =           (1.14) 

Следовательно, псевдотензор-источник дислокаций записывается следующим образом: 

1
( ) 0

3

in
ij nmj ijk

m k

d
Э Э

x x

  
 = = − 

 
      (1.15) 

Соответственно, Лагранжиан принимает вид: 

11 12 22

33

1 1 1 1
{ 2 ( ) ( )( )

2 3 3 3

1 1
( )( )}

3 3

n i n
ijnm ijnm ij ijnm nm ij

m j m

ijnm nmp ijq

p q

R R R
L A C C C

x x x

C Э Э dV
x x

  

 

  
= − −   +     +

  

 
+ − −

 


 

Подставим свертки и получим окончательную формулировку функционала для пористых 

сред: 

11 0 0 11 11 0 0 12 12 0

22 22 33

1 1 2
{2 (2 3 ) (2 3 )

2 3 3

1 4 1 4
(2 3 ) } { ( ) }

3 9 2 9

ij ij

F F

k k

L A

dV dF
x x



 
   

= −    +  +    −  +    +

 
+  +    +  −  +   

 




  (1.16) 

В соответствии с (1.16) уравнения закона Гука теории пористых сред принимают вид: 
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11 11 11 0 12 12

12 12 0 22 22

33

1 1
2 (2 3 ) (2 3 )

3 3
( )

1 1
(2 3 ) (2 3 )

3 3

4

9
( )

V
ij ij ij ij

i

j

V
kk

V
k

k

k

U

R

x

U
p

U
m

x

x












 = =   +  +    −  +   






= = −  +   +  +  


 
= = 

 



 

Отметим, что и здесь, как и в теории Коссера, определяются и дислокационные 

напряжения и моменты (несмотря на то, что эта среда с симметричным тензором напряжений 

Коши).  Вектор моментов в данном случае совпадает по направлению с градиентом пористости 

и является важной характеристикой при изучении эволюции трещин в пористой среде. 

Запишем основное вариационное равенство теории пористых сред: 

2

11 11 11 12 12

33 22 22 12 12 0

11 11 11 12 12

33

1
{[ ( ) (2 3 ) ]

3

1 4
[ (2 3 ) (2 3 ) ] }

3 3

1
{ [ (2 3 ) ]}

3

4
{ ( )

9

j V

i i i

i j i

jF k
i i j i i i

i k

F F

R
L R P R

x x x

dV

R R
P R n n n R dF

x x



  



 

 
 =   +  +  −  +  +  +

  

+   −  +   +  +    +

 
+ −  +  +  −  +    −

 

−   +  +  













 } 0dF =

 (1.17) 

Вариационное уравнение (1.17) дает полное описание краевой задачи теории пористых 

сред: имеется четыре разрешающих уравнения относительно четырех искомых функций iR    и 

 , и четыре граничных условия в каждой неособенной точке поверхности. 

Отметим, что в соответствии с предложенными интерпретациями член 

11 11 0 01 1
(2 3 )

2 3
dV +     в лагранжиане пористых сред приобретает смысл потенциальной 

энергии изменения объёма неповрежденной части материала среды, член 

22 221 1
(2 3 )

2 3
dV  +     - потенциальной энергии образования нового объёма в 

поврежденной среде за счет обратимого «раскрытия» пор, а член 12 12 01
(2 3 )

3
dV +     - 

потенциальной энергии взаимодействия пор с неповрежденной частью материала среды. 

Соответственно, неклассический модуль 
22 22(2 3 ) +   приобретает смысл энергии образования 

единицы объёма за счет обратимого «раскрытия» пор, а неклассический модуль 
12 12(2 3 ) +   

приобретает смысл энергии образования единицы объёма за счет единичного изменения объёма 

неповрежденной части материала среды. 
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Физический смысл оставшегося шестого формального параметра 
33  вряд ли может быть 

выяснен с помощью полиномиального решения, ибо любое полиномиальное решение определяет 

медленно меняющуюся часть решения. Формальный параметр 
33 , напротив, определяет 

быстроменяющуюся часть решения. Для выяснения его физического смысла следует 

сформулировать и решить краевую задачу для некоторого быстроменяющегося локального 

состояния.  

 

1.2.1  Построение общего решения в теории пористых сред 

Представим систему четырех уравнений равновесия теории пористых сред в виде 

подсистемы трех уравнений равновесия в перемещениях и одного уравнения относительно пор 

 . Для этого определим лапласиан от пор   из «классических» уравнений равновесия и 

исключим его из скалярного уравнения равновесия (аналогично тому, как это было сделано при 

построении общего решения уравнений теории сред Коссера): 

12 12 33 11 11

22 22 12 12 22 22

33

12 12 22 22

(2 3 ) 4 (2 )

(2 3 ) (2 3 )(2 3 )

4

(2 3 )(2 3 )

k k

k k

V

k

k

R R

x x

P

x

   +    + 
 = +  +

 +    +   +  


+

 +   +  

   (1.18) 

2 212 12 2
11 11 11

22 22

2 233 11 11 33

22 22 22 22

(2 3 )
( ) [2 ]

3(2 3 )

4 (2 ) 4
0

3(2 3 ) 3(2 3 )

k k
i

i k i k

V
Vk k

i

i k i k

R R
R

x x x x

R P
P

x x x x

  + 
  − +  +  − −

   +   

   +  
−  + − =

 +     +   

   (1.19) 

Таким образом, теория пористых сред может быть сформулирована в перемещениях. 

Исследуем структуру общего решения сформулированной системы. Для этого определим 

«классический» оператор равновесия (...)ijL . Представим оператор системы (1.18) как 

произведение операторов. Искомый оператор должен иметь второй порядок и будет определять 

когезионное поле. Фундаментальное решение, соответствующее «классическому» оператору 

равновесия, является «классическим» вектором перемещений. В свою очередь, фундаментальное 

решение, соответствующее искомому оператору «когезионного» поля, даст определение 

«когезионным» перемещениям. Соответственно, линейная комбинация фундаментальных 

решений даст общее решение теории пористых сред. Реализуем эту процедуру. 

 «Классический» оператор равновесия (...)ijL : 

2 12 12 2 2
11 11 11

22 22

(...) (2 3 ) (...)
(...) [ (...) ] [2 ]

3(2 3 )
ij ij

i j i j

L
x x x x

  +  
=    − +  +  −

   +   
  (1.20) 
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Из (1.20) непосредственно следует: 
12 12 2

11 11

22 22

1

(2 3 )
[2 ]

3(2 3 )

j ij j

j i

R L R

x x

 
 =

 +  
 +  −

 + 

. 

Исключая 
j

j

R

x





 из (1.19), получим: 

33 11 11

12 12 2
22 22 11 11

22 22

233 12 12 2

12 12 2
22 22 2 11 11

22 22

( )4 (2 )
( )

(2 3 )
3(2 3 )[(2 ) ]

3(2 3 )

4 (2 3 )
0

(2 3 )
9(2 3 ) [(2 ) ]

3(2 3 )

V

kj j kV

ij j i

i k

V

k

i k

L R P
L R P

x x

P

x x

 +  + 
+ − +

 +   
 +   +  −

 + 

  + 
+ =

 +   
 +   +  −

 + 

 

Введем определение длины когезионного поля l    для пористых сред: 

33 11 11
2

12 12 2
22 22 11 11

22 22

4 (2 )

(2 3 )
3(2 3 )[(2 ) ]

3(2 3 )

l
  + 

=
 + 

 +   +  −
 + 

    (1.21) 

Тогда с учетом (1.21) принимает вид произведения операторов: 

2 12 12 2 2
2 2

11 11 22 22

(...) (2 3 )
[(...) ]( ) 0

3(2 )(2 3 )

V
V k

ik kj j k

i k i k

P
l L R P l

x x x x
 

  +  
 − + + =

   +   +   
 

Найденный оператор «когезионного» поля дает возможность определить «когезионные» 

перемещения: 

2

12 12 2
11 11

22 22

( )
(2 3 )

[2 ]
3(2 3 )

V

k kj j k

l
u L R P= − +

 + 
 +  −

 + 

    (1.22) 

и уравнения равновесия «когезионных» сил: 

2 12 12 2 2

12 12 22
11 11 22 22 11 11

22 22

1 (2 3 )
0

(2 3 )
3(2 )(2 3 )[2 ]

3(2 3 )

V

k k
i

i k i k

u P
u

x x l x x

  +  
− + =

 +    
 +   +   +  −

 + 

  (1.23) 

Взяв ротор (1.23), можно убедиться в том, что в пористых средах когезионные 

перемещения потенциальны: 

0
ji

j i

uu

x x


− =

 
      (1.24) 

Следовательно, вводя этот потенциал, можно свести векторное уравнение (1.23) к 

скалярному: 
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12 12 2

12 12 22
11 11 22 22 11 11

22 22

1 (2 3 )
0

(2 3 )
3(2 )(2 3 )[2 ]

3(2 3 )

i

i

V

k

k

u
u

x

P
u u

l x


=


 +  
 − + =

 +  
 +   +   +  −

 + 

  (1.25) 

Уравнение когезионного поля (1.25) дает возможность определить l  в (1.14), (1.15) как 

длину затухания неклассических краевых эффектов (multiscale-эффектов). В свою очередь, это 

позволяет отнести l  к экспериментально измеримым параметрам. 

Таким образом, установлены все шесть связей (между формальными параметрами 

пористой среды 
11 , 11 , 

12 12(2 3 ) +  , 
22 22(2 3 ) +  , ( )F F +  , 

33  и экспериментально 

измеримыми параметрами G , E , f , K , FK  и l . 

*( ) 0V

ij j j j iL R u R P+ − + =      (1.26) 

где 
*

jR  является частным решением системы: 

2 * 2 *12 12 2 12 12 2 2
11 * 11 11

22 22 11 11 22 22

(2 3 ) (2 3 )
( ) [2 ] 0

3(2 3 ) 3(2 )(2 3 )

V
j j k

i

i j i j i k

R R P
R

x x x x x x

  +   +  
  − +  +  − + =

   +     +   +   
 

 

Уравнение (1.23) имеет вид «классического оператора равновесия над некоторым 

вектором. Естественно, определить этот вектор как вектор классических перемещений iU : 

*

i i i iU R u R= + −       (1.27) 

С учетом (1.27) получаем: 

0V

ij j iL U P+ =       (1.28) 

Переписав (1.27) относительно полного вектора перемещений, получаем вид общего 

решения уравнений теории пористых сред: 

*

i i i

i

u
R U R

x


= − +


      (1.29) 

Здесь iU  - фундаментальное решение, соответствующее «классическим» уравнениям 

равновесия (1.29), u  - фундаментальное решение, соответствующее когезионному полю (1.25). 

Таким образом, вместо четырех искомых функций iR  и  , задача сформулирована 

относительно классических перемещений iU  и потенциала когезионных перемещений u . Здесь 

следует отметить, что краевая задача в общем случае все равно остается связанной, и амплитуды 

классического решения будут иными. 
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1.3 Модель упругой обобщенной градиентной среды с пористостью 

Рассматривается линейная изотропная среда, в качестве кинематических  переменных 

выступает вектор перемещения, тензор девиатора деформаций 
ij  дилатация (шаровой тензор 

деформаций) , /k k k kR R x = =   , скалярный параметр  , который является по сути шаровым 

тензором свободных дисторсий 
ijd  , использующимся при построении кинетических моделей 

Миндлина с полями дефектов.  

В данном случае неявно используется упрощенный вариант теории Миндлина, когда 

свободная деформация связана только шаровым тензором. 
ij ijd =  . Запишем выражение для 

Лагранжиана L , работы внешних сил A , потенциальная энергия U  и плотность потенциальной 

энергии VU  для обобщенной модели дефектной-пористой и градиентной среды: 

11 12 22 11 12 22

, , , , , ,

1
[2 ( 2 ) ( 2 )]

2

V F

i i i i

V F

V

V

V ij ij k k k k k k

L A U

A P R dV P R dF

U U dV

U K K K C C C

= −

= +

=

=   +  +  +  +   +   +  

 


 (1.30) 

где ( . .k k  ) обозначает частную производную по координате kx . 

Коэффициенты 
11 22,K K  отвечают в (1.30) за наличие дефектов( 0  ) А коэффициенты 

ijC  отвечают за «градиентность» 11C , и эволюцию пор , коэффициент 12C  отвечает за связанность 

градиентных упругих дилатационных эффектов и полей дефектов-пор , V

iP  F

iP -  плотности 

объемных и поверхностных сил. 

Особенность вариационной постановки в том, что она учитывает градиентную дилатацию 

и дефектную модель среды, связанную с наличием неинтегрируемых полей дефектов пор ( ) . 

Преобразование квадратичной формы к каноническому виду: 

12 12 12 12
11 12 22 11 22

22 22 22

12 12 12 12
11 12 22 11 22

, , , , , , , , , , , ,22 22 22

( 2 ) ( ) ( )( )

( 2 ) ( ) ( )( )k k k k k k k k k k k k

K K K K
K K K K K

K K K

С С С С
C C C С С

С С С

 +  +  = −  +  +   + 

  +   +   = −   +  +   + 

 

Построим определяющие соотношения с использованием формул Грина, что 

эквивалентно утверждению об обратимости рассматриваемых процессов деформирования. 

Силовые факторы, находятся как следствие формул Грина записанные для плотности 

потенциальной энергии. Напряжения Коши определяются следующим образом 
ij : 
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11 1211 12
, ,

,

12 22 12 22

, ,

,

2V
ij ij

ij

VV
k k k

k

V V
k k k

k

U

UU m C CK K

U U
K K m C C



 


 = = 



 = =  +  = =  +    
 

   = =  +  = =  + 
   

  (1.31) 

Полные напряжения 
ij : 

12

, ,

,

( ) ( )V
ij i j j i ij

i j

U
R R K

R


 = =  + +  +  


    (1.32) 

Квази-классические напряжения (total stress, в градиентных моделях) 
ijs  определяются 

формулой: 

12 11 12

, ,

, ,

( ) ( ) ( )V V
ij i j j i ij

i j k i jk

U U
s R R K C C

R x R

  
= − =  + +  +  −  −  
  

  (1.33) 

Лемма-1: «Полные напряжения  являются суммой классических напряжений  и 

градиентной поправки к классическим напряжениям ». 

Доказательство: 

Из формул Грина (1.31)-(1.33) следует: 

, , , , ,

, ,

[ ( )] ( ) ( )

0, 0

V V V V V
ij ij ij

i j i j k i jk k i jk k r rk

Vk
ij ij ij j i k k

k

U U U U U
s

R R x R x R x R

m
s s P m

x


 

      
 = = − + = +  =

       


= +  + = − =



  (1.34) 

Лемма-1 доказана. 

Докажем, что уравнение равновесия и статические граничные условия формулируются на 

квазистатические напряжения. 

Рассмотрим вариационное уравнение: 

, , , ,

,

[( ) ( ) ]

[ ( ) ] ] 0

V

ij j i k ki i i k k

V

F

i ij ij k k ij j i k k k k

F

L m P R m dV

P m n R m n m n dF

   

   

 =  +  − +  + −   +

+ −  +   −   −  −  =




  (1.35) 

Отсюда, из (1.35) следуют уравнения Эйлера в силовых факторах: 

, ,0, 0V

ij j i k ks P m + = − =      (1.36) 

Уравнения Эйлера (1.36) в кинематических переменных записываются с учетом (1.31)-

(1.35): 

ij ijs

,k k ijm 
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12 11 12

, , , ,

12 22 12 22

( ) [(2 ) ] 0

0

V

i j j i j i iR R K C C P

C C K K

 − +  +   +  −  −  + =


 +  −  −  =

  (1.37) 

Граничные условия в силовых факторах также определяются из вариационного уравнения 

(1.67): 

( ) 0 0 0F

i ij j i k k k k

F F F

P s n R dF m n dF m n dF −  =  =  =     (1.38) 

Граничные условия (1.38) в кинематических так же получены с помощью (1.31)-(1.33) и 

имеют вид: 

11 12 12

, , , ,

11 12 12 22

, , , , ,

{ [ ( ) ( ) ] } 0

( ) 0 ( ) 0

F

i i j j i r r r r ij j i

F

r r k k k i i r r k k k

F F

P R R R C R K C n R dF

C R C n R dF C R C n dF

−  + +  −  +  −    =

+   = +   =



 
 (1.39) 

Определение напряжений  как классических, опирается на классический вид уравнений 

равновесия (1.36) и на классический вид статических граничных условий (1.38) в терминах 
ijs   

Таким образом, сформулирована обобщенная модель (1.37), (1.39) дилатационной среды 

Миндлина, в которой учтены градиенты как совместного, так и несовместного изменения объёма. 

В следующих параграфах рассмотрены частные случаи такой среды. Частные случаи 

получаются из общего путем предположения о равенстве нулю соответствующих модулей. 

 

1.3.1  «Алгебраическая» пористая среда Миндлина 

Пусть равны нулю неклассические модули: 

11 12 22 0C C C= = =       (1.40) 

Плотность потенциальной энергии приобретает вид: 

12 221
(2 2 )

2
V ij ijU K K=   +  +  +      (1.41) 

Полные напряжения совпадают с классическими, так как отсутствует моментная 

поправка: 

12

, , ,

,

12 22

,

( ) ( )V
ij i j j i k k ij

i j

V
k k

U
R R R K

R

U
K R K


 = =  + +  +   


 = = + 
 

   (1.42) 

 

 

Вариационное уравнение: 

ijs
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,

,

( ) ( )

[( ) ] ( ) 0

V F

i i i i ij i j

V F V

V F

ij j i i i ij j i

V F

L P R dV P R dF R dV

P R dV P n R dF





 =  +  −   +   =

=  +  +   + −   =

  

 
  (1.43) 

Уравнения Эйлера в силовых факторах: 

, 0

0

V

ij j iP



 + =

 =

      (1.44) 

Уравнения Эйлера в кинематических переменных: 

12

, , , , ,

12 22

,

( ) (2 ) 0

0

V

i j j i j k ki i i

k k

R R R K P

K R K

 − +  +  +  + =


+  =

    (1.45) 

Граничные условия в силовых факторах: 

( ) 0F

i ij j i

F

P n R dF−   =      (1.46) 

Граничные условия в кинематических переменных: 

12

, , ,{ [ ( ) ( ) ] } 0F

i i j j i r r ij j i

F

P R R R K n R dF−  + +  +    =    (1.47) 

Примечательным свойством модели алгебраической пористости является то, что 

пористость можно исключить (алгебраически выразить через совместное изменение объёма) с 

помощью уравнения пористости – второе уравнение системы (1.85): 

12

22

K

K
 = −         (1.48) 

Подставим (1.88) в выражение плотности потенциальной энергии (1.41): 

12 12 12
12 22

22 22 22

12 12

22

[2 2 ] / 2

[2 ( ) ] / 2

V ij ij

ij ij

K K K
U K K

K K K

K K

K

=   +  −  +  =

=   +  − 

  (1.49) 

Как видно из (1.89), модель среды с алгебраической пористостью отличается от модели 

классической среды (1.63) только величиной второго коэффициента Ламе или модуля объёмного 

сжатия. Вместо классических   и 11 2 / 3K =  +   среда с алгебраической пористостью содержит 

соответственно 
12 12

22
( )

K K

K
 =  −  и 

12 12
11

22
(2 / 3 )

K K
K

K
=  +  − . 

В соответствии с теоремой Сильвестра поврежденные пористостью модули   и 
11K  

всегда положительны и меньше своих бездефектных классических аналогов   и 
11K . 
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Это свойство алгебраической пористости, с другой стороны, создает трудности в 

определении отдельно бездефектных классических модулей   и 
11K  и отдельно – модулей 

алгебраически пористой среды 
12K  и 

22K .  

 

1.3.2  Градиентная среда Миндлина 

Пусть равны нулю неклассические модули: 

11 12 0C C= =      (1.50) 

Плотность потенциальной энергии приобретает вид: 

11 12 22 22

, ,(2 2 ) / 2V ij ij k kU K K K C=   +  +  +  +      (1.51) 

Силовая модель, вытекающая из формул Грина, определяет не только напряжения, но и 

моментные напряжения, которые в отличие от моментных напряжений теории Тупина, зависят 

не от градиентов совместного изменения объёма, а от градиентов несовместного изменения 

объёма (пористости): 
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   (1.52) 

Вариационное уравнение: 
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Уравнения Эйлера в силовых факторах: 

,

,

0

0

V

ij j i

k k

P

m 

 + =


−  =

      (1.54) 

Уравнения Эйлера в кинематических переменных: 
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   (1.55) 

Граничные условия в силовых факторах: 
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Граничные условия в кинематических переменных: 
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Обратим внимание на то, что взаимодействие совместного и несовместного изменения 

объёма в модели Миндлина имеет место только в неградиентной части, за счет билинейного 

слагаемого в (1.51) с модулем 
12K . В случае, когда и модуль 

12K  равен нулю, уравнения 

равновесия и пористости разделяются. При этом краевая задача на пористость оказывается 

однородной и приводит к тривиальному решению. В этом видится недостаток модели Миндлина. 

 

1.3.3  К динамической модели градиентных дефектных сред 

Лагранжин L A K U =  +  −  , где кинетическая энергия: 
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Кинетическая энергия для обобщенной градиентной среды (1.58) позволяет получить вид 

инерционных обобщенных сил в уравнения движения. В случае однородных начальных условий 

получим: 
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 (1.59) 

Которая в свою очередь приводит: 
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где слагаемые в выражении для вариации кинетической энергии дают обобщенные силы 

инерции в уравнения движения для обобщенной пористой среды. В частности, для классической 

среды следует принять 0  =  =  = . Тогда получим классическую силу инерцию по 
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Даламберу iR− в уравнении движения. Для модели типа COWIN следует дополнительно 

считать, что 0  , т.е. в уравнение Эйлера для пористости (1.36) появится сила инерции вида 

− . 
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ГЛАВА 2 ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ПОРИСТЫХ 

ОБРАЗЦОВ 

 

2.1 Статические испытания 

В современном авиастроении широко применяются трехслойные конструкции (sandwich 

structures), состоящие из внешних силовых обшивок и облегченного заполнителя, в качестве 

которого используются сотовые элементы, пенопласты, подкрепляющие элементы различной 

геометрической формы [1-4]. Сочетание хорошей технологичности и прочности композитных 

материалов (КМ) с высокой изгибной жёсткостью, характерной для трёхслойной панели, 

определяет широкие перспективы применения трёхслойных элементов с композитными 

несущими слоями в авиационной промышленности. Одним из основных компонентов данных 

конструкционных материалов является наполнитель, обеспечивающий нужные механические 

характеристики материала [7-8]. 

Но все же в настоящее время только композиционные материалы способны удовлетворить 

требованиям современной техники, коей характерно ужесточение эксплуатационных условий: 

повышение нагрузок, температур, скоростей, агрессивности сред, а также уменьшение 

плотности, веса и многих других. Классические материалы уже не смогут удовлетворять такие 

запросы. Так, например, в конструкции Боинг 787 композитные материалы занимают 50% по 

массе от всех применяемых материалов, алюминиевые сплавы – 20%, титановые – 15%, стали – 

10%, другие материалы – 5%. Применение же композиционных материалов снизило массу 

данного самолета на 30%. Таким образом требования современной техники привели к созданию 

композитов с металлической матрицей. 

 

2.1.1  Материалы и методы 

В работе исследовались образцы акрримида, полученные по технологии вспенивания на 

основе поли(мет)акрилимида с разной плотностью.  Исследовались образцы с плотностью 80 

кг/м3 и 100 кг/м3. Для этого были получены однотипные образцы. Для каждой партии 

испытывались 3 однотипных образца с габаритами 4x10x60 мм.  

Было проведено исследование микроструктуры образцы. Для определения 

микроструктуры использовался растровый электронный микроскоп Karl Zeiss 40. Результаты 

микроскопии представлены на рисунке 2.1. Также проводилось исследование структуры на 

оптическом микроскопе. Оптический микроскоп позволил на протяжении всей поверхности 

каждого образцы проконтролировать размеры пор. Так для образца средний размер (диаметр) 
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поры с плотностью 80 кг/м3 составлял 0,1 мм, а для образца с пористостью 100 кг/м3 составлял 

0,11 мм, рисунок 2.2. 

 

 

Рисунок 2.1. Результаты микроскопии с РЭМ. 

 

а  б  

Рисунок 2.2. Результаты микроскопии с оптического микроскопа 

(а - для материалов с плотностью 80 кг/м3, б - для материалов с плотностью 100 кг/м3). 

 

Для оценки влияния пористости на механические свойства проводились испытания на 

трехточечный изгиб. Испытания проводились в соответствии со стандартными методиками 

испытаний на универсальной испытательной машине Instron 5969 с программным обеспечением 

Bluehill. Образцы в процессе испытания представлены на рисунке 2.3. Испытание проводилось с 

постоянной скоростью нагружения 1 мм/мин. Расстояние между опорами составляло 32 мм. 

Радиус опор составлял 2.5 мм, а радиус давящей поверхности 5 мм.  В процессе испытания 

контролировался прогиба образца с помощью дефлектометра с контактным тензодатчиком. База 

тензодатчика составляла 50 мм. Для каждой испытанной партии была построена кривая 

напряжение-деформация, рисунок 2.4. Коэффициент вариации для каждой партии образцов не 
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превышал 5%. Графики напряжения-деформация для средних значений каждой партии дан на 

рисунке 2.5. 

а

 

б

 

Рисунок 2.3. Образец во время проведения испытаний 

(а - для материалов с плотностью 80 кг/м3, б - для материалов с плотностью 100 

кг/м3). 

 

а  

б  

Рисунок 2.4. Графики напряжения-деформация для каждой партии. 

(а - для материалов с плотностью 80 кг/м3, б - для материалов с плотностью 100 кг/м3). 
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Рисунок 2.5. Графики напряжения-деформация для каждой партии. 

(1 - для материалов с плотностью 80 кг/м3, 2 - для материалов с плотностью 100 кг/м3). 

2.1.2  Валидация результатов 

При моделировании трехточечного изгиба использовалась та же геометрия, что и при 

эксперименте. Расчет производился в квазистатической постановке методом конечных 

элементов в среде Ansys Workbench. При моделировании трехточечного изгиба задавалось 

условие заделки у элементов опоры, а к давящей поверхности прикладывалась усилие, рисунок 

2.6. Трение между опорными и давящей поверхностями принималось равным 0,1.  

Моделирование проводилось с учетом симметрии в двух плоскостях глобальной системы 

координат. В плоскости XY и YZ. 

По результатам численного моделирования для исследуемых образцов были получены 

диаграммы зависимостей деформация – напряжение при изгибе. Численный результат 

достаточно точно накладывается на результат, полученный в эксперименте, рисунок 2.7. 

 

а

 

б

 

Рисунок 2.6. Модель изгиба (а-геометрия с граничными условиями, б- конечно-

элементная сетка). 
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Рисунок 2.7. Сравнение эксперимента и численного моделирования. 

 

В ходе исследования были проведены исследования структуры акрримида и механические 

испытания образцов на изгиб. По результатам исследования микроскопии определен 

характерный размер пор и их распределение. Размер пор отличается на 9% между образцами с 

плотностями 80 кг/м3 и 100 кг/м3. Образцы испытывались на трехточечный изгиб, где результат 

показал значительное влияние пористости на модуль упругости материалов. Для материалов с 

плотностью 80 кг/м3 модуль упругости составляет порядка 136 МПа, а с плотностью 100 кг/м3 

модуль упругости составляет порядка 159 МПа. При этом предел прочности для материалов с 

плотностью 80 кг/м3 составляет 2,5 МПа, а с плотностью 100 кг/м3 3 МПа. Проведено численное 

моделирование в квазистатической постановке. Результат, полученный при численном 

моделировании, хорошо согласуется с результатом, полученным в ходе экспериментального 

исследования. 

 

2.2 Динамические испытания 

В современном авиастроении активно используются трехслойные конструкции (sandwich 

structures), которые состоят из наружных силовых обшивок и легкого наполнителя. Эти 

конструкции представляют собой инновационный подход к созданию высокопрочных и 

одновременно легких элементов авиационных систем. Наружные обшивки обычно 

изготавливаются из высокопрочных композитных материалов (углепластиков, стеклопластиков) 

или алюминиевых сплавов, которые обеспечивают основную несущую способность 

конструкции. Легкий наполнитель, находящийся между обшивками, выполняет функции 

распределения нагрузок, сохранения геометрии панели и повышения устойчивости к 

изгибающим и сдвиговым усилиям. В качестве наполнителя применяются сотовые элементы, 
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пенопласты и различные подкрепляющие структуры: сотовые элементы, выполненные из 

металлов (например, алюминия), полимеров (Nomex) или композитных материалов, 

обеспечивают высокую жесткость и минимальный вес, пенопласты (вспененные полимеры) 

используются для обеспечения термо- и звукоизоляции, а также для повышения устойчивости к 

локальным повреждениям, подкрепляющие элементы, такие как рёбра жесткости или 

комбинированные наполнители, добавляют конструкции устойчивость к вибрациям и 

увеличивают долговечность. Сочетание высокой технологичности и прочности композитных 

материалов (КМ) с отличной изгибной жесткостью, свойственной трехслойным панелям, 

открывает широкие возможности для их применения в авиационной отрасли. Они используются 

в конструкции крыла, фюзеляжей, обтекателей двигателей, внутренних перегородок и элементов 

интерьера, где важно достичь оптимального соотношения веса и прочности. Одним из ключевых 

компонентов этих конструкционных материалов является наполнитель, который обеспечивает 

необходимые механические характеристики, такие как прочность на сдвиг и сжатие, 

вибрационная устойчивость, энергоемкость при ударных нагрузках и долговечность в условиях 

агрессивных сред и переменных температур. От выбора и характеристик наполнителя зависят 

эксплуатационные свойства всей конструкции, ее надежность и долговечность [1-4]. 

Пористые структуры активно используют в качестве заполнителей для повышения 

жесткостных характеристик материалов. В особенности они актуальны для элементов 

конструкций, подверженных динамическому воздействию. Пористые материалы способны 

поглощать и рассеивать механическую энергию, что делает их эффективными демпфирующими 

материалами [5-9]. 

В динамике балок учет опорных закреплений имеет критическое значение, так как они 

напрямую влияют на колебательные характеристики и устойчивость конструкции. Опоры могут 

быть жесткими, гибкими или свободными, и каждый из этих типов имеет свои характеристики 

жесткости. Жесткие опоры обеспечивают большую устойчивость и сопротивление деформациям, 

в то время как свободные опоры позволяют большей подвижности, что может привести к 

различным режимам колебаний. Жесткость опор непосредственно влияет на первую частоту 

собственных колебаний балки. Увеличение жесткости опоры, как правило, приводит к 

увеличению первой частоты. 

 

2.2.1  Материалы и методы 

Проводились динамические испытания двух типов образцов с плотностью 80 кг/м3 и 100 

кг/м3 соответственно. Испытывались прямоугольные образцы габаритами с габаритами 4x10x60 

мм. Для каждой партии испытывались 3 однотипных образца. Образец защемлялся консольно с 

выносом свободного конца на длину порядка 50 мм. Нагружение проводилось с использованием 
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вибростенда TIRA TV 55240 с контрольным акселерометром установленном на возбудителе в 

месте крепления образца. Контроль амплитуды свободного конца проводился с использованием 

лазерного датчика перемещений Laser Triangulation Sensors RF603HS. Пример установки с 

исследуемыми образцами представлены на рисунке 2.8. 

 

а          б  

Рисунок 2.8. (а - для материалов с плотностью 80 кг/м3,  

б - для материалов с плотностью 100 кг/м3). 

 

Для исследования динамического отклика проводилось 2 типа воздействия: постепенное 

увеличение частоты и виброудар. Нагружение с постепенным увеличением частоты проводилось 

в виде выхода на минимально возможную частоту вибростенда равную 4,5 Гц и равномерное 

увеличение её до 9 Гц, при этом виброускорение возрастало до 2g. Результат измерения с 

акселерометра в процессе постепенного увеличение частоты колебания заделки представлен на 

рисунке 2.9. Результат свободного конца с высокоскоростного лазерного датчика перемещения 

для каждого типа образца представлен на рисунке 2.10. 

 

 
Рисунок 2.9. Результаты с возбудителя с постепенно нарастающей частотой. 
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Рисунок 2.10. Результаты со свободного конца с постепенно нарастающей частотой. 

 

Нагружение виброударом проводилось с аналогичным условием закрепления и 

регистрацией параметров образца. Время каждого удара соответствует ~1мс. Нагружение 

устанавливалось в виде четырех вариантов виброудара с амплитудами ударов равной: 1) 21,7g; 

2) 43,5g; 3) 65,2g; 4) 87g.  

Результат измерения с акселерометра в процессе различного уровня виброудара 

представлен в таблице 1.  

 

Таблица 1 

 
Виброудар Скорость, [м/с] Амплитуда, [мм] Длительность, [мс] 

1 21,7g 0,105513 0,06445 0,9936 

2 43,5g 0,217485 0,126331 1,0368 

3 65,2g 0,329579 0,191776 1,0368 

4 87g 0,440685 0,256547 1,0368 

 

Результат колебания свободного конца с высокоскоростного лазерного датчика 

перемещения для каждого типа образца представлен на рисунке 2.11. 

 
Рисунок 2.11. Результаты с лазерного датчика перемещений. 
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Проводилось исследование влияния заделки на динамическое поведение пористых 

материалов. Закрепление было сформировано таким образом, чтобы оно было максимально 

приближено шарнирного закрепления образца. Подобное закрепление достигалось путем 

упругой фиксации образцов. Влияние заделки существенно влияет на форму и динамический 

отклик образца. Особенно это зафиксировано на образце с большей пористостью.  

В процессе испытаний исследовано динамическое поведение пористых структур в 

условии равномерно возрастающих колебаний и в условии виброудара. Определены амплитудно-

частотные характеристики каждого образца. Пористая структура способствует распределению 

энергии удара по объему материала. Подобные материалы, как правило, обладают меньшей 

инерцией, что позволяет им быстрее реагировать на изменения в условиях нагрузки, тем самым 

минимизируя потенциальные повреждения. В результате исследования получено что пористые 

материалы обладают способностью эффективно поглощать и рассеивать вибрационные 

нагрузки, что делает их идеальными для использования в средах, подверженных динамическим 

воздействиям. 
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ГЛАВА 3 ВАРИАЦИОННАЯ МОДЕЛЬ ПОРИСТЫХ СТЕРЖНЕЙ 

 

Современные материалы с пористой структурой – от биологических тканей до 

инженерных композитов – демонстрируют сложное механическое поведение, которое 

невозможно полностью описать в рамках классической теории упругости. В данном разделе 

представлена усовершенствованная вариационная модель, позволяющая анализировать работу 

стержневых элементов из пористых материалов с учетом их микроструктурных особенностей. 

Основу модели составляет подход Ковина [1], в рамках которого вводится скалярный 

параметр пористости  , количественно характеризующий распределение дефектов и пустот в 

материале.  

В отличие от традиционных моделей, в работе дополнительно учитываются: 

- градиентные эффекты – зависимость свойств материала не только от текущих 

деформаций (дисторсий)  , но и от их пространственных производных; 

- взаимодействие между упругими деформациями и эволюцией пористости — 

билинейные слагаемые плотности потенциальной энергии; 

В результате, обобщённая модель содержит два масштабных параметра: один — за счёт 

пористости в модели Ковина ( 1l ), а второй — за счёт градиентности ( 2l ). 

Предлагается вариационная постановка модели. Физические параметры модели включают 

как «классические» модули упругости Ковина (описываемые параметрами ¹¹, ¹², ²²K K K ), так и 

«градиентные» модули ( ¹¹, ¹², ²²C C C ). Такой подход позволяет: 

- Адекватно описывать размерные эффекты, проявляющиеся в тонких конструкциях; 

- Учитывать взаимное влияние деформаций и процессов перераспределения 

пористости; 

- Формулировать точные граничные условия для различных схем нагружения. 

 

3.1 Формулировка кинематической модели 

Определение кинематических переменных и кинематических гипотез (гипотез Бернулли) 

основано на предположении о линейном законе изменения кинематических параметров. 

Вводимые кинематические переменные (продольное перемещение ( , )u x y , поперечное 

перемещение ( , )w x y  и параметр пористости ( , )x y ) имеют следующий вид: 
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
 =

     (3.1) 

Тогда, деформации и их производные выражаются через перемещения и параметры 

пористости, имеют вид: 

( ) ( )xx u x w x y  = −       (3.2) 

,

,

( ) ( )

( ) ( )

( )

x

y

u x w x y

u x w x y

w x

   = −


  = −
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      (3.3) 
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3.1.1  Работа внешних сил 

Работа внешних сил выражается через погонные нагрузки (растягивающую силу - p , 

перерезывающую силу - q , изгибающий момент -  m ) и торцевые нагрузки ( , ,x x xN Q M ): 
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 (3.5) 

где погонные нагрузки определяются как: 
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и где торцевые нагрузки определяются как: 
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Таким образом, работа внешних сил, записанная через обобщённые переменные, 

определяется выражением: 

0

0

( ) ( ) |

l

lA p u q w m w dx N u M w Q w  =  +  −  +  −  +     (3.8) 

 

3.1.2  Потенциальная энергия деформации 

Потенциальная энергия U  в общем случай зависит от деформаций, параметра пористости 

и их градиентов: 

/ 2

11 12 22 11 12 22

, , ,

0 / 2

/ 2

11 12 22 11 11

, , , ,

0 / 2

12 12 22 22

, , , , , , , ,

1
2 2 , , 2 ,

2

1
[2 ( ) 2

2 3

2 2 ]

l h

ij ij k k k k k k

h

l h

xx x x y y

h

x x y y x x y y

U K K K C C C dydx

K K K C C

C C C C dydx

+

−

−

 =   +  +  +  +   +   +   = 


=   − +  +  +  +   +   +

+   +   +   +  

 

 

(3.9) 

Определяющие соотношения, связывающие напряжения с деформациями, находятся с 

помощью формул Грина (3.10), которые в дальнейшем могут быть уточнены после 

использования кинематической модели и интегрирования по толщине, то есть после сведения к 

одномерной задаче. 
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Приведём потенциальную энергию (3.9) к виду, удобному для интегрирования по 

поперечной координате: 
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В общем случае для слоистого материала интегрирование по толщине приводит к 

определению следующих жёсткостей: 
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  (3.12) 

В данном случае двухбуквенные идентификаторы в левых частях не являются 

произведениями, а лишь позволяют быстро определить по первой букве, какой модуль модели, а 

по второй букве - с каким весом интегрируется по поперечной координате соответствующая 

жесткость. Весу 1 соответствует вторая буква F , весу y  - вторая буква S , весу yy  - вторая буква 

J . Для постоянных по поперечной координате модулей, его можно вынести из-под знака 

интеграла и проинтегрировать вес. Тогда двухбуквенный идентификатор жесткости реально 

становится произведением соответствующего модуля на площадь поперечного сечения 
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С учетом введенных обозначений (3.12), потенциальная энергия (3.9) приобретает вид: 
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Для балки с симметричным относительно нейтральной линии поперечным сечением 

статический момент 
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U EF u u u C F u u u
E E C C

C F K C F K C F
EJ w w w

EJ E EJ E EJ

C C
C J w w w dx

C C

        = +  +   + +  +   +

  + + − +  + +   +

     + −  +  



 (3.14) 

Соотношения для работы внешних сил (3.8) и потенциальной энергии (3.14) позволяют 

сформировать лагранжиан  L A U= − . Тогда вариационная постановка задачи даётся 

вариационным уравнением 0L A U =  −  = . 

Далее приводится анализ двух принципиальных случаев нагружения: растяжения и 

«чистого» изгиба. Для каждого случая получены разрешающие уравнения и разработаны методы 

их решения, включая потенциальный подход. 
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3.2 Статическая постановка (растяжение) 

Потенциальная энергия для случая растяжения ( 10, 0w =  = ) имеет вид: 

12 22 11 12 22

0 0 0 0 0 0

0

1
[ 2 2 ]

2

l

U Eu u K u K C u u C u C Fdx        = +  +   + +  +     (3.15) 

Используя вариационный принцип Лагранжа, запишем: 

0

0

12 12 22

0 0 0 0

0

11 12 12 22

0 0 0 0

12 11 12 12 22 12 22

0 0 0 0 0

0

1

[ ]

[

]

{( ) [ )] }

[ (

l

l

l

l

L A U

N udx n u

Eu u K u K u K

C u u C u C u C Fdx

Eu K C u C N u K u K C u C Fdx

C

 =  − =

=  +  −

   −  +   +  +   +

       +  +   +  +   =

      = +  − −  +  − +  − −   −

+ −






1 12 12 22 12 11 12

0 0 0 0 0 0) ( ) ( ) ] 0lu C u C u C n Eu K C u C u       +   − +   + − −  + +   =

(3.16) 

Из последнего выражения, путем варьирования по перемещениям и параметру пористости 

с последующим интегрированием по частям, получаем уравнения равновесия (уравнения 

Эйлера) и соответствующие граничные условия. 

12 11 12

0 0

0

0

12 11 12

0 0 0

0

12 22 12 22

0 0 0

x

x

Eu K C u C

N Ndx

Eu K C u C Ndx

K u K C u C

  = +  − − 

 = −   =  −


 +  − −  =  −


   +  − −  =





   (3.17) 

Потенциальная энергия чистого растяжения зависит от шести модулей. Напомним из 

формулировки физического смысла параметров модели (см. раздел 1.5). Модули 11 11,K E С=  

определяют классические и градиентные свойства бездефектной среды. Модули 22 22,K С  

определяют «классические» (алгебраические) и градиентные свойства дефектной (пористой) 

среды. Модули 12 12,K С  определяют энергии взаимодействия совместного и несовместного 

изменения объёма (пористости) и их градиентов. 

 

3.2.1  Постановка задачи для среды с «алгебраической» пористостью 

Напомним, что для «алгебраической» пористой среды Миндлина характерно равенство 

всех неклассических модулей ( 12 22 0C C= = )  
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Потенциальная энергия в данном случае имеет вид: 

12 22 11

0 0 0

0

1
[ 2 ]

2

l

U Eu u K u K C u u Fdx    = +  +   +    (3.18) 

Следовательно, вариационное уравнение на основе принципа Лагранжа имеет вид: 

12 22 11

0 0 0

0

12 12 22 11

0 0 0 0 0

0 0

12 11 12 22 11

0 0 0 0

0 0

1
[ 2 ]

2

[ ] [ ]

[ ] [( ) ( ) ] [

l

l l

l

l l

l

L A U

Eu u K u K C u u Fdx

N udx n u Eu u K u K u K C u u Fdx

N udx n u Eu K C u u K u K Fdx C u u

 =  −  =

    = +  +   + =

     =  +  −  +   +  +   +  =

     =  +  − +  −  + +   − 



 

  0

11

0 0

0

12 11 12 22 12 11

0 0 0 0 0

0

11

0

12 11 12 22 12 11

0 0 0 0

0

]

[ ] [ ]

[ ( ) ( ) ] [( ) ]

[ ]

[( ) ( ) ] [(

l

l

l l

l

l

l

l

N udx n u C u u

Eu K C u u K u K Fdx Eu K C u u

C u u

Eu K C u N u K u K Fdx n Eu K C

=

 =  +  −  −

    − − +  −  + +   − +  −  =

 = −  +

   + +  − +  − +   + − −  +





 0) ] 0lu u  =

 

Из предыдущего уравнения получим уравнения равновесия: 

12

12 22
0 22

0

12 1212 11
110

22

0

0
( ) 0

K
uK u K K

K KEu K C u N
E u C u N

K


 = − +  = 

 
 +  − + =   − − + =



  (3.19) 

И краевые (граничные) условия: 

11

0

12 12
11

022

[ ] 0

[( ( ) ) ] 0

l

l

C u u

K K
n E u C u u

K

  =

 − − +  =
    (3.20) 

3.2.2  Постановка задачи для градиентной среды по Миндлину 

Градиентная среда Миндлина – это такая среда, где возникает равенство модулей 

11 12 0C C= = . 

Потенциальная энергия в данном случае имеет вид: 

12 22 22 11 12

0 0 0 0 0

0

1
[ 2 ] , 0

2

l

U Eu u K u K C Fdx C C    = +  +   +   = =  (3.21) 

Использование вариационного принципа Лагранжа позволяет определить уравнения 

равновесии и краевые условия. Определяющие соотношения могут быть записаны с 

использованием формул Грина с учетом уравнения (3.21): 
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12

0

12 22

0

22

0

Eu K

h K u K

g C

 = + 


= + 


= 

      (3.22) 

Дадим теперь более подробную постановку для задачи растяжения пористого стержня и 

укажем общее решение задачи: 

0

0

12 11 12 12 22 12 22

0 0 0 0 0 0

0

12 11 12 11 12

0 0 0 0 0

0 0

12

0

|

[( ) ( ) ( ) ( ) ]

| [( ) ( )] ( ) |

[(

l

l

l

l l

l l

l

L A U

p udx N u

Eu K u C u C u K u K C u C Fdx

p udx N u Eu K C u C F u dx C u C F u

K u

 =  −  =

=  +  −

        − +   + +   + +   + +   =

      =  +  − +  − +   − +   +

− +





 


22 12 22 12 22

0 0 0 0 0 0

11 12 12 11 12 12

0 0 0 0 0

0

11 12 12 12 22 22

0 0 0 0 0

0

) ( )] ( ) |

( / ) [ ( )] |

( ) | ( )

l

l

l

l

l

K C u C F dx C u C F

N
Eu C u K C p F F udx Eu C u K C F u

F

C u C F u K u C u K C F d

    − +   − +   =

      = − +  −  +  + − − +  −   +

     − +   − − +  −  




12 22

0 0 0( ) | 0lx C u C F − +   =

(3.23) 

Уравнения Эйлера дают уравнение равновесия: 

11 12 12

0 0'' '''' ' ''' 0
p

Eu C u K C
F

− +  −  + =     (3.24) 

и уравнение пористости: 

12 12 22 22

0 0' '''' '' 0K u C u K C− +  −  =      (3.25) 

Спектр граничных условий определяется тремя парами альтернативных граничных 

условий: 

( )

( )

11 12 12

0 0 0

11 12

0 0

12 22

0 0 0

( ) | 0

| 0

| 0

l

l

l

N
Eu C u K C u

F

C u C u

C u C

 
  − − +  −   = 

 

  +   =

 +   =

  (3.26) 

Уравнение равновесия (3.24) тогда даёт разрешающее уравнение на введенный потенциал, 

а можно и иначе- далее: 
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12 12 12 22 12 12
11 12 22 11

22 22 22 22 22 22
( ) ( 2 ) ( )

K K K E C C C p
E C C C C

K K K K C K F
  −  − − +  − −  =  (3.27) 

Введем характерные длины взаимодействий бездефектной и дефектной (пористой) среды: 

12 12 12
11 12 22 2 2

1 222 22 22

22 12 12 12 12
11 2 2

1 222 22 22

( 2 ) ( )( )

( ) ( )

K E K K
C C C E l l

K K K

C C C K K
C E l l

K C K


− + = − +


 − = −


   (3.28) 

Тогда разрешающее уравнение приобретает следующий вид: 

2 2 2 2

1 2 1 2 12 12
22

22

( )

( )

p
l l l l

K K
E K F

K

   − +  +  =

−

    (3.29) 

Оператор разрешающего уравнения шестого порядка тогда можно представить в виде 

произведения трех операторов второго порядка: 

2 2

1 2 12 12
22

22

(...) (...) (...) (...) (...)

( )

p
l l

K K
E K F

K

     − −  =   
−

  (3.30) 

Общее решение тогда можно представить в виде линейной комбинации собственных 

функций этих операторов и частного решения неоднородного уравнения: 

*

0 1 2

0

2

1 1 1

2

2 2 2

* 2 2 * 2 2 *

1 2 1 2 12 12
22

22

0

0

0

( )

( )

l

l

p
l l l l

K K
E K F

K

 =  + + +

 =


 −  =
  −  =



   − +  +  =
 −


   (3.31) 

22 * 22 *

0 1 2 0 1 2

12 * 12 *

0 0 1 2 0 1 2

( ) ( )

( ) ( )

u K C

K C

   = −  + + + +  + + +


       =  + + + −  + + +

    (3.32) 

Искомые функции принимают окончательный вид: 

22 22
22 22 22 *

0 1 22 2

1 2

12 12
12 12 12 *

0 0 1 2 02 2

1 2

( ) ( )

( ) ( )

C C
u K K K u

l l

C C
K K K

l l


= −  + −  + −  +



    =  + −  + −  + 



    (3.33) 

Здесь введены определения частных решений: 
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* 22 * 22 *

* 12 * 12 *

0

( )

( )

u C K

K C

 =  − 


  =  − 

     (3.34) 

Кинематические граничные условия на торцах стержня: 

22 22
22 22 22 *

0 1 22 2

1 2

22 22
22 22 22 *

0 1 22 2

1 2

12 12
12 12 12 *

0 0 1 2 02 2

1 2

( ) ( )

( ) ( )

( ) ( )

C C
u K K K u

l l

C C
u K K K u

l l

C C
K K K

l l


= −  + −  + −  +


    = −  + −  + −  +



   =  + −  + −  + 


   (3.35) 

Соответствующие силовые граничные условия на торцах стержня: 

* 12 12 22

0

11 22 12 12
22 12 12

112 2 2 2

1 1 1 1

11 22 12 12
22 12 12

2222 2 2 2

2 2 2 2

11 22 12 12 11 22
* 22 12 22

12 2 2 2 2 2

1 1 1 1 2 2

( )

[ ( )( ) ( )( )]

[ ( )( ) ( )( )]

[ ( ) ( )] [ (

N
K K EK

F

C C C C
E K K K

l l l l

C C C C
E K K K

l l l l

C C C C C C
B B K K K

l l l l l l

=  + −  +

+ − − − + − −  +

+ − − − + − − 

= + − + −  + −
12 12

12

22 2

2 2

12 22 22 12 12 22 22 12
* 22 12 22 12

1 22 2 2 2 2 2 2 2

1 1 1 1 2 2 2 2

) ( )]

[ ( ) ( )] [ ( ) ( )]

C C
K

l l

C C C C C C C C
K K K K

l l l l l l l l












 + − 


 =  + − + −  + − + − 


 (3.36) 

Здесь даны определения частных решений для соответствующих силовых факторов: 

* * 11 * 12 * 12 *

0 0

* 11 * 12 *

0

* 12 * 22 *

0

( )

( )

( )

Eu C u K C

B C u C

C u C

   = − +  − 

 = + 

  = + 

   (3.37) 

Получим другое представление общего решения непосредственно через перемещения. 

Это возможно, при выделении уравнений равновесия (3.24)-(3.25) в перемещениях, а пористость 

определяется алгебраически через дифференциальный оператор от совместного изменения 

объёма. 

Продифференцируем (3.25) и выразим третью производную от пористости: 

12 12 22

0 022

1
''' '' '''' 'K u C u K

C
  = − +   . 
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Далее исключим слагаемое, содержащее третью производную от пористости из (3.24) и 

выразим производную от пористости: 

12 12 12 12
11

22 22

0 12 22 12 22 12 22
12 12 12

22 22 22

' '' ''''

C K C K p
E C

C C Fu u
C K C K C K

K K K
C C C

− −

 = − + −

− − −

 

Затем продифференцировав однократно, подставим её в (3.25), получим: 

12 12 12 12
11

22 12 1222 22

0 12 22 12 22 12 2222 22 22
12 12 12

22 22 22

'( )

''' ''''' ' '''

C K C C p x
E C

C K CC C Fu u u u
C K C K C KK K K

K K K
C C C

 
− − 

 = + − − + = 
 − − −
  

 

12 12 12 12
11

12 22 22 2222 22

12 22 12 22 12 2222 22 22 22
12 12 12

22 22 22

1 2 3 4

'( )

' 1 ''' '''''

'
' ''' '''''

C K C C p x
E C

K C C CC C Fu u u
C K C K C KK K K K

K K K
C C C

p
a u a u a u a

F

     
− −     

= − + − + − =     
     − − −
          

= − + + −

 

В результате, пористость алгебраически выражена через дифференциальный оператор 

пятого порядка от осевого перемещения. 

Исключая полученную пористость 0  из 0' , получим дифференциальное уравнение 

(уравнение равновесия), записанное только относительно осевого перемещения: 

12 12 12 12 12 12
11 11 22

22 22 22 22 22

22 12 12 22
11

22 22 22

' 1 ''''

''( )
''''''''

K K C C K K E
E u C C C u

K C K K K

C C C p C p x
C u

K C F K F

      
− − − + − − − +     

      

 
+ − + −  

 

  (3.38) 

Анализ разрешающего уравнения (3.38) показывает, что эффективный модуль упругости 

при растяжении: 

- Не зависит от масштабного параметра; 

- Определяется исключительно поврежденным модулем, связанным с деградацией 

пористого материала через алгебраическую пористость. 

Такое решение является физически естественным и называется «хорошим решением», 

поскольку эффективная жесткость при растяжении не зависит ни от масштабного параметра, ни 

от толщины стержня. 

Введем новые обозначения для физических модулей: 

Теорема Виетта: 
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12 12

22

12 12 12 12
11 12 22 2 2

1 222 22 22 22

22 12 12
11 2 2

1 222 22

( )

( ) (1 ) ( ) ( )

K K
E E

K

C C K K E
C C C E l l

C K K K

C C C
C El l

K C


 − =

 

− + − − − = + 
 
  
 − = 
  

 

 

Здесь 2

1l  и 2

2l  являются корнями биквадратного уравнения: 

12 12 12 12 22 12 12
4 11 12 22 2 11

22 22 22 22 22 22
1 0

C C K K E C C C
El C C C l C

C K K K K C

      
− − + − − − + − =      

      
 

Тогда уравнение равновесия в перемещениях приобретает вид: 

22
2 2 2 2

1 2 1 2 22

''
'' ( ) '''' '''''' 0

p C p
u l l u l l u

EF K EF
− + + + − =  

Оператор уравнения равновесия в перемещениях можно представить в виде произведения 

трех операторов второго дифференциального порядка: 

( ) ( ) ( ) ( ) ( )
22

2 2

1 2 22

''
... '' ... ... '' ... ... '' 0

p C p
l l u

EF K EF
   − − + −  =     

Соответственно, общее решение для осевого перемещения u  можно представить как 

сумму собственных функций этих трех операторов второго порядка 0 1 2, ,u u u  и частного *u :  

0

2

1 1 1

2

2 2 2

22
2 2 2 2

* 1 2 * 1 2 * 22

0

0

0

( ) 0

u

u l u

u l u

p C p
u l l u l l u

EF K EF

 =


− =

 − =


   − + + + −  =


 

 

3.3 Статическая постановка (чистый изгиб) 

В случае изгиба ( 00, 0u =  = ) потенциальная энергия имеет вид: 

11 12 12 22 22

1 1 1

0

11 12 22

1 1 1

1
[( ) '' '' 2( ) '' ( )

2

''' ''' 2 ''' ]

l

U EJ C F w w K J C F w K J C F

C Jw w C Jw C J dx

= + − +  + +   +

  + −  +  


  (3.39) 

Потенциальная энергия чистого изгиба зависит от шести линейных комбинаций модулей. 

Комбинации модулей ( )11 11,EJ C F C J+  определяют классические и градиентные свойства 
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бездефектной среды. Комбинации модулей ( )22 22 22,K J C F C J+  определяют «классические» 

(алгебраические) и градиентные свойства дефектной (пористой) среды. Комбинации модулей 

( )12 12 12,K J C F C J+  определяют энергии взаимодействия совместного и несовместного 

изменения объёма (пористости) и их градиентов. 

Вариационное уравнение на основе принципа Лагранжа имеет вид: 

0

0

11 12 12 12 12 22

1 1 1

0

11 12 12 22 22

1 1 1

( ) ( ) |

{[( ) ( ) ] [ ( ) ]

( ) [ ( ) ] }

l

l

l

L A U

q w m w dx M w Q w

EJ C F w K J C F w K J C F w K J

C Jw C J w C Jw C J C F dx

 =  −  =

 =  −  + −  +  −

  − + − +   + − + +   +

     + −   + − + +  





 (3.40) 

После упрощений: 

11 11 12 12 12

1 1

0

12 12 12 22 22 22

1 1 1

11 11 12 12 12

1 1 0

1

{[ ( ) ( ) ]

[ ( ) ( ) ] }

[ ( ) ( ) ] |

[ (

l

l

L q m EJ C F w C Jw K J C F C J w

K J C F w C Jw K J C F C F dx

Q m EJ C F w C Jw K J C F C J w

M EJ C

     = + − + + + +  −   −

  − − + + + +  −   +

   + − + + − − +  +   −

− + +



1 11 12 12 12

1 1 0

11 12 12 22 22

1 0 1 1 0

) ( ) ] |

( ) | [ ( ) ] | 0

l

l l

F w C Jw K J C F C J w

C Jw C J w C Jw C J C F

   − − +  +   +

    − −   − − + +   =

 (3.41) 

Вариационное уравнение (3.41) позволяет записать уравнения Эйлера: 

11 11 12 12 12

1 1

11 12
11 12 12

1 112

( ) ( )

(1 ) (1 )

EJ C F w C Jw K J C F C J q m

C F C F
EJ w C Jw K J C J q m

EJ K J

    + − − +  +  = +

    + − − +  +  = +
  (3.42) 

Здесь: 

11 11 11 2 2
211 11 11

3 2 2 2

11 2

11

12 12 12 12 2 2
212 12 12

12 12 3 12 2 12 2 2

12 12 2

12

1 (12 ) 1
( )

/ 12 ( / 12) ( / 12)

12

1 (12 ) 1
( )

/ 12 / 12 / 12

12

C F C h C El l l

EJ Eh E h E h h h

C El

C F C h C K l l l

K J K h K h K h h h

C K l

= = = = =

=

= = = = =

=

  (3.43) 

Тогда с помощью (3.43), имеем следующие уравнения равновесия: 

Для изгиба: 
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11 12 12
2 211 12

1 1

12 12
2 2 2 211 12

11 1 12 1

1
1 ( ) 1 ( ) ( )

1
1 ( ) 12 1 ( ) 12 ( )

l C K l C
w w q m

h E E h E EJ

l K l K
w l w l q m

h E h E EJ

   
    + − − +  +  = +    

   

   
     + − − +  +  = +   

   

 (3.44) 

Для пористости: 

12 12 12 22 22 22

1 1

12 12 22 22 22

1 112 12 12 22 12

( ) ( ) 0

(1 ) (1 ) 0

K J C F w C Jw K J C F C F

C F C K C F C F
w w

K J K K K J K J

  + − − +  +  = 

   + − − +  +  =

  (3.45) 

Из (3.45) выражаем модули: 

12 12 12 12 2 2
2 12 12 212 12 12

1212 2 2 212 12 12 2

22 22 22 22 2 2
2 22 22 222 22 22

2222 22 22 2 22 2 2

1 12 1
( ) 12

12 12 12

12 1
( ) 12

/ 12 / 12

C F C h C K l l l
C K l

K h h hK J K K h h

C F C F C K l l l
C K l

K J K J K h K h h h

= =  = = = → =

= = = = = → =

 (3.46) 

В равенствах (3.45), (3.46) определены постоянные модули 12 22,С С  через масштабные 

параметры 12 22,l l , упрощающие дальнейшую запись. Таким образом уравнение пористости 

(3.45) можно представить в виде: 

22 22 22
2 2 212 22

12 1 112 22 12
(1 ( ) ) 12 (1 ) ( ) 0

l K C F K l
w l w

h K K J K h
  + − − +  +  =    (3.47) 

Спектр граничных условий определяется из (3.41) четырьмя парами альтернативных 

граничных условий: 

( )

11 11 12 12 12

1 1 0

11 11 12 12 12

1 1 0

11 12

1 0

12 22 22

1 1 0

( ) ( ) | 0

( ) ( ) | 0

| 0

( ) | 0

l

l

l

l

Q m EJ C F w C Jw K J C F C J w

M EJ C F w C Jw K J C F C J w

C Jw C J w

C Jw C J C F

    − + + − − +  +   = 

    + + − − +  +   = 

  −   =

  − +   = 

 (3.48) 

Алгоритм построения общего решения аналогичен алгоритму построения общего 

решения для задачи чистого растяжения. Представим систему уравнений из (3.44) и (3.45) в 

операторной форме: 
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11 12

21 22 0

L

w

qL mw

L L

+  = +

+  =
      (3.49) 

здесь: 

11 11

12 1

11

12

21 12

2

2

2 1

22 22 22

2

(...) (...)

(...) (...)

(...)

( )

( )

( )

EJ C FL C J

K J C F C J

K J C F

L L

CL F

L

+

− + +

+

 = −

 =

+ −

=

=

 

Решим систему операторных уравнений относительно w  (исключим  ):  

11 12 22

21 22 120

L L q mw L

L w L L

+  =

+  =

+ 


       

11 22 12 21 22 22( ) ( () )L L L L w L w Lq m q m  + + =− =   

22 22 22) ( ) ,( (...)w q m K J C F C F    = + + −     (3.50) 

где 11 22 12 12L L L L− = . 

Оператор определяется как: 

     

11 11 22 22 22

12 1

11 2

12 12

2 12 1

2

2

1 12 2

(...) (...) (...)

(...) (...) (...) (...)

(...) (...) (..

( ) ( )

( ) ( )

.... .... .. ...

EJ C F C J K J C F C F

K J C F C

LL L L

J K J C F C J

   = −

   

  

   − = + + + − −   

   − − + + − + +

+



+

=  

= ) 

 

Решим систему операторных уравнений относительно   (исключим w ):  

11 12 21

21 22 110

L L q mw L

L w L L

+  =

+  =

+ 


   

11 22 12 21 21 21( ) ( () )L L L L q m qL Lm  − +  + −  =  = −  

12 12 12( (...) '' (...) '''') ( )q m K J C F C J    =− + − + +     (3.51) 

Здесь оператор    определен так же, как и для решения по прогибам (см. выше). 

Для прогиба w  (3.50) и пористости   (3.51) вводим потенциал так, что тождественно 

удовлетворяет уравнению пористости (3.45): 

12 12 12 22 22 22

1 1

22 22 22

12 12 12

1

( ) ( ) 0

( )

( )

K J C F w C Jw K J C F C F

w K J C F C F

K J C F C J

  + − − +  +  

 = +  − 


  = +  − 

  (3.52) 
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Подставляя (3.52) в уравнение равновесия, получим разрешающее уравнение на 

потенциал: 

11 22 22 12 12 12 12

11 22 11 22 22 12 12 12

11 22 12 12

[( )( ) ( )( )]

[( ) ( ) 2( ) ]

[ ]

EJ C F K J C F K J C F K J C F

EJ C F C F C J K J C F K J C F C J

C JC F C JC J q m

+ + − + +  −

− + + + − +  +

 + −  = +

  (3.53) 

Дадим определения обобщённым жесткостям: 

11 22 22 12 12 12 12

11 22 11 22 22 12 12 12 2 2

1 2

11 22 12 12 2 2

1 2

[( )( ) ( )( )]

[( ) ( ) 2( ) ] ( )

[ ]

EJ C F K J C F K J C F K J C F EJ

EJ C F C F C J K J C F K J C F C J EJ l l

C JC F C JC J EJl l

 + + − + + =




+ + + − + = +


 − =

  (3.54) 

Тогда, с учетом (3.54) разрешающее уравнение (3.53) принимает следующий компактный 

вид: 

2 2 2 2

1 2 1 2( )
q m

l l l l
EJ

+
   − +  +  =     (3.55) 

Оператор этого уравнения (3.55) можно представить как произведение четырех 

операторов второго порядка с учетом того, что два оператора будут кратными: 

2 2

1 2(...) [(...) (...) ][(...) (...) ]
q m

l l
EJ

+
  − −  =    (3.56) 

Общее решение (3.56) теперь можно построить как линейную комбинацию собственных 

функций 0 1 2, ,     этих операторов и частного решения *   неоднородного уравнения: 

0

2

1 1 1

20 1 2 *
2 2 2

2 2 2 2

* 1 2 * 1 2 *

0

0

0

( )

l

l

q m
l l l l

EJ

 =

  −  =



 =  + + +    −  =



+    − +  +  =


  (3.57) 

Общее решение краевой задачи для прогиба и пористости дается формулами (3.57), (3.52) 

Краевые условия, следующие из вариационного принципа, легко записываются через потенциал, 

если учесть (3.52). 

Как видно из уравнений (3.50) и (3.51), классическая составляющая - четвертая 

производная включает изгибную жесткость.  

Общее решение представляет собой сумму: 
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- Классического решения, определяемого приведенной жесткостью; 

- Двух специальных решений, соответствующих: эффекту пористости и градиентным 

эффектам. 

Нетрудно видеть, что в приведенных уравнениях коэффициенты при четвертой 

производной от прогиба в окончательном уравнении изгиба определяют приведенную изгибную 

жесткость и эта изгибная жесткость определяется с точностью до масштабных параметров и при 

малых толщин определяется соотношением 

2

11l

h

 
 
 

. В этом нетрудно убедиться уже по первому 

слагаемому в уравнении прогиба (3.42) вида 11 11 211( ) , ( )
l

EJ C F w C
h

+  . 

В данной ситуации получаем парадокс: при уменьшении толщины относительная 

изгибная жесткость стремится к бесконечности. Этот парадокс хорошо известен и многократно 

обсуждается в литературе. Тем не менее, полагаем, что данный результат является не вполне 

корректным для задачи изгиба, хотя и приводится в многочисленных исследованиях по теории 

сверхтонких стержней.   

Кратко поэтому будет обсуждаться вопрос получения модели изгиба без учета этого 

явления. 

Заметим, что с другой стороны, эксперименты показывают возможное увеличение 

относительной изгибной жесткости при уменьшении толщины, но это связано не с градиентными 

эффектами, а, по мнению автора, с поверхностными свойствами стержня, роль которых 

возрастает при уменьшении толщины стержня. 

В дополнение обсудим условия корректности для задачи изгиба сверхтонких пористых 

стержней. Как обсуждалось ранее имеет место следующая кинематическая модель Бернулли: 

1

1 2 ,

2

1

,1 , ,1 , 1

1 ,2 , ,2 ,

( , ) ( , )
{ , } ,

( , ) ( )

( ) ( , ) ( )( , ) ( ) ( )

( , ) ( ) 0 ( ) ( )

( , ) ( ) ( )0

i x x

xx

xy x x

yyy

R x y u x y
R R R R

R x y w x

w x y x y x yu x y w x y w x y

w x y w x w x y x y

x y x y w x

=
= =  =

=

   = −  = = −  = −
 

 =  =  =  = −  =  = −  
   = −  =  = −  =  =  1( )y x






= −

 

Имеет место следующее утверждение: корректное решение имеет место, если принцип 

Лагранжа реализуется при следующем виде потенциальной энергии: 

11 2

, , , ,

12 12 2 22 22 2

, , , , ,

1
[(2 ) ( )

2

2 2 ]

x x x x x xx x xx

V

x x x xx x x x

U R R K l R R

K R K l R K K l dV



 

=  +  + +

+  +  +  +  


  (3.58) 

Определяющие соотношения получаем из соотношения Грина: 
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,

, , ,

12

11 1,1

11 2 12 2

1 , ,

12 22

,

12 2 22 2

, ,

, , , ,

(2 )

( )

x x x

x x x xx x

x xx x

x x

x xx x

U U U U
m h g

R R

R K

m K l R K l

h K R K

g K l R K l

 

 

   
 = = = =

   

 =  +  + 



= + 

 = + 



= + 

   (3.59) 

Особенностью предлагаемой модели является то, что в плотность потенциальной энергии 

входят только слагаемые, которые определяются силовыми факторами, зависящими от 

производных по продольной координате, например только часть возможной работы. Записанная 

вариационная форма (3.58) может быть получена и иначе. Достаточно использовать наиболее 

общее выражение для возможной работы внутренних сил: 

, , ,

1
[ ( ) ( ) ( )]

2
ij i j k k k k

V

U R m h g dV =   +   +  +   . С учётом выражения (3.59) имеем: 

11 1,1 1 1,11 1 ,1 2 1,12 2 ,2[ ( ) ( ) ]
V

U R m R g m R g dV =   +  +  +  +  . Нетрудно проверить, что записанная 

часть потенциальной энергии (3.58) соответствует только слагаемым 
11 1,1 1 1,11 1 ,1( )R m R g  +  +  , 

а подчеркнутая часть опущена. Именно это гарантирует корректность. Поясним этот факт на 

примере 2 1,12( )
V

m R dV . 

Имеем: 
2 1,12 2 2 1,1 2,2 1,1

( )

( ) ( ) ( )
V F y h V

m R dV m n R m R dV
=

    =  −       .Правая часть в записанном 

равенстве равна нулю, так как первое слагаемое равно нулю в силу статического граничного 

условия, а второе слагаемое равно нулю в силу соответствующего определяющего условия и 

кинематической модели 2,2 0m = . Оставляя эти слагаемые в построение модели, вносится 

ошибка так как, по существу, не учитывается граничное условие на продольных кромках стержня 

2 2 0m n = . 

Получается, что, если использовать корректную модель с потенциальной энергией (3.58), 

и стандартную процедуру построения вариационной модели получаем следующий вариант 

корректной модели сверхтонких пористых стержней - математическую постановку 

соответствующей краевой задачи. В таком случае уравнение равновесия и уравнение пористости 

имеют вид: 
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11 2 12 12 2

1 1

12 12 2 22 22 2

1 1

'
'''' '''''' '' ''''

'''' '''''' '' 0

q m
Ew K l w K K l

J

K w K l w K K l

 

 

+
− +  −  =

− +  −  =

 

А граничные условия представлены в форме системы альтернативных краевых условий: 

 

 

12 11 2 12 2

1 1 0

12 11 2 12 2

1 1 0

11 2 12 2 12 2 22 2

1 1 10 0

( ) ( ) ( )

( ) ( )

( ) ( ) 0

l

l

l l

Ew K K l w K l m Q w

Ew K K l w K l M w

K l w K l w K l w K l

 

 

   

  + − +  + +  − − +  +

   + +  − +  +  +

    + +   + +   =

 

 

 

 

 

 

3.4 Динамическая постановка 

3.4.1 Постановка задачи с учётом кинетической энергии 

Лагранжиан L , работа внешних сил A , потенциальная энергия U  и плотность 

потенциальной энергии VU  пористой градиентной среды: 

11 12 22 11 12 22

, , , , , ,

1
[2 ( 2 ) ( 2 )]

2

V F

i i i i

V F

V

V

V ij ij k k k k k k

L A U

A P R dV P R dF

U U dV

U K K K C C C

= −

= +

=

=   +  +  +  +   +   +  

 


 (3.60) 

Преобразование квадратичной формы в (3.60) к каноническому виду: 

11 12 22

12 12 12 12
11 22

22 22 22

11 12 22

, , , , , ,

12 12 12 12
11 22

, , , , , ,22 22 22

( 2 )

( ) ( )( )

( 2 )

( ) ( )( )

k k k k k k

k k k k k k

K K K

K K K K
K K

K K K

C C C

С С С С
С С

С С С

+ +  =

= − + +  + 

  +   +   =

= −   +  +   + 

   (3.61) 

Силовые факторы, как следствие формул Грина: 
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11 1211 12
, ,

,

12 22 12 22

, ,

,

2V
ij ij

ij

VV
k k k

k

V V
k k k

k

U

UU m C CK K

U U
K K m C C



 


 = = 



 = =  +  = =  +    
 

   = =  +  = =  + 
   

  (3.62) 

Полные напряжения: 

12

, ,

,

( ) ( )V
ij i j j i ij

i j

U
R R K

R


 = =  + +  +  


 

Классические напряжения: 

12 11 12

, ,

, ,

( ) ( ) ( )V V
ij i j j i ij

i j k i jk

U U
s R R K C C

R x R

  
= − =  + +  +  −  −  
  

 

Вариационное уравнение: 

11 12 12 22

11 12 12 22

, , , , , ,

12 11 12

, , ,

12 22 12 22

[2 ( ) ( )

( ) ( ) ]

{[ ( ) ( ) ] }

( )

V F

i i i i ij ij

V F V

k k k k k k

V

i j j i ij j i i

V

V

F

L P R dV P R dF K K K K

C C C C dV

R R K C C P R dV

K K C C dV

 =  +  −   + +  + +  +

+  +   +  +   =

=  + + + − −   +  −

− + − −   +

+

  






12 11 12

, ,

11 12 12 22

, , , ,

{[ [ ( ) ( ) ] ]

( ) ( ) } 0

F

i i j j i ij j i

k k k k k k

P R R K C C n R

C C n C C n dF

−  + + + − −    −

−  +  −  +   =

 (3.63) 

При решении динамических задач следует учесть кинетическую энергию: 

1

0

1
( 2 )

2

t

i i

t V

K R R dVdt  =  +   +   +          (3.64) 
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Тогда с учетом (3.63) и (3.64) получим: 

1

0

1

0

12 11 12

, , , , , ,

12 22 12 22

12 11 12

, ,

{[ ( ) ( ) ]

( )

{[ [ ( ) (

t

V

i i i i i i i i i i

t V

t

F

i i j j i

t F

L A K U

R K C C R P R

K K C C dVdt

P R R K C C

 

 

 

 =  +  −  =

=  +  +   +  −  −  −  +   +   +  −

−  +  −  −  +   +    +

+ −  + +  +  −  −  +   +  

 

 

 

 

 

1

0

11 12 12 22

, , , ,

) ] ]

( ) ( ) }

( ( ) ( ) ) | 0

ij j i

k k k k k k

t

i i t

V

n R

C C n C C n dFdt

R R dV   

  −

−  +   −  +   +

+   +   +    +   +    =  

(3.65) 

Уравнения движения приобретут вид: 

12 11 12

, , , , , ,( ) ( ) 0V

i i i i i i i i iR K C C R P  +  +   +  −  −  −  +   +   + =    (3.66) 

Уравнение пористости приобретет вид: 

12 22 12 22 0K K C C   +  −  −  +   +   =      (3.67) 

Таким образом, сформулирована динамическая постановка теории пористых сред, 

содержащая одиннадцать физических постоянных. 

Семь физических постоянных 11 12 22 11 12 22, , , , , ,K K K C C C  отражают свойства 

стационарных состояний пористой среды. Среди них: классические упругие 11, K  и 

градиентные 11C   свойства непрерывной среды, «алгебраические» 
22K  и градиентные 22C  

свойства пористой среды, а также константы взаимодействия непрерывной и пористой среды в 

«алгебраической» 
12K  и градиентной 12C  частях потенциальной энергии. Кроме свойств, 

проявляющихся в стационарных состояниях, имеется четыре физические постоянные, 

отражающие инерционные свойства непрерывной матрицы ,   , пористой среды 
  и 

константы динамического взаимодействия непрерывной матрицы и пористой среды 
 . 

Далее будем рассматривать случай, когда внешние объёмные силы равны нулю. 

 

3.4.2  Постановка задачи для классической среды 

Пусть все неклассические модули равны нулю. Уравнение пористости отсутствует, а 

уравнения движения имеют классический вид: 

,( ) 0i i iR R +  +   −  =      (3.68) 

Будем искать решение (3.68) в виде плоской волны: 
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0 2r rik x i t

i i r rR R e k k k
+ 

= =      (3.69) 

Взяв ротор от векторного уравнения (3.68), с учетом (3.69) получим закон дисперсии для 

поперечных акустических волн: 

2 2 0 0[ ] ( ) 0i j j ik i R k R k k


− +  − = →  = 


    (3.70) 

Здесь 
Tс


=


 - скорость поперечных акустических волн. 

Взяв дивергенцию от векторного уравнения (3.68), с учетом (3.69) получим закон 

дисперсии для продольных акустических волн: 

2 2 2 2(2 ) (2 )
(2 ) 0k k k

 +   + 
−  +  +  = →  = → = 

 
  (3.71) 

Здесь 
2

Lс
 + 

=


 - скорость продольных акустических волн. 

Обратим внимание на то, что в соответствии с (3.67) и (3.70) во всех моделях градиентной 

пористой среды скорость поперечных волн одна и таже, в то время как скорость продольных волн 

будет меняться от модели к модели. 

 

3.4.3  Постановка задачи для среды с «алгебраической» пористостью 

Пусть градиентные модули 11 12 22, ,C C C  равны нулю, а также равны нулю 

инерционные модули ,   . Уравнения движения приобретает вид: 

12

12 22

(2 ) 0

0

K

K K 

 +  + − =

+ +  =




    (3.72) 

 

С учетом (3.69) получим: 

2 2 0 12 2 0

12 0 22 2 0

[ (2 ) ] 0

( ) 0

k K k

K K 

 −  +  +  −  =


 + −   =

    (3.73) 

Нетривиальное решение для продольных волн существует, если определитель системы 

(3.73) равен нулю: 

2 2 22 2 12 12 2[ (2 ) ]( ) 0k K K K k−  +  +  −   + =     (3.74) 

Тогда закон дисперсии (3.74) приобретет вид: 

22 22 12 12
4 2 2 2(2 ) (2 )

[ ] ( ) 0
K K K K

k k
  

 +   + 
 − +  + − =

     
   (3.75) 

Решением (3.75), является: 
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22 22 12 12
2 2 2 2 2

1,2

1 (2 ) 1 (2 )
[ ] [ ] 4

2 2

K K K K
k k k

  

 +   + 
 = +  − +

     
  (3.76) 

Обратим внимание на то, что корни (3.76) могут иметь разные знаки. Поэтому 

существование продольных волн для этой модели ограничено следующим множеством волновых 

чисел: 

22 22 12 12
2 2 2 2(2 ) (2 )

[ ] [ ] 4 0
K K K K

k k k
  

 +   + 
+ − − + 

     
   (3.77) 
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ГЛАВА 4. ИССЛЕДОВАНИЕ ФИЗИКО-МЕХАНИЧЕСКИХ СВОЙСТВ 

ПОРИСТЫХ МАТЕРИАЛОВ 

 

4.1 Оценки модулей упругости пористых материалов на основе 

материала с теми же эквивалентными свойствами 

Цель данной части исследования — определение величины изменения объёмного модуля 

12 2 22( ) /K K  в модели сред с полями дефектов - порами. 

Пористый материал можно также попытаться моделировать как композит с «пустыми» 

сферическими включениями (у включений нулевые упругие модули). То есть предполагается, 

что у пористого материала и материала с пустотами одинаковые, как эффективные упругие 

модули ,eff effK  , так упругие модули матрицы ,m mK  , из которых данные материалы 

изготовлены. Фактически предполагается, что пористый материал, хоть и не имеет пустот, но 

ведёт себя, как материал с пустотами. 

Эффективные упругие модули материалов определяются экспериментально. Для 

материала с пустотами существуют способы определения объёмного содержания пустот c . Мы 

будем определять величину 12 2 22( ) /K K , приравнивая упругие модули. 

В модели пористых сред с алгебраической было получено, что: 

12 2

22

( )
eff m

K
K K

K
= −  

С другой стороны, из энергетических методов нетрудно получить, что при малой 

объемной доле включений можно вычислить эффективный объёмный модуль следующим 

образом [2]: 

( )
,

4
1 ( ) / ( )

3

i m
eff m

i m m m

K K c
K K

K K K

−
= +

+ − + 

 

где i — индекс включений (inclusion), а m  — индекс матрицы (matrix). 

Чтобы получить формулу для материала с пустотами необходимо приравнять нулю 

модули включений: .

4

31
m m

eff m

m

K

K K c
K

 
 + 

−


 
 
 

=  

В силу того, что у материалов равны, как эффективные модули 
effK , так и модули матрицы 

mK , то: 
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12 22 11 12 220 0K K C C C= = = = =      (4.1) 

Для общего случая лучше использовать модель трёх фаз. Она дает следующую формулу 

для объёмного модуля: 

( )
.

4
1 (1 )( ) / ( )

3

i m
eff m

i m m m

K K c
K K

c K K K

−
= +

+ − − + 

 

Чтобы получить формулу для материала с пустотами необходимо приравнять нулю 

модули включений: 

.

4
( )

31
4

3

m m

eff m

m mc

K

K

K c

K

 

−
 
 
 +
 

+ 

=



 

В силу того, что у материалов равны, как эффективные модули 
effK  , так и модули 

матрицы mK , то: 

12 2

22
.

(

4
( )

3
4

)

3

m m m

m m

K

K

K K

c

cK

+ 

=

 +

      (4.2) 

Заметим, что расшифровка параметра cl  в плотности потенциальной энергии может быть 

сделана на основе равенств: 

2

11 22 2 12 22

2 22 22

11 12 2 22

2 2 2

12 2 22

2 2

2 2

/

2 , ( ) /

1

1 ( ) /

V

V

c

U ER R G SR D

U K R R K K R C

l C K

K E E E K K

E
l l l

E K EK

    = +  +  +  

    = +  +  +  

=

= =  +  = −

= =
−





 

Тогда получим: 
( )

( )

2

2

1
1

2 1 2

cl c
l

+ 
= +

− 
 

То есть величина cl  зависит от концентрации дефектов и повышается при её увеличении. 

Важно вспомнить, что в модели дефектной пористости модуль сдвига не меняется. Это 

означает, что в моделях оценки эффективного модуля композита, приведённых ранее, модуль 

сдвига «должен меняться незначительно». 

Оценка для модуля сдвига, как в модели при малом объёмном содержании, так и в модели 

трёх фаз, одинакова и при нулевых модулях включений имеет вид: 
15(1 )

1
7 5

eff m

m m

c
 − 

= −
 − 

. 
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Предположим, что удовлетворительным является случай, когда относительное изменение 

модуля сдвига не превышает некоторого фиксированного x , то есть: 

15(1 )
1

7 5

eff m

m m

c x
 − 

− = 
 − 

 

То есть концентрация пустот с  удовлетворяет неравенству: 

7 5

15(1 )

m

m

c x
− 


− 

       (4.3) 

Также существует более общее, хоть и более строгое условие, не зависящие от материала 

матрицы. Верны следующие выражения: 

7 5 7 7 7

15(1 ) 15(1 ) 15

m m

m m

x x x
−  − 

 =
−  − 

 

Поэтому если выполнено неравенство (4.4, см. далее), то выполнено и неравенство (4.3). 

7

15
c x        (4.4) 

Таблица 2 со значениями для оценки неравенства (4.4) представлена далее. 

Таблица 2 

Изменение x  не 

превышает (%) 
1 5 10 15 20 

Концентрация 

включений сне 

превышает (%) 

0.47 2.33 4.67 7 9.33 

 

Рекомендации по использованию выражения (4.4): пусть имеется пористый материал с 

экспериментально найденными эффективными модулями ,eff effK  . Тогда для оценки величины 

12 2

22

( )K
K

 берём материал с пустотами с тем же эффективным модулем 
effK  и той же матрицей 

,m mK  . Из условия равенства эффективных модулей получается определённая величина c . Если 

она удовлетворяет неравенству (4.4), то могут быть использованы представленные выше оценки 

для величины 
12 2

22

( )K
K

. 

 

4.2 О диссипативных свойствах пористых сред 

Пористые материалы имеют те же эффективные механические характеристики, что и 

некоторые метаматериалы. Это позволяет применять методы механики сплошных сред к 
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элементам конструкций из метаматериалов, что является мотивацией для изучения пористых 

структур. 

Также важной особенностью метаматериалов является широкий диапазон изменения 

коэффициента Пуассона. Покажем, что это свойство может быть использовано для получения 

композитов с высокими диссипативными свойствами (модуль потерь), что может иметь 

практическое применение в качестве бронезащиты. 

Рассмотрим композит. Пусть сдвига матрицы m   задан как комплексный: 

 0(1 ),m i =  +         (4.5) 

где 0 — действительная часть модуля сдвига,   — коэффициент потерь. 

Тогда модуль Юнга матрицы mE    выражается через модуль сдвига и коэффициент 

Пуассона m   в виде: 

2 (1 ).m m mE =  +         (4.6) 

Подстановка (4.5) в (4.6) даёт: 

0 (1 ),m mE E i= +         (4.7) 

где 0 0  2 (1 )mmE =  +  . 

Пусть модуль Юнга включения iE   и модуль сдвига включения i   являются 

действительными. Пусть f — объемная доля матрицы.  

Тогда эффективный модуль Юнга по формуле Рейсса: 

1 1
.

eff m i

f f

E E E

−
= +        (4.8) 

Подстановка (4.7) в (4.8) и использование формулы 
2

1 1

1 1

i

i

− 
=

+  + 
 даёт: 

2

1 (1 ) (1 )
.

(1 )eff mo i

f i f

E Е Е

−  −
= +

+ 
 

Таким образом, эффективный модуль имеет вид: 

2

2

(1 )
.

(1 ) (1 ) (1 )

i mo

i

eff

mo

E E
E

E f i f E

+ 
=

−  + − + 
     (4.9) 

Представим его виде: 

0 1 ,eff eff effE E i = +         (4.10) 

где 
0effE  – эффективный модуль Юнга, 

eff  – эффективный коэффициент потерь. 

Формула (3.14) может быть представлена в виде: 
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( )

( ) ( )

2 2

2 222

(1 ) (1 ) (1 )
1

(1 ) (1 )(1 ) (1 )

i mo i mo i

i moi mo i

eff

E E E f f E E f
E i

E f f EE f f E E f

+  + − +   
= +

+ − + + − +  +   
   (4.11) 

Сравнивая (4.10) и (4.11), заключаем, что: 

( )

( ) ( )2
0

2 2

2 2

2

(1 ) (1 ) (1 )
,

(1 ) (1 )

.
(1 ) (1 )

i mo i mo

i mo i

i
eff

i m

eff

o

E E E f f E
E

E f f E E f

E f

E f f E

+  + − + 

+ − +  + 


 =

+ + 

=

−

 

Возьмем в качестве примера следующие модули: 

0

100

40

3

0.1

[ 0.7, 0.5, 0.1, 0.3, 0.5]

[0,1]

i

i

m

E ГПа

ГПа

ГПа

f

=

 =

 =

 =

 = − −



 

Тогда получаем следующие графики для различных значений m : 

а  

б  

Рисунок 4.1. Зависимость эффективного модуля Юнга от объемного включения f   при 

различных значениях m : а) ( )Re effE ; б) ( )Im effE . 

То есть можно получить большую диссипацию при этом сохраняя упругие свойства. 
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Если, например, мы выбираем ( )( )arg max Im efff E= , то получаем: 

mV  maxf  Im( )effE
 

Re( )effE
 eff

 

-0.7 0.0185955 2.51111 49.2046 0.051034 

-0.5 0.0313799 2.55635 49.4727 0.051672 

0.1 0.0718819 2.6678 49.6397 0.0537434 

0.3 0.0858111 2.70447 49.7428 0.054369 

0.5 0.101257 2.74157 49.5352 0.0553459 

 

То есть коэффициент потерь возрос в 5 раз, а упругие свойства всего лишь в 2 раза меньше 

упругих свойств включения. При этом, как мы видим, содержание матрицы (пористой прослойки 

в композите) тем меньше — чем меньше коэффициент Пуассона. То есть использование 

пористых материалов позволяет значительно сократить концентрацию матрицы. Например, 

замена материала с коэффициентом Пуассона 0.5m =  на материал с коэффициентом Пуассона 

0.5m = −  в данном примере позволяет уменьшить концентрацию пористой матрицы более чем в 

3 раза для реализации тех же свойств. 

Для сферических включений, например, мы получаем, что тонкий ( f  мало) слой 

покрытия из пористого материала защищает сферическое включение. 

Система уравнений (без внешних сил) записывается следующим образом: 

11 2 12 12 2

1 1 1

12 12 2 22 22 2

1 1 1

( ) 0

0

F
Ew K l w w w w K K l

J

K w K l w w K K l

   

   

      − +  −  + +  −  +   =

    − +  +  −  +   =





  (4.12) 

Подставим все найденные производные в систему уравнений (Заметим, что во всех 

слагаемых присутствуют общие множители ( sin )i t nx
e

L

  
 
 

. Эти множители можно сократить, 

так как они не равны нулю). 

После сокращения система примет вид: 
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4 6 4 2

11 2 2 2 2

2 4 2

12 12 2 2 11

2 4 2

12 12 2 2
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 

 

           
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       

       
−  −   +    =       

     

       
−  −  +        
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2

22 22 2 2 110 /n

W

K K l E K
L

 

 +

 
+  +  −   =   
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4 6 4 22
2 * 2 2

2 4 212 12
2 * 2

11 11

212 12

11 11
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n n n

n

F
l W

L L L E L EJ

K K
l

K L K L L

K K

K L K

 

 

              
+  −    −  −  +        
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            
+ −  −  +    =         

          

   
− −   
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4 2

2 * 2

222 22
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l W
L L
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l K
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 

 

       
+    +     

     

       
+ + −   =       

      

 

Преобразуем систему в матричную форму: 

11 12

21 22

0
,

0

P P W

P P

    
=    

    
 

где коэффициенты ijP  определяются следующим образом: 

4 6 4 22
2 * 2 2

11

2 4 212 12
2 * 2

12 11 11

212 12
2

21 11 11
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n n n n

n n n
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 

 



            
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n

L

K K
P l

K K L



 

  
+      

  

     
= + −       

    

 

где    

2 2 2
11 * * *

11 11 11
, , ,

l l l
E K

K K K

  
 

  
  =  =  = . 

Найдем собственные частоты системы из условия равенства нулю определителя матрицы:  

11 12

11 22 12

21

2

22

det 0 0
P P

P P P
P P

 
=   − = 

 
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Это дисперсионное уравнение для частоты ω. Его решение даёт собственные 

(резонансные) частоты системы. 

 

4.3 Вариационная модель стержней из пористого материала с учетом 

динамических экспериментальных данных 

Для учёта динамических эффектов в поведении пористого стержня модель расширена 

путём введения кинетической энергии в функционал Лагранжа. Кинетическая энергия системы 

включает в себя как энергию, связанную с поступательным движением, так и энергию, 

обусловленную изменением параметра пористости во времени. Вариационный принцип 

Гамильтона-Лагранжа применён к полному лагранжиану системы, включающему 

потенциальную энергию деформации, кинетическую энергию и работу внешних сил. В 

результате получена краевая задача для системы связанных дифференциальных уравнений в 

частных производных, описывающих совместные пространственно-временные эволюции 

прогиба ( , )w x t  и параметра пористости 1( , )x t . Математическая постановка задачи включает в 

себя уравнения движения и соответствующие динамические граничные условия, которые 

учитывают инерционные эффекты и взаимодействие полей перемещений и пористости. 

 

4.3.1  Формулировка кинетической модели 

Кинетическая энергия системы включает энергию, связанную с поступательным 

движением материала, и энергию, обусловленную изменением параметра пористости во 

времени. Её плотность K записывается в виде: 

1

0

1 1 1

1
( ( ) 2 ( ) ( )

2

t

t V

K ww yyw w yyw w yyw yy dVdt  
    =  + +  +   +      ,  (4.13) 

где 
2 2 2. ; . ;l l l     =   =   =  ; — плотность материала и , ,l l l 

масштабные параметры, характеризующие внутреннюю структуру материала.  

Принимаем что: 

/2

/2

h

h

F dy
+

−

=  площадь поперечного сечения единичной ширины, 

/2

/2

h

h

S ydy
+

−

=   статический момент сечения единичной ширины и 

/2

/2

h

h

J yydy
+

−

=  момент инерции 

сечения единичной ширины , тогда вариация кинетической энергии K    в этом случае 

принимает следующий вид: 
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



 

1

0

1

0

1

0

/2

0 /2

1 1 1 1

1 1 1 1

0

0

( )

( ( ) ( )

( ) ( )

(

t l h

t h

t l

t

t l

t

K w w yyw w yyw w

yy w w yy dydx dt

K Fw w Jw w Jw w J w w J dx dt

K Fw

+



−

 

  

    =   +  +  +

 +  +  +  

      =   +  +  +  +  +  

 = 

  

 

 








1 1 1

1 2 3

) ( ) ( )w Jw w Jw J w Jw J dx dt   

 
 

     +  +  +   +  +   
  


 

 (4.14) 

Интегрируем по частям члены 1, 2 и 3 в представлении (4.14), содержащие 

1, , ,w w w      , в результате получено следующее выражение: 

1 1

0

0 0

1

0

0

1 1

0 0

0

0 0

1 1 0

0

1 0

0

( ) | | ( )

( ) | ( ) |

( ) | (

t tl l

t l

t

t t

tl

t l

t

t

t t l

l

t t

K Fw w Jw w dx Jw wdt Jw Fw wdxdt

Jw J w dx Jw J w dt

Jw J wdt Jw

   

  

    =   +  −   +  −  +

   +  +   −  +   +

 +  +   − 

   

 

  







1

0

0

1

1 1 1 1

0 0

)

( ) | ( )

tl l

t

t

t

J wdxdt

Jw J dx Jw J dxdt



   

+    +

 +  +   −  +    





  (4.15) 

Применение вариационного принципа Лагранжа с использованием выражения для 

кинетической энергии (4.15), а также выражений для потенциальной энергии и работы внешних 

сил, полученных в статической модели, позволяет вывести уравнения движения и динамические 

граничные условия: 

0

L A К U

L A K U

= + −

 =  +  −  =
      (4.16) 

Уравнение равновесия и уравнение пористости: 

11 2 12 12 2
1 1 1 ( / )

q m
Ew K l w K K l w w F J w

J
   

+     − +  −  = − −  + −  (4.17) 

12 12 2 22 22 2
1 1 1K w K l w K K l w     − +  −  = − −    (4.18) 

Граничные условия: 
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( ) ( ) ( )

( ) ( )

( ) ( )

0

12 11 2 12 2

1 1 0

12 11 2 12 2

1 1 0

11 2 12 2 12 2 22 2

1 10 0

0

0

( ) | |

l

l

l l

l

t l

t

Ew K K l w K l m Q w

Ew K K l w K l M w

K l w K l w K l w K l

Fw w Jw w dx Jw wdt

 

 

   

   − +  + +  − − +  +
  

    + +  − +  +  +
 

    + +   + +   +

  +   +  −   
1

0

0

1 1

0 0

0

1

0

1 0 1 0

1 1

0

( ) |

( ) | ( ) |

( ) | 0

t l

t

t

t

t t

l l

t t

l

t

t

Jw J w dx

Jw J w dt Jw J wdt

Jw J dx

 

   

 

 +  +   −

   +    +  +   +

+  +   =

 

 









  (4.19) 

Решение системы уравнений, описывающей колебания консольного стержня из пористого 

материала. 

 

 

 

Полагаем, что функции прогиба ( , )w x t  и параметра пористости 1( , )x t  могут быть 

представлены в виде разложения по собственным формам колебаний: 

1
1 1

( , ) sin , ( , ) sin ,i t i tn n
n n

n n

x x
w x t W e x t e

L L

 
 

= =

   
   
   

 
=    =       (4.20) 

где: L – длина стержня; n  – характеристическое число для n-ой гармоники; ,W   – 

амплитуды прогиба и параметра пористости соответственно;   – частота колебаний. 

После подстановки разложений (4.20) в систему уравнений (4.17)-(4.18) и сокращения на 

общий множитель, для каждой гармоники n получена система алгебраических уравнений (при 

0, 0q m= = ): 

( ) ( )

( ) ( )

4 6 4 2

2 * 2 2 2

2 4 2

12 11 12 11 2 * 2

2

12 11 12 11 2

( / ) ( / )

/ / 0

/ /

n n n n
n

n n n
n

n n

l E F EJ W
L L L L

K K K K l
L L L

K K K K l
L L

 

 



         
        
         

       
      

       

   
   
   

   
+  −   −   −   +

  
+ −  −  +     =

 
− −

( ) ( )

4 2

* 2

2

22 11 22 11 2 * 2/ / 0

n
n

n
n

W
L

K K K K l
L



 

   
  

   

   
  

   


+    +


+ + −   =

 (4.21) 
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где: 

2 2 2
11 * * *

11 11 11

. .
; ; ;

l l l
E K

K K K

  
 

  
  =  =  =  

Теперь выразим систему в виде матричного уравнения: 

11 12

21 22

0
,

0

P P W

P P

    
=    

    
      (4.22) 

где коэффициенты ( )ijP  определяются следующим образом: 

( ) ( )

( ) ( )

4 6 4 2

2 * 2 2 2

11

2 4 2

12 11 12 11 2 * 2

12 21

2

22 11 22 11 2 * 2

22

( / ) ( / ) ,

/ /

/ /

n n n n

n n n

n

P l E F EJ
L L L L

P P K K K K l
L L L

P K K K K l
L

 

 

 

          
= +  −    −   −         
       

       
= = −  −  +        

     

 
= + −   

 

 (4.23) 

Найдем собственные частоты системы из условия равенства нулю определителя матрицы: 

11 12

2

2

2

1 22

11 2 12

det 0

0

P P

P P

P P P

 
= 

 

 − =

      (4.24) 

Уравнение (4.24) представляет собой дисперсионное уравнение для определения 

собственных частот колебаний  . Его решение позволяет найти резонансные (собственные) 

частоты системы. 

С помощью соотношения (4.23) уравнение (4.24) преобразуется к виду:  

4 6 4 2 22 22 22
2 * 2 2 *2 2

11 11

2
2 4 212 12

2 2

11

*

11
0.

n n n n n

n n n

F K K
l

L L L E L EJ K K L

l
K K

l

K L K L L

 



 

 



                  
+ −   − −  + −   −            

               

        
− − − +  =      

    


  

 

Это уравнение является квадратным относительно 2  Обозначим 2 =   и перепишем его 

в стандартной форме: 

2 0,A B C +  + =       (4.25) 

где коэффициенты , иA B C  являются функциями параметров системы: геометрических 

характеристик стержня, упругих констант материала, параметров пористой структуры и номера 

моды n : 

То есть собственные частоты колебаний стержня можно определить следующим образом: 
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2

1,2

11

22

4
0,

2

,

B B AC

A

−  −
 = 

 = + 

 = + 

    (4.26) 

Анализ знаков коэффициентов характеристического уравнения (4.25) показывает, что для 

физически корректных положительных значений параметров модели матрица жесткости 

системы является положительно определенной, а матрица масс - положительной. Это 

гарантирует действительные положительные значения 2 =  для всех собственных частот, что 

соответствует условию динамической устойчивости консервативной системы. 

При заданном диапазоне частот f ( 2 f=  ) амплитудно-частотная характеристика (АЧХ) 

стержня может быть получена решением системы уравнений для каждой частоты. 

 

4.3.2  Моделирование эксперимента 

Рассматривается стержень из пористого материала со следующими характеристиками: 

габаритные размеры: 4 × 10 × 60 мм, плотность материала с соответствующими модулями 

упругости: Вариант «А»: 80 кг/м³ - 136 МПа, Вариант «Б»: 100 кг/м³: ≈159 МПа. 

  

 

 

Граничные условия – консольное закрепление, таким образом: 

1. (0) 0w = , 

2.
( )2 1

[ ]
2

n

n
заделка свободный край

−
 =  −  

• ,l l   варьируются от 0.01 до 0.1. 

• l  варьируется от 0.01 до 0.05. 

• 
12K   варьируется от 0.01 до 0.3 

 

Теперь, основываясь на представлениях (4.22) и (4.25), построим графики в MATLAB. 

Влияние масштабных параметров 
12, , ,l l l К   на собственные частоты . 

  На рисунках 4.2 и 4.3 исследуется влияние параметров пористой структуры 
12, , ,l l l К   на 

величины первой и второй собственных частот 1f  и 2f   для основной моды колебаний ( 1n = ): 
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Рисунок. 4.2 Сравнение первой собственной частоты 1f  для двух материалов. 

 

 

 

Рисунок. 4.3 сравнение второй собственной частоты 2f  для двух материалов. 

 

При построении АЧХ принята амплитуда вынуждающей силы 0 1F H= , что позволяет 

получить передаточную функцию системы в м/Н. Выбор данного значения не влияет на 

положение резонансных частот и форму амплитудно-частотной характеристики, а служит для  
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нормировки результатов: 
12 11 22 11 110.015, 0.02, 0.05, 0.1 , 0.3 ,l l l К К К К К Е  = = = = = =  

На Рисунке 4.4 представлены амплитудно-частотные характеристики системы для двух 

исследуемых материалов. 

 

 

 

Рисунок. 4.4. Амплитудно-частотной характеристики 

консольного стержня без учета пористости по формуле 
2

1 22

n EJ
f

L F


=

 
. 

Расчёт для материала А: 

3
6

2

1 2

0.004 0.01
136 10

(1.875) 12 600
2 (0.06) 80 0.004 0.01

Af Гц


 

= 
  

 

Данные хорошо согласуется с полученными результатами для низкочастотной моды f₁. 

Расхождение объясняется учетом дополнительной степени свободы (пористости) в полной 

модели. 

Физическая интерпретация пары частот 
( )

1

n
f  и 

( )
2

n
f для фиксированной моды (n): 

1. Низкочастотная мода 
( )

1

n
f : Данная мода соответствует колебаниям, в которых 

процессы изгиба стержня и изменения пористости происходят синфазно. Деформация пористой 

среды протекает таким образом, что она способствует изгибной деформации стержня. Для 

возбуждения таких колебаний требуется меньше энергии, что и обуславливает более низкое 

значение собственной частоты 

2. Высокочастотная мода 
( )

2

n
f  : Эта мода соответствует противофазным  
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колебаниям подсистем. Изменение пористости в этом случае препятствует изгибной 

деформации, создавая дополнительное упругое сопротивление. Для реализации такого движения 

требуется преодолеть это дополнительное сопротивление, что приводит к повышению энергии 

колебаний и, как следствие, к более высокой собственной частоте. 

Анализ полученных результатов показывает, что: 

- Параметр связи l   оказывает наиболее сильное влияние на расщепление 

собственных частот. Увеличение этого параметра приводит к усилению связи между 

подсистемами, что проявляется в увеличении разности частот 2 1f f−    

- Коэффициент связи 12K является ключевым параметром, определяющим степень 

взаимодействия подсистем. Усиление связи (с ростом 12K ) облегчает синфазные колебания и 

затрудняет противофазные колебания. 

- Параметр l , характеризующий масштаб пористой структуры, оказывает 

преимущественное влияние на высокочастотную моду 2f , что согласуется с его физическим 

смыслом как параметра, определяющего инерционные свойства пористой фазы. 

- Параметр l , связанный с микромеханикой изгибных деформаций, оказывает 

схожее влияние на обе моды, что свидетельствует о его фундаментальной роли в определении 

динамических характеристик материала в целом. 

Материал с большей плотностью (B) демонстрирует более низкие собственные частоты и 

меньшую чувствительность к вариациям параметров пористости, что обусловлено 

доминирующим влиянием инерционных свойств. 

Анализ АЧХ позволяет выявить следующие особенности динамического поведения: 

1. Наличие двух четко выраженных резонансных пиков соответствует двум 

собственным частотам системы ( 1f и 2f ), что полностью согласуется с теоретической моделью 

связанных колебаний. 

2. Резонансные пики материала A расположены на более высоких частотах по 

сравнению с материалом B. Данное наблюдение согласуется с физическими ожиданиями: 

материал A обладает меньшей плотностью (80 кг/м³ против 100 кг/м³) и меньшим модулем 

упругости (136 МПа против 159 МПа), что в совокупности приводит к увеличению собственных 

частот. 

3. Различие в амплитудах резонансных пиков обусловлено различным 

демпфированием в материалах и степенью связи между подсистемами. Более высокий пик 

материала B может свидетельствовать о меньшем демпфировании в данной системе. 



75 

 
 

4. Антирезонансные провалы между пиками характерны для связанных 

колебательных систем и отражают интерференционные эффекты между двумя степенями 

свободы. 

 

 

4.4 Вариационная модель стержней из пористого материала с учетом 

статических экспериментальных данных 

В предыдущей Главе 3 подробно описан алгоритм построения вариационной модели, 

включающий определение списка аргументов, запись работы внешних сил на возможных 

перемещениях, запись плотности потенциальной энергии, формулировку соотношений Грина 

для определения физических соотношений, применение принципа Лагранжа для получений 

уравнений Эйлера и системы из граничных условий, поэтому далее кратко приводятся 

необходимые выражения. Основу модели составляет подход Ковина (Cowin), в рамках которого 

вводится скалярный параметр пористости φ, количественно характеризующий распределение 

дефектов в материале.  

Разработка математической модели для задачи статического изгиба стержня из пористого 

материала при шарнирном закреплении осуществляется по следующему алгоритму: 

1. Определение списка аргументов модели - устанавливаются независимые 

переменные и функции состояния, описывающие поведение системы. 

2. Выражение работы внешних сил - формулируется работа внешних сил на 

множестве возможных перемещений и обобщённых вариаций. 

3. Запись плотности потенциальной энергии - для линейных процессов определяется 

плотность потенциальной энергии деформации. 

4. Формулировка соотношений Грина - устанавливаются достаточные условия 

потенциальности, определяющие физические соотношения материала. 

5. Построение принципа Лагранжа - формируется вариационный принцип для 

системы. 

6. Вычисление вариаций и получение результатов: 

- Уравнений Эйлера, описывающих равновесие системы; 

- Полного набора граничных условий, соответствующих шарнирному закреплению. 

 

4.4.1  Формулировка кинематической модели 

Определение кинематических переменных и кинематических гипотез основано на 

предположении о линейном законе изменения кинематических параметров. Вводимые 
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кинематические переменные (продольное перемещение ( , )u x y  и поперечное перемещение 

( , )w x y , а также параметр пористости ( , )x y ) имеют следующий вид: 

0 1

( , ) ( ) ( )

( , ) ( )

( , ) ( ) ( )

0

0

xy

yy

u x y u x w x y

w x y w x

x y x x y

 = −


=


= +
 =

 =

  





     (4.27) 

Тогда, деформации и их производные выражаются через перемещения и параметры 

пористости, имеют вид: 

( ) ( )xx u x w x y  = −       (4.28) 

,

,

( ) ( )

( ) ( )

( )

x

y

u x w x y

u x w x y

w x







  = −


 = −
 = −

     (4.29) 

0 1

, 0 1

, 1

( , ) ( ) ( )

( ) ( )

( )

x

y

x y x x y

x x y

x

  

  

 

 = +


 = +


=

     (4.30) 

Работа внешних сил выражается через погонные нагрузки (растягивающую силу p , 

перерезывающую силу q , изгибающий момент m ) и торцевые нагрузки ( , ,
хx xN Q М ): 

( )

0

0

0 0

0

( ) ( ) |

( )

l

l

l
l l

A q w m w dx M w Q w

q m wdx M w m Q w

    

  

 = − + − + =

 = + − + − +




   (4.31) 

Потенциальная энергия U  при чистом изгибе стержня зависит от деформаций изгиба, 

параметра пористости и их пространственных производных. Вариация потенциальной энергии 

U  в этом случае принимает следующий вид: 





12 11 2 12 2

1 1

0

12 22 12 2 22 2

1 1 1 1

( ) ( )

( ) ( )

L

U J Ew K w K l w K l w

K w K K l w K l dx

 

 

    

   

    = + + + +

   + + + +


  (4.32) 

где ¹¹ ¹² ²², ,K K K  — модули упругости Ковина для среды с дефектами структуры; 

, ,l l l    — масштабные параметры, характеризующие внутреннюю структуру материала; 

( )w x  — прогиб стержня; 1( )x  — параметр пористости и E  — модуль упругости материала. 
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Интегрируем по частям члены в (4.32), содержащие w , w ,  . В результате 

получаем следующее выражение: 

  

  

 

 

12 11 2 12 2

1 1
0

12 22 12 2 22 2

1 1 1

12 11 2 12 2

1 1 0

12 11 2 12 2

1 1 0

( ) ( )

( ) ( )

( ) ( )

( ) ( )

l

l

U J Ew K K l w K l w

K w K K l w K l dx

J Ew K K l w K l w

J Ew K K l w K l w

 

 

 

 

   

  

  

  

  = + − + +

  + + − + +

  + − + + + +

   + + − +



11 2 12 2 12 2 22 2

1 1 10 0
( ) ( )

l

l l
J K l w K l w J K l w K l      

+

    + + + +

   (4.32а) 

Соотношения для работы внешних сил (4.31) и потенциальной энергии (4.32) позволяют 

сформировать лагранжиан  L A U= − . Тогда вариационная постановка задачи даётся 

вариационным уравнением  0L A U  = − = . 

Использование вариационного принципа Лагранжа с помочью формул потенциальной 

энергии (4.32а) и работы внешних сил (4.31), позволяет определить уравнения равновесии и 

краевые условия: 

0

L A U

L A U

= −

= − =  

      (4.33) 

Уравнение равновесии и уравнение пористости: 

11 2 12 12 2

1 1

q m
Ew K l w K K l

J

+
   − + − =       (4.34) 

12 12 2 22 22 2

1 1 0K w K l w K K l  − + − =        (4.35) 

Граничные условия: 

 

 

12 11 2 12 2

1 1 0

12 11 2 12 2

1 1 0

11 2 12 2 12 2 22 2

1 1 10 0

( ) ( ) ( )

( ) ( )

( ) ( ) 0

l

l

l l

Ew K K l w K l m Q w

Ew K K l w K l M w

K l w K l w K l w K l

 

 

   

  

  

   

  + − + + + − − + +

   + + − + + +

    + + + + =

   (4.36) 

Решение дифференциального уравнения восьмого порядка, описывающего прогиб 

шарнирно закреплённого стержня из пористого материала. Для этого представим систему 

уравнений (4.34)-(4.35) в операторной форме: 

11 12

21 22 0

q m
L w L

L w L

J

+
+ =

+



=





     (4.37) 

Нетрудно решить систему операторных уравнений относительно w  и  . В результате 

получаем следующие выражения для прогиба (4.38) и параметра пористости (4.39): 

22

q m
w L

J

+
 =       (4.38) 
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Введем безразмерный параметр 
12 12 22( / )( / )K E K K=  и преобразуем уравнение (4.38) к 

следующему виду: 

22

q m
w L

J

+
 = ,      (4.38а) 

где: ( ) ( ) ( )2 2 2 2 2 2 2(...) 2 (...) (...)1 l l l l l l l           = − − + − + −  

Или: 

( ) 2

2 2 2

2 2 2 2

( )
( )

1

2

q m q m
Aw Bw Cw l F x

EJ EJ

A

B l l l

C l l l l

+  +
  + + = − = 

 

= −

= − − +

= −



  

   







  (4.38б) 

Аналогично, уравнение для параметра пористости принимает вид: 

2(...) (...)
q m

l
EJ

+
   = − −       (4.39) 

Подход к решению уравнения (4.38б), описывающего прогиб шарнирно закреплённого 

стержня состоит в последовательности действий. Для начала искомое решение ( )w x  

раскладывается в ряд Фурье: 

1

( ) sin ,n
n n

n

x
w x W n

L



=

 
= = 

 



      (4.40) 

Также разложим ( )q x  в ряд Фурье: 

1

( ) sin ,n n n

n

x
q x Q n

L
  



=

 
= = 

 
     (4.41) 

где коэффициенты Фурье для ( )q x вычисляются по формуле: 

0

2
( )sin

L
n

n

x
Q q x dx

L L

 
=  

 



      (4.42) 

Следовательно: 

2

1
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n

n

x
q x Q

L L



=

   
 = −    
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

 
     (4.43) 
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Таким образом: 

22

1 1

1

2

2

1
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( ) sin

1

n n n
n n

n n

n
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n

n n
n
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  
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 




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  





  (4.44) 

После подстановки рядов (4.40) и (4.43) в уравнение (4.38б) получим для каждой 

гармоники n: 

4 6 8

4 6 8

n
n n n

n n n

Fn n n
A C W W

L L L
A C

L L

B

L

F

B

  

  

      
+ = → =      

              +     
  

−
 

−



 

 

2

4

2

2

 

4

1

classical
n

Поправк

n

а из за пори с

n

стW

n
n

n

о ти

n

W

l
LQ

W

ЕJ A C
L L

B
L

−

  
+     

     
+     
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 





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     (4.45) 
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C
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  
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+  
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
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

 
     (4.46) 

где: 
2 2 2 2 2 2 2

0
1

2
( )sin, 2 , ,

L
n

nA x
x

Q q x d
L

B l l l C l l l
L

l        


== − = − −
 



− + 


=   

Полученное выражение (4.46) для относительного прогиба W  позволяет 

проанализировать влияние пористости на поведение стержня при изгибе, где: nW  – амплитуда 

прогиба для n-ой гармоники с учётом пористости, 
classical

nW  – классическое решение для прогиба 

без учёта пористости, n  – характеристическое число для n-ой гармоники, L  – длина стержня. 

 

4.4.2  Моделирование эксперимента 

Рассматривается стержень из пористого материала со следующими характеристиками:  

- габаритные размеры: 4×10×60 мм  

- свойства материала: 
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o Вариант «А»: 80 кг/м³: =136 МПа 

o Вариант «Б»: 100 кг/м³: ≈159 МПа 

- граничные условия для шарнирного опирания: 

1. ( ) ( )0     0w w L= =  

2. ( ) ( )  '' 0   ''   0w w L= =  

3. n n =  

- микроструктурные параметры: 

, ,l l l    варьируются от 0.01 до 0.1 

12 12 22( / )( / )K E K K=  варьируется от 0.1 до 0.5 

- интенсивность распределенной нагрузки: 

( ) ( )
0

0

( ) 0

2 2 2 2
sin cos 1 cos( ) 1 cos( )

L
L

n n
n n

n n

q

M

x М const q

x M L x M M
Q dx n

L L L L

= = → =

    
= = − = − = −    

    


 
 

  

( )
длячетных : 0

2
1 ( 1) 4

длянечетных :

n
n

n

n

n Q
M

Q M
n n Q

n

=

→ = − −
=



 

Все расчеты проводились, основываясь на представлениях (4.45) и (4.46) с 

использованием ПО MATLAB. 

 Результаты параметрического исследования представлены на рисунке 4.5.  Влияние 

параметров пористости на амплитуду прогиба для материала «А» на рисунке 4.5а, а для 

материала «Б» на рисунке 4.5б. 

 

 

 



81 

 
 

а  

б  

Рисунок 4.5. Влияние параметров пористости на амплитуду прогиба для:  

а) материала «А»; материала «Б». 

На рисунке 4.6 представлено распределение прогиба ( )W x  вдоль стержня для обоих 

материалов при 0.3, 0.05l l= = =  . 
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Рисунок 4.6. Распределение прогиба ( )W x  вдоль стержня. 

 Анализ полученных результатов показывает, что: 

- При варьировании , ,l l  , амплитуда прогиба 1W  демонстрирует слабую 

нелинейную зависимость, оставаясь близкой к классическому значению. Это свидетельствует о 

том, что при отсутствии связи между деформацией и пористостью ( 0l = ) параметры 

, ,l l   оказывают второстепенное влияние на механическое поведение; 

- Наиболее значимые результаты получены при исследовании влияния параметра l . В 

отличие от предыдущего случая, здесь наблюдается сильное отклонение от классического 

решения. Этот эффект имеет фундаментальное значение и объясняется возникновением 

дополнительных микроструктурных напряжений, связанных с: 

- Сопротивлением пор изменению своей геометрии при деформации; 

- Локальными градиентами плотности в области порового пространства; 

- Диссипативными процессами перераспределения материала порового каркаса. 



83 

 
 

Как следует из полученных данных, при 0l =  наблюдается полное совпадение с 

классическим решением независимо от значений других параметров пористости ( ,l l  ). Этот 

факт свидетельствует о том, что при отсутствии связи между деформацией и изменением 

пористости ( 12 0K = ), материалы «А» и «Б» ведут себя как эффективно сплошная среда, 

несмотря на наличие поровой структуры. 

Механизм данного явления может быть объяснен с позиций механики микрополярных 

сред: 

- При 0l =  исчезает кросс-связь между тензором деформаций и градиентом 

параметра пористости; 

- Поле пористости не генерирует дополнительные напряжения в материале; 

- Деформация происходит без изменения внутренней структуры пор; 

- Материальная производная параметра пористости тождественно равна нулю. 

Таким образом, пористость существует как геометрический параметр, но не участвует в 

силовом взаимодействии, что приводит к классическому поведению при изгибе. 
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ГЛАВА 5 ВЫСОКОСКОРОСТНОЙ УДАР ПОРИСТОГО ТЕЛА О 

ПРЕГРАДУ 

 

В данной главе представлен подход к описанию процесса высокоскоростного удара 

головной части летательного аппарата по преграде. Приведена методика перехода от реальной 

конструкции головной части к эквивалентному пористо-смесевому ударнику.  

Приводится описание математической модели ударника и методика приведения реальной 

конструкции к ударнику с пористой структурой, приведена модель ударного взаимодействия 

преграды и тела, основанная на теории деформации Генки-Ильюшина, приведен численный 

метод решения уравнения взаимодействия методом сеток в неявном виде, приведены результаты 

расчета по математической модели для изменения касательных напряжений, температуры 

преграды. В данной главе представлен подход к описанию процесса высокоскоростного удара 

головной части летательного аппарата по преграде. Приведена методика перехода от реальной 

конструкции головной части к эквивалентному пористо-смесевому ударнику.  

Приводится описание математической модели ударника и методика приведения реальной 

конструкции к ударнику с пористой структурой, приведена модель ударного взаимодействия 

преграды и тела, основанная на теории деформации Генки-Ильюшина, приведен численный 

метод решения уравнения взаимодействия методом сеток в неявном виде, приведены результаты 

расчета по математической модели для изменения касательных напряжений, температуры 

преграды, моделирование процесса нормального высокоскоростного удара с привлечение ПО 

Ansys LS Dyna. 

Современный этап развития авиационной техники характеризуется повышенным 

вниманием к беспилотным воздушным аппаратам (БПЛА), нашедшим широкое применение в 

военной сфере, в результате чего кардинально изменилась тактика ведения боевых действий [49-

51]. Существует особый класс БПЛА, способных двигаться со высокой скоростью и поражать 

цели за счет своей кинетической энергии, что в свою очередь делает актуальной задачей учет 

влияния высокоскоростного кратковременного удара на различные виды преград. При решении 

задачи исследования процессов, происходящих при соударении движущихся с высокой 

скоростью тел, необходимо учитывать множество факторов, в частности форму, структуру, 

физические характеристики материалов этих тел, относительную скорость удара и так далее. 

Дело в том, что нагрузки, возникающие при высокоскоростном ударе, обусловлены 

кратковременностью действия, а их интенсивность может привести не только к изменению форм 

взаимодействующих тел, но и полному их разрушению.  
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Вопросы исследования процессов, возникающих при контакте ударника (тело, которое 

ударяет) и преграды (тело, по которому наносится удар), достаточно широко освещены в научно-

технической литературе. В частности, в работах [52-60] рассматривались различные модели 

ударников (пластические, упругие, круглые, цилиндрические, конические и так далее) и преград 

(жесткая, упругая, деформируемая, слоистая и так далее). Однако полученные в них результаты 

основаны на использовании математических моделей, не учитывающих параметры реальных 

конструкций, взаимодействующих тел. В первую очередь это относится к ударнику, который 

полагается однородным по структуре и является либо идеально упругим, либо пластичным. 

Кроме того, при проведении расчетов рассматривается «нормальный» удар. Данные 

обстоятельства существенно ограничивают практическое применение полученных результатов 

на этапе научно-исследовательских и опытно-конструкторских работ, поскольку в большинстве 

случаев аппаратурная часть БПЛА представляет из себя неоднородную структуру из 

разноразмерных элементов (антенно-фидерный блок, приемопередатчик, блок питания и так 

далее), выполненных из разнородных материалов. В связи с этим свойства реального ударника в 

очень малой степени соответствуют свойствам сплошных однородных ударников.  

Разработка математической модели процесса соударения ударника неоднородной 

структуры с преградой и методики инженерного расчета количественных оценок, 

характеризующих данный процесс – основная цель работы. Актуальность обусловлена тем, что 

высокоскоростные явления необходимо учитывать не только при ударном взаимодействии 

БПЛА с элементами конструкций корпусов пилотируемых летательных аппаратов или морских 

судов, но и при оценке надежности сложных инженерных сооружений (мостов, плотин, газо- и 

нефтепроводов, ангаров и т.д.) по отношению к внешнему преднамеренному воздействию. На 

основании анализа характеристик такого ударника неоднородной структуры обосновывается 

выбор его математической модели в виде пористо-смесевого ударника, имеющего слоистую 

структуру. Приводится анализ такой модели не только для случая «нормального» удара, но и 

«косого», когда вектор скорости ударника направлен под углом к плоскости преграды. 

 

5.1 Приведение реальной конструкции ГЧ БПЛА к модели ударника 

Соударение двух тел сопровождаются разнообразными процессами, возникновение и 

относительная роль которых зависит от их формы и структуры, физических характеристик 

материалов тел, а также, что более существенно, от относительной скорости удара. При 

высокоскоростном ударе нагрузки, действующие на тела, характеризуются внезапностью 

приложения и кратковременностью действия. При этом интенсивность нагрузок может быть 

достаточно высока для того, чтобы произвести разрушения или большие необратимые изменения 

в телах, на которые они действуют. 
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В телах при ударе возникают возмущения различной природы, распространяющиеся с 

определенными конечными скоростями, в виде волн нагрузки и отраженных волн, величина 

которых зависит от состояния тел и характера деформаций. 

Обычно принято различать ударник и приемник удара. Тело, которым ударяют, называют 

ударником, тело по которому ударяют, называют приемником удара.  

Ударники принято делить на два типа: 

- пластические, которые при ударе теряют свою форму и размеры;  

- упругие, которые при ударе сохраняют свои размеры и форму. 

Для ударников первого типа (пластических) в случае, если напряжения, возникающие при 

ударе, значительно превышают предел текучести материала ударника при сжатии, в первом 

приближении принимают, что материал ударника ведет себя как вязкая жидкость.  

Давление и время удара, развиваемое ударником на контактной поверхности в этом 

случае, определяется по формулам: 

2

0 0p V=        (5.1) 

0/уt L V=        (5.2) 

где 0  – плотность ударника, 0V  – относительная скорость удара, L  – длина ударника. 

Если ударник идеально-упругое тело, то при ударе о жесткий приемник в нем возникают 

ударные волны, скорость распространения которых sV  зависит от физических характеристик 

тела. 

Теория ударных волн в упругих телах основана на трудах Римана, Ренкина и Гюгонио. 

Уравнения Ренкина-Гюгонио, получены в предположении установившегося во времени профиля 

ударной волны. Они связывают давление p , внутреннюю энергию Е , удельный объем   или 

плотность  , за ударной волной с теми же параметрами перед ударной волной, используя 

скорость ударной волны sV  и массовую скорость за ударной волной pV . Эти уравнения выражают 

законы сохранения массы, импульса и энергии. В системе координат, в которой вещество перед 

фронтом ударной волны находится в покое, они имеют вид: 

0 ( )s s pV V V =  −       (5.3) 

0 0 s pp p V V− =        (5.4) 

2

0 0 0( )
2

p

s p

V
E E V p V− −  =      (5.5) 

Здесь нулевой индекс относится к начальному состоянию. 

 



87 

 
 

 

Для многих материалов sV  является линейной функцией pV , т.е.: 

.s pV a bV= +       (5.6) 

В таблице 3 приведены значения коэффициентов a  и b  для ряда конструкционных 

материалов. 

Отклонения от линейности обычно связаны с пористостью материала, фазовыми 

переходами или значительными упругими волнами. Из последних соотношений следует, что 

давление, развиваемое на контактной поверхности, в случае упругого ударника будет 

определяться формулой: 

0 ( )p pp V a bV=  +       (5.7) 

так как 0p p . 

Время удара определяется формулой: 

2
.у

s

L
t

a bV
=

+
      (5.8) 

Таблица 3 

Материал 

П
л
о
тн

о
ст

ь
, 

к
г/

см
3
 

С
к
о
р
о
ст

ь
 з

в
у
к
а,

 

м
/с

 

Коэффициенты в 

линейном законе (5.6) 
p  

a  b  

Алюминий 2.71 - 5250 1.39 202000 

Сплав Al 921-T - - 5067 1.428  

Бериллий 1.845 7934 7975 1.091 144290 

Вольфрам 19.17 4050 4005 1.268 4002110 

Железо 

(сталь 0.2% С) 
7.85 - 3800÷4000 

1.58 

1.58 

4005000 

10004100 

Золото 
19.3 

19.24 
3057 

3150 

3075 

1.47 

1.56 

5905200 

2802000 

Магний 1.72 - 4780 1.16 60400 

Медь 8.9 3980 3958 1.497 2201470 

Молибден 10.2 5192 5157 1.238 2601670 

Никель 8.86 4630 4646 1.445 2401520 
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Материал 

П
л
о
тн

о
ст

ь
, 

к
г/

см
3

 

С
к
о
р
о
ст

ь
 з

в
у
к
а,

 

м
/с

 

Коэффициенты в 

линейном законе (5.6) 
p  

a  b  

Свинец 11.34 2029 2028 1.517 2001410 

Серебро 10.49 - 3300 1.54 4604100 

Титан 4.51 4847 4779 1.088 1751080 

Уран 
9.5 

18.9 
- 

4000 

2550 

1.869 

1.504 

3134000 

3426570 

Хром 7.1 5150 5217 1.465 2381400 

Цинк 7.14 3030 3050 1.559 1901430 

Эпоксидная смола - - 3000 1.375 - 

Феноксосмола - - 2300 1.717 - 

 

Однако в действительности не наблюдается полного соответствия свойств сплошных, 

однородных ударников ни свойствам пластических, ни идеально-упругих тел. Это тем более 

справедливо для ударников, которые должны моделировать ударное взаимодействие приборных 

отсеков БПЛА с преградами. 

Приборные отсеки БПЛА (см. рис. 5.1) представляют собой, как правило, подкрепленные 

цилиндрические оболочки, заполненные аппаратурой систем наведения или стабилизации, 

приводами органов управления и т.д. При этом элементы, входящие в конструкцию агрегатов и 

узлов приборных отсеков, выполняются из различных материалов, резко отличающихся по своим 

физико-механическим характеристикам. Отметим также, что распределение материала по 

объему отсека крайне неравномерное из-за наличия пустот, что приводит к скачкообразному 

изменению характеристик ударного процесса по объему отсека. Следовательно, математическая 

модель ударника, моделирующего приборный отсек, должна учитывать: 

-  наличие пустот; 

-  нерегулярность структуры; 

-  физико-механические характеристики материалов, входящих в состав приборного 

отсека. 

Построить точную математическую модель такого ударника не представляется 

возможным: во-первых, ввиду трудностей чисто математического характера; во-вторых, 

отсутствия ясной физической картины процесса прохождения ударной волны через приборный 
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отсек; в-третьих, на этапе проектирования, как правило, неизвестна ни номенклатура входящих 

материалов, ни компоновка отсека. 

В то же время анализ прототипов дает возможность, с той или иной степенью 

достоверности, определить такие характеристики приборных отсеков как их габариты, средняя 

плотность, распределение плотности и массы по объему, приблизительная номенклатура 

входящих материалов и т.д. Эти данные при введении ряда допущений позволяют построить 

приближенную математическую модель, дающую правильную качественную картину 

происходящих при ударе явлений и удовлетворительные количественные оценки. 

Допустим, что реальный приборный отсек можно рассматривать как неоднородный 

пористый ударник, с регулярной структурой, имеющий такие же размеры, как и реальный отсек, 

с плотностью равной средней плотности отсека. Материал ударника пористая смесь, в которой 

нет химического взаимодействия между компонентами, т.е. ударник, моделирующий приборный 

отсек, выполнен из композиционного материала типа простая смесь. 

Рассмотрим скорость ударной волны в смесевом теле. Для определения скорости ударной 

волны в смесевом ударнике воспользуемся математической моделью, суть которой состоит в том, 

что смесь рассматривается как слоистая структура. Тогда время прохождения ударной волны 

через слои есть простая сумма времен прохождения каждого из слоев. Следовательно, величина, 

обратная средней скорости ударной волны, есть взвешенная сумма слагаемых, обратных 

скоростям в компонентах, т.е.: 

1
, 1 ,

/
sc i

ii si

i

U y
y U

= =


     (5.9) 

где scU  – средняя скорость ударной волны в смеси, iy  – объемные доли компонентов, siU  

– скорость ударной волны в i -той компоненте. 

При смешении компонент, как показывают экспериментальные данные, проявляется 

тенденция к снижению скоростей siU . Однако, слоистая структура позволяет каждому 

компоненту передавать волну с присущей ему скоростью. Следовательно, полученное выше 

выражение для скорости ударной волны в слоистом теле служит верхним прогнозируемым 

пределом scU . Наличие пустот в ударнике оценивается коэффициентом пористости  . Под 

коэффициентом пористости композиционного ударника в дальнейшем будем понимать 

величину, определяемую равенством: 

0 , 1 ,i
i

i ii

m
m= =


       (5.10) 
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где 0, ,i im    – массовая доля и плотность i -той компоненты и средняя плотность 

ударника соответственно. 

Для учета влияния пористости на скорость распространения ударной волны в смеси scU   

рассмотрим пористый ударник, выполненный из одного материала. В работе [49] приведены 

экспериментальные данные по скорости распространения ударной волны sU   в пористом 

однородном материале от величины массовой скорости pU . Эксперименты проводились для 

различных ударников с коэффициентами пористости 0.5 1.0 =  , выполненных из различных 

материалов. Результаты экспериментов хорошо описываются следующей зависимостью: 

*

3 3
*

*

3 3

,

(1 ) (2 )

,

(1 )

s
р p

ps

p р

s

s
p р

s

p

U
при U U

UU

U U
U

U
при U U

U

U






  + −  −


= 
 


 + − 


   (5.11) 

где sU  – скорость распространения ударной волны в ударнике при коэффициенте 

пористости 1 = ; 
*

pU  – критическая массовая скорость, учитывающая влияние пористости на 

скорость распространения ударной волны; sU   – скорость распространения ударной волны в 

пористом однородном ударнике 1  . 

 

 

Рисунок 5.1. К замене реального приборного отсека эквивалентным ударником. 

 

На рисунке 5.2 приведены графики изменения sU   в функции массовой скорости pU  для 

ряда значений  , построенные по формуле (5.11) (штрих пунктирные линии). Сплошными 
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линиями на рисунке представлены графики, полученные экспериментальным путем. Как следует 

из анализа приведенных графиков, значения sU  , вычисленные по формуле (5.11), отличаются 

от экспериментальных данных не более чем на 5% в широком диапазоне изменения массовой 

скорости. Это позволяет сделать предположение, что для пористого композиционного ударника 

с регулярной структурой скорость распространения ударной волны scU   можно в первом 

приближении определить по аналогичной формуле: 

*

3 3
*

*

3 3

, при

(1 ) (2 )

, при

(1 )

sc
рс p

psc

p рс

sc

sc
p рс

sc

p

U
U U

UU

U U
U

U
U U

U

U






  + −  −


= 
 


 + − 


   (5.12) 

где * *1/ ( / )pc i pi

i

U y U=   – критическая массовая скорость,   – коэффициент пористости 

смеси. 

Таким образом, зная массовые и объемные доли компонентов композиционного ударника 

с регулярной структурой, можно вычислить величину контактного давления, развиваемого им 

при ударе о жесткую преграду: 

0 p scp U U =       (5.13) 

В головные части (ГЧ) ЛА входят отдельные агрегаты и блоки аппаратуры, которые, как 

правило, не связаны между собой непосредственной силовой механической связью.  

Узлы крепления агрегатов, сама аппаратура, и корпуса отсеков ГЧ рассчитываются на 

прочность на основе расчетных случаев нагружения. При этом расчетные перегрузки для этих 

случаев несравненно меньше перегрузок, возникающих в процессе удара. Поэтому при ударе о 

преграду происходит срыв блоков аппаратуры и агрегатов с узлов крепления, и они движутся в 

сторону преграды независимо друг от друга. При встрече с преградой они разрушаются и 

передают импульс нагрузки преграде, при этом происходит выброс значительной массы 

материала ГЧ из зоны удара. Оставшаяся в зоне удара масса ГЧ спрессовывается (т.е. происходит 

частичное или полное схлопывание пустот), что приводит к резкому уменьшению ее объёма. 

Независимость действия отдельных элементов ГЧ и их последовательный выход из зоны 

удара позволяет сделать допущения: 

- ГЧ БПЛА по характеру поведения можно моделировать пластическим ударником; 

- при определении величины контактного давления необходимо учитывать, как 

пористость, так и разнородность входящих элементов, а контактное давление определять по 

формуле для пористых тел. 
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Так как ГЧ БПЛА могут иметь сильно изменяющиеся параметры (плотность, массовые 

доли компонентов, пористость) по длине ГЧ, то для учета этого изменения ГЧ можно 

моделировать составным ударником. Характеристики такого составного ударника будут более 

полно соответствовать характеристикам ГЧ БПЛА. 

В случае жесткого приемника массовая скорость равна скорости удара т.е. 0pU V= , 

следовательно, зная массовые или объемные доли компонентов, а также коэффициенты ,i ia b  

можно найти величину контактного давления p . Если же преграда под действием ударной 

нагрузки деформируется, то 0pU V , однако из принятой модели разрушения ГЧ БПЛА следует, 

что pU V= , где V  – относительная скорость удара. Следовательно, с учетом всего 

вышеизложенного можно записать следующую формулу для определения величины контактного 

давления, развиваемого ударником, моделирующим ГЧ БПЛА: 

2

0

2 *

0

пластический ударник

( , , ) пористый ударникsc рс

V
p

V U U

  −
= 

   −

  (5.14) 

Здесь: 
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V U
U U
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при V U

U

V




 + −  −


  = 





 + − 


  (5.15) 

Итак, при ударном взаимодействии с жесткой преградой реальную конструкцию, 

представленную на рисунке 5.1, будем рассматривать как пористо-смесевое тело 

(эквивалентный ударник) с теми же габаритными размерами, а контактное давление, 

развиваемое при ударе определять по формуле (5.14). 

 

5.2 Модель ударного взаимодействия головной части ЛА и преграды 

Рассмотрим взаимодействие пористого ударника и преграды, которая представляет собой 

жестко защемленную по краям пластину из стали. Панели являются типовыми элементами 

конструкций многих сооружений и технических объектов. Ограничимся построением модели 

нормального удара. 

Схема нагружение пластины пористым ударником показана на рисунке 5.3. При 

высокоинтенсивных импульсных нагрузках материал преграды проявляет в основном 

пластические свойства, и панели с такими свойствами материала характеризуются качественно 

иным поведением по сравнению с их упругой стадией работы. Для решения соответствующих 
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задач наибольшее применение находят подходы, основанные на модели жесткопластического 

тела. 

 

 

Рисунок 5.3. Схема нагружения пластины ударником. 

 

В основе методов, основанных на модели жесткопластического тела и полностью 

пренебрегающих процессом упругого нагружения и упругой деформации лежит предположение, 

что тело остается совершенно недеформируемым, пока напряжение в каком-нибудь из его 

элементов не станет равным предельной величине и не возникнет возможность пластического 

течения. Достоинством решений, полученных с применением этой теории, является то 

обстоятельство, что при всей своей относительной простоте они дают правильное представление 

о деформировании конструкции в области относительно больших пластических деформаций. 

Рассмотрим нормальный удар пластического ударника радиуса R  и плотностью 0  по 

пластине толщиной  . Введем цилиндрическую систему координат ( , , )r x , начало которой 

расположено в центре пластины. 

Процесс ударного взаимодействия пластического ударника с пластиной включает 

совместное проявление таких явлений как радиальная и осевая деформация ударника, его 

разрушение и образование осколков, деформация пластины, нагрева и трения, влияния на 

механические характеристики материала ударника и пластины скорости деформации, 

распространение ударных волн и т.д. Точное исследование этого процесса практически не 

осуществимо, поэтому рассмотрим упрощенную модель ударного взаимодействия 

пластического ударника с пластиной. Введем следующие допущения: 

- контактное давление, приложенное вне зоны, ограниченной окружностью радиуса 

R  (зоны контакта), не учитывается; 

- разлет части материала ударника из зоны контакта в радиальном направлении не 

вызывает перераспределение давления в зоне контакта; 

- пластина работает в основном на сдвиг, в ней развивается ВПТ, которое 

описывается уравнением (5.18); 
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- давление на контактной поверхности определяется формулой (5.14). 

Гриффитс и Ванзаг экспериментально обнаружили, что при высоких скоростях 

динамического нагружения материал круговых пластин имеет тенденцию двигаться в основном 

в поперечном направлении. Допустим, что под действием высокоинтенсивной ударной нагрузки 

материал преграды будет также двигаться в поперечном направлении, следовательно, 

0, ( , )r z zV V а V V r t= = = , тогда из трех основных дифференциальных уравнений движения вязко-

пластической среды Генки-Ильюшина остается одно: 

2

0 0

2

1 1 1Z Z i Z Z
Z

i i

P V V V V
F

z r r r r r t

         
− +  + + − =  
           

   (5.16) 

где ZF  – инерционная сила, 
i

r


 =


 – интенсивность скорости деформации сдвига. 

Вводя обозначение ZV =   , получим: 

2

0

2 2

1 1
Z

P
F

z r r r t

       
− + + + = 
       

     (5.17) 

при этом компоненты напряженного состояния примут вид: 

0; 0;rr ZZ r Z rZP r
r

  


 =  =  = −  =  =  = + 


 

Из последней формулы следует, что преграда при принятых допущениях ведет себя как 

вязко-пластическое тело Шведова-Бингама, уравнение деформации которого имеет вид: 

0
t


 = − + 


      (5.18) 

где 
t




– скорость угловой деформации. Знак минус перед 0  объясняется тем, что: 

00, а
t r

 
=    

 
 

В силу осевой симметрии рассматриваемой задачи и принятых допущений из шести 

компонент тензора напряженного состояния пластины   подлежит определению только одна 

компонента 0rx =  . Следовательно, для определения   остается только одно уравнение. 

Так как в рассматриваемом случае 0ZF = , а 
P q

z


=

 
, то уравнение имеет вид: 

2

0

2

1 q

t q r r r r

      
= + − + 

     
, 

где q  – распределенная нагрузка, действующая на пластину. 



96 

 
 

Давление ( , )p r t , развиваемое ударником на контактной поверхности, будет определяться 

выражением: 

 ( ) 2

0 0  , )   (Эp r t K V=  −  ,     (5.19) 

где ЭK  – коэффициент полноты импульса, учитывающий потери энергии на радиальную 

деформацию ударника, трение, разлет осколков и т.д. ( 0 1ЭK  ); 0( )V −  – относительная 

скорость удара, учитывающая скорость прогиба пластины. 

Принимая во внимание (5.19), запишем выражение для определения внешней 

распределенной нагрузки: ( )  
2

0 0 0( , ) 1 ( ) ,q r t K V H r R=  − − −  где 
1,

( )
0, R

если r R
H r R

если r


− = 


  

Функция Хевисайда, учитывающая локальность приложения нагрузки. С учетом 

последнего равенства уравнение движения примет вид: 

( ) ( )
2

20 0
02

1
1эK

V H r R
t q r r r r

       
= + − + − − −         

  (5.20) 

Функция ( , )r t , являющаяся решением данного уравнения, должна удовлетворять 

следующим краевым условиям: 

- в начальный момент времени, при 0 : ( ,0) 0;t r=  =  

- на внешней границе ВПТ ( )r b t=  скорости движения и скольжения равны нулю, 

следовательно,    ( ), ( ), 0;b t t b t t
r


 =  =


 

- на внутренней границе ВПТ ( )r а t=  скорость скольжения равна нулю, т.е. 

 ( ), 0;a t t
r


 =


 

- центральная зона пластины, для которой выполняется условие   ( )r a t , движется 

как твердое тело, следовательно: 

( )
20 0

0 2эK
V

t r

  
= − −

  
      (5.21) 

Введем безразмерные переменные 
0

0

,
r t

x u
R V

 
= =  =


  тогда уравнения движения 

(5.20) можно переписать в виде: 

 
2

2

2

1
''(1 ) 1 ( 1)Э

U U U Sen
He K Re U H x

x x x x

  
= + − + − − −

  
   (5.22) 

( , ) 0U x  =  при 0 =       (5.23) 
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( , ) ( , ) 0U x U x
x


 =  =


 при ( )x b=       (5.24) 

( , ) 0U x
x


 =


 при ( )x a=        (5.25) 

2 2
Re''(1 )Э

U Sen
He K U

x


= − −


 при ( )x a=  ,     (5.26) 

где He, Re, Sen – безразмерные параметры: 

- 

2 2

0 0 0''
R R V

Re Re
 

= =
  

 - приведенный параметр Рейнольдса; 

- 
0

0 0

R
Sen

V


=


 - параметр Сен-Венана; 

-

2 2

0

2
e

R
He R Sen

 
= =


 - параметр Хедстрема. 

Выведенное выше уравнение (5.22) при краевых условиях (5.23- 5.26) описывает 

движение пластины под действием контактного давления ( , )p r t . Однако при ударе пластическим 

ударником на пластине в зоне контакта может оставаться часть массы ударника, другая же часть 

разлетается в виде осколков. В этом случае за счет присоединенной массы прm  происходит 

увеличение массы преграды, что приводит к росту инерционной составляющей сил 

сопротивления.  

Введем среднеинтегральную скорость для части пластины, ограниченной контуром 1x =

: 
1

0

( ) 2 ( , ) 0срU U x xdx =  =  

Результаты расчетов показывают, что вследствие малой ширины зоны ВПТ –

( )
0,95 1

( ( ), )

срU

U a


 

 
, где ( ( ), )U a    – скорость пластины на внутренней границе зоны ВПТ.  

Следовательно, с погрешностью, не превышающей 5% можно положить: ( ( ), )срU U a=   . 

Так как длинна сработавшейся части ударника ( )0

0

( , )

t

yL r t V dt
 

= − 
 

  переменна по 

радиусу ударника, то введем средне-интегральную длину сработавшейся части ударника: 

0

0

0

( )

t R

o
ср R

V rdrdt

L

rdr

− 

=
 


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или в безразмерном виде: 
0

( ) 1
(1 )

2 2

ср

ср ср

L t
U d

R Sen



 = = −  . 

Пусть на пластине оседает часть прореагировавшей массы ударника ym , определяемая 

коэффициентом 0 1mK  , тогда: 
0 0

0

2 ( )

t R

пр y m m

o

m m K K V rdrdt= =  −  . 

Принимая, что вся масса прm  находится в зоне, ограниченной окружностью радиуса R, 

введем приведенную плотность пластины:  0
0

0

1 1 ( ) ( )

t

пр mK H r R V dt
 

 =  + − − − 
 

 . 

С учетом пр  уравнение (5.23) и краевые условия (5.20- 5.26) примут вид: 

( ) ( ) 

( ) ( )

0

2
2

2

'' 1 1 1

1
'' 1 1 1

m

Э

U
He K Re H x U d

U U Sen
K Re U H x

x x x x


+ − − −  =  

 
= + − + − − −   


    (5.27) 

( , ) 0U x  =  при 0 =      (5.28) 

( , ) ( , ) 0U x U x
x


 =  =


 при ( )x b=       (5.29) 

( , ) 0U x
x


 =


 при ( )x a=       (5.30) 

( )  ( )
2

0

2
'' 1 ''Re'' 1m Э

U Sen
He K Re U d K Re U

x

 
+ −  = − −

  при ( )x a=    (5.31) 

Так как материал ударника, моделирующего отсек ЛА сжимается, то на пластине 

образуется слой толщиной: ( )0
0

0

t

пр m

пр

K V dt


 = −
  . 

Однако, так как плотность присоединенной массы пр  значительно больше средней 

плотности ударника 0  за счет схлопывания пустот и величина 0,3mK  , то реальные толщины 

слоя пр невелики, т.е. пр L  . Это позволяет в приближенной постановке не учитывать влияние 

роста толщины присоединенной массы на изменение величины контактного давления. 

Из (5.31) следует, что уравнение (5.27) будет иметь решение, только в том случае, если 

будет выполняться неравенство '' 2ЭK Re Sen , или 
2

0 0

0

1
2

Э

R V
K




 
, т.е. импульс, приложенный к 

пластине по зоне контакта, больше, чем импульс, развиваемый пластической постоянной 0  

материала пластины по поверхности среза 2срS R=   . 
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Если за критерий начала ВПТ принять параметр Π, определяемый равенством: 

''

2 '

ЭK Re
П

Sen
= , то при 1П   в пластине развивается ВПТ, если же 1П  , то пластина ведет себя 

под нагрузкой как жесткое тело.  

При высокоскоростных вязко-пластических деформациях за счет местного выделения 

тепла происходит разогрев материала пластины в зоне ВПТ. Если при этом скорость уменьшения 

прочности материала из-за местного разогрева равна или превосходит скорость увеличения 

прочности вследствие упрочнения, то деформации материале остаются локализованными. Этот 

неустойчивый процесс ведет к разрушению и известен как “адиабатический сдвиг”. Уравнение 

притока тепла в цилиндрической системе координат в случае одномерного осесимметричного 

движения несжимаемой вязко-пластической среды имеет вид: 

1 1
i

p p

T r T

t r r c r c J

    
= +  

      

 

где J – механический эквивалент теплоты, pc  – теплоёмкость материала,   – 

коэффициент теплопроводности материала среды.  

В силу кратковременности приложения ударной нагрузки и большой инерционности 

процесса теплопроводности можно принять, что все выделившееся в некотором элементарном 

объёме тепло идет на нагрев только этого объёма. Следовательно уравнение притока тепла 

примет вид: 
0

1

p

T

t c J r r

   
=  −  

    
. Тогда в безразмерной форме с начальной температурой 

пластины 0T  запишется: 

0

0
0 0

1
1 1

p

T V U U
T d

T c JRT Senx x

    
= = + −      

 , 

Момент пробития пластины 
*  можно найти, используя тот или критерий прочности. Так, 

например, если в качестве критерия разрушения принять величину максимально допустимых 

касательных напряжений пред , то момент и место разрушения пластины можно определить из 

уравнения: 

0

1
1

пред

пред

U

Sen x

 
= − = 

 
     (5.32) 

Если же в качестве критерия разрушения принять предельный угол сдвига пред , тогда 

момент и место разрушения пластины можно найти из уравнения: 
0

1
пред

U
d

Sen x

 
 = 


. 
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5.3 Схема решения уравнений взаимодействия методом сеток 

Аналитическое решение уравнения (5.27) с учётом краевых условий (5.28–5.31) связано с 

большими трудностями математического характера, так как требуется знать не только функции 

( ),U x  , но и законы изменения внешней и внутренней границ зоны вязко-пластического 

течения. Однако, решение можно получить путем применения численных методов, реализовав 

их на ЭВМ.  

Для интегрирования уравнения воспользуемся методом сеток в виде неявной разностной 

схемы, который приводит к задаче определения сеточной функции ,i ju , заданной на сетке узлов 

( ),i jx  : i xx ih= ,
j jh


 = , где ,xh h


 - шаги по пространственной переменной и по времени.  

Заменяя в (5.27) дифференциальные операторы разностными: 

, , 1

1, 1,

2
1, , 1,

2 2

2

2

i j i j

i j i j

x

i j i j i j

x

U UU

h

U UU

x h

U U UU

x h

−



+ −

+ −

−
=



−
=



− +
=



     (5.33) 

и принимая, что: ( ) ( )
1

, , 1 , 1 ,

10

1 1
1

2 2

j

i j i j i k i k

k

U d h j U U U U

 −

− −
=

 
−  = − + − + 

 
 , получим уравнение 

для расчетной точки ,i jU : 

1
, , 1 ''

, , 1 , 1 ,

1

1, , 1, 1, 1, '' 2

,2

1 1
Re [1 ( 1)][ ( ) ( )] ]

2 2

2 2
Re (1 ) [1 ( 1)]

2

j
i j i j

m x i j i j i k i k

k

i j i j i j i j i j

Э i j x

x x x

U U
He k H ih j U U U U h

h

U U U U U Sen
k U H ih

h ih ih

−
−

− − 
=

+ − + −

−  
+ − − − + − + = 

 

− + −
= + − + − − −


 

Краевые условия примут вид: 

,

, 1, 1,

0

3 4 ( ) при ( )

i j

i j i j i j x

U

U U U h i NS j− −

=

− +   =
     (5.34) 

, 1, 2,3 4 ( ) при ( )i j i j i j xU U U h i MS j+ +− + −   =     (5.35) 

1
, , 1 ''

, , 1 , 1 ,

1

'' 2

,

1 1
Re [ ( ) ( )] ]

2 2

Re (1 ) при ( )

j
i j i j

m i j i j i k i k

k

Э i j

x

U U
He k j U U U U h

h

Sen
k U i MS j

ih

−
−

− − 
=

−  
+ − + − + = 

 

= − − =


   (5.36) 
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Здесь ( )NS j , ( )MS j  – неизвестные номера узлов по пространственной координате для 

внутренней и внешней границы зоны ВПТ. Число неизвестных значений ,i jU  на каждом шаге по 

j будет ( ) ( )NS j MS j− , так как ,1 0NSU = , а общее число неизвестных с учетом неизвестных 

номеров узлов внутренней и внешней границы зоны ВПТ ( )NS j  и ( ) : ( ) ( ) 2MS j NS j MS j= − + .  

Для определения неизвестных ,i jU  и номеров ( )NS j , ( )MS j , имеем ( ) ( ) 1NS j MS j− −  

уравнение (5.33) и два неравенства (5.34-5.35), следовательно общее число уравнений совпадает 

с общим числом неизвестных. Если условия выполняются, то переходим на следующий уровень 

по j, если нет, то перемещаем соответствующую невыполненному условию границу зоны ВПТ в 

соседний узел 1MS   и 1NS   , в зависимости от знака выражения, стоящего под модулем.  

Расчет ВПТ ведется до тех пор, пока не выполнится одно из следующих условий: 

, ( )пред i j xh −      или
, ( )пред i j xh −    . 

Процесс удара считается окончившимся, если ср =  , где
2

L

R
 = – удлинение ударника 

или при выполнении условия: 
1

, , 1 , , 1

1

1 1
( ) ( )] ( )

2 2

j

cp j cp j cp k cp k

k

h
j U U U U h

Sen

−


− −  
=

 
 − − + − +   

 
 . 

Если последнее условие не выполняется из панели выбивается диск (окружность). 

Построив решение уравнения, можно определить: 

- напряжения: 
1, 1,

0 0

1
1 1

2

i j i j

x

U UU

Sen x h Sen

+ −
 + 

 =  − =  −       
 

- прогиб преграды: 
, , 1 , 1

0 2
i j i j i j

RhR
W Ud U U W

Sen Sen




− −
 =  = + +  , при этом ,0 0iW =  

- температуру преграды: 

0
.

0
0

1, 1 1, 1 1, 1 1, 1 1, 1, 1, 1 1,0
, 1

0

1
1 1 1 1

1 1 ,
2 2 2 2

i j

p

i j i j i j i j i j i j i j i j

i j

p x x x x

V U U
T d T

C RJT x Sen x

U U U U U U U UV
T

C RJT h h Sen h h Sen



+ − − − + − − − + − + − −

−

   
= + −  = + = + 

   

    − − − −
+ − + − +             


 

при этом ,0 0iT = . 
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5.4 Результаты решения уравнений контактного взаимодействия 

Приведем результаты расчета по изложенной выше теории для преграды толщиной 

2см = ; 
220ПРS см= ; 

215ПS см= ; 0 0 0 0,4П ПР ГПа =  =  = ; 
4 20,4 10 . . /П ПР н с м =  =  =  ; 

3
8000П ПР

кг

м
 =  =  =  , пластический ударник имеет плотность 

0 3
750

кг

м
 = и радиус 25R см= , 

при расчете принималось, что 1,1TK = , 0,8ЭK = . 

Изменение касательных напряжений и температуры для различной скорости подхода к 

преграде показаны на рисунке 5.4-5.5. Графики изменения внешней и внутренней границы зоны 

ВПТ для случая нормального взаимодействия, представлены на рисунке 5.6.  

 

Рисунок 5.4. Изменение касательных напряжений для различной скорости подхода к 

преграде. 

 

Рисунок 5.5. Изменение температуры для различной скорости подхода к преграде. 



103 

 
 

 

Рисунок 5.6. Изменение внутренней и внешней границ зоны ВПТ от скорости для случая 

встречи под прямым углом. 

5.5 Взаимодействие при косом ударе 

В случае «нормального» удара цилиндрическим ударником область течения ограничена 

окружностью с центром в точке приложения нагрузки, а в случае «косого», который 

рассматривается ниже, граница этой области является эллипсом. Необходимо отметить, что 

контакт БПЛА с преградой сопровождается сразу несколькими явлениями: радиальная 

деформация, разлет части материала, нагрев тел и так далее.  

Поскольку точный анализ такого процесса не представляется возможным, перейдем к 

упрощенной модели взаимодействия ударника и преграды в виде металлической панели, сделав 

следующие допущения: 

- контактное давление приложено только в области следа ударника; 

- контактное давление определяется нормальной составляющей скорости удара; 

- панель работает на сдвиг и в ней развивается вязкопластическое течение, которое 

описывается уравнением (5.18); 

- зона вязкопластического течения ограничена переменными по времени внутренней 

и внешней границами, на которых выполняется условие равенства касательных напряжений 

пределу текучести материала на сдвиг [70]. 

Математическая модель аппаратурного отсека БПЛА при «косом» ударе будет строиться 

на базе вышеизложенной модели «нормального» удара с соответствующими корректировками. 

Опуская подробный вывод уравнения движения преграды под действием высокоинтенсивной 

нагрузки, отметим только те моменты, которые имеют первостепенное значение.  

Допустим, что при подходе БПЛА к цели его вектор скорости V0 совпадает с осью БПЛА 

и составляет угол   с нормалью к преграде. В качестве расчетного случая нагружения панели 

будем рассматривать удар в перекрестие подкрепляющих силовых элементов, когда они 

совпадают с большой и малой осью следа ударника, как показано на рисунке 5.7 (заштрихованная 

область). 
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Рисунок 5.7. Схема нагружения панели при «косом» удар. 

При построении математической модели «косого» удара введем следующие допущения: 

- при «косом» ударе также, как и при «нормальном» ударе в панели развивается 

вязкопластическое течение; 

- концентрические окружности линий равных скоростей панели при «нормальном» 

ударе переходят в эллиптические при «косом» ударе, это допущение позволяет свести «косой» 

удар к «нормальному» путем пересчета некоторых параметров преграды; 

- подкрепляющие силовые элементы панели работают также, как и обшивка панели на 

сдвиг, т.е. в них развивается вязкопластическое течение; 

- действие цилиндрического ударника с прямыми торцами эквивалентно действию 

цилиндрического ударника с косыми торцами, параллельными плоскости панели. 

На рисунке 5.8 схематично приведено изображение эллиптического кольца при 

«косом» ударе, которое получается путем формирования на поверхности панели линий 

равных скоростей. 

 

 
Рисунок 5.8. Схема равновесного эллиптического кольца. 

 

Используя приведенные выше допущения и рассматривая условия равновесия 

эллиптического кольца, можно получить уравнение для описания взаимодействия ударника с 

панелью. 
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( )

( )

2

2

'' 2

1 1
1 1 cos

cos

1
Re (1 ) 1 1

пр пр

П П П П пр пр

S u u
He S S S

x x x

u Sen
k u H x

x x x

     
+  + = +  +   +           


+ − + − − −  

  (5.37) 

В формуле (5.1) приняты следующие обозначения: 

- и
прп

п пр

Ф Ф


 =  =

 
 - соответственно относительные коэффициенты динамической 

вязкости материалов поперечного и продольного силового набора 

- и
прп

п пр

SS
S S

R R
= =
   

 - соответственно относительные площади поперечного сечения 

поперечного и продольного силового набора;   

- и
прп

п пр

Ф Ф


 =  =

 
 - соответственно относительные плотности материалов 

поперечного и продольного силового набора перекрытия; 

-   – угол подхода ударника к панели, отсчитываемый от нормали к ней; 

- 0,6 0,9Пk = −  - коэффициент потери импульса при ударе; 

-
2 ( )cosa




 =

 
 – приведенный коэффициент динамической вязкости материала 

пластины перекрытия; 

- / cos =     – приведенная плотность материала обшивки панели; 

- 
( )

2
( )

1.5 1 cos cos
a  =

+  − 
 - коэффициент приведенной длины контура следа тела; 

-   - толщина панели; 

- 
0 1;

( 1)
1 1.

при x
H x

при x


− = 


 - функция Хевисайда, учитывающая ступенчатость нагружения 

панели; 

-
Ф Ф

Ф

V R
Re


=


  - критерий Рейнольдса; 

- ФV  - нормальная составляющая вектора скорости ударника; 

- 
0'' Ф

Ф

R
Re Re


=
 

 - приведенный критерий Рейнольдса; 

-
0Ф

Ф Ф

R
Sen

V


=


  - критерий Сен-Венана; 
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-
2

0

2

Ф Ф

Ф

R
He

 
=


  - критерий Хедстрема. 

Краевые условия, которым должно удовлетворять решение ( ),u x  , определяются 

следующим образом: 

- в начальный момент времени 0 =   панель неподвижна и тогда: 

( ), 0u x  =        (5.38) 

- на внешней границе области вязкопластического течения ( )x b=   скорость и 

производная скорости по радиусу равны нулю: 

( ) ( ) ( ), , 0 приu x u x x b
x


 =  = = 


    (5.39) 

- на внутренней границе области вязкопластического течения ( )x a=   производная 

скорости по радиусу равна нулю: 

( ) ( ), 0 приu x x a
x


 = = 


     (5.40) 

Кроме того, должен выполняться баланс между внешними силами, возникшими за счет 

импульсной нагрузки, и силами сопротивления движению (инерционные и прочностные), 

который имеет следующий вид при условии, что ( )x a=  : 

( )2

0 0

2 2 1
1 ''(1 ) 1

cos

пр пр

П П П п пр пр

S u Sen
He S kRe u S S

x x x

   
+  + = − − +  +        

 (5.41) 

где 
00

0 0

0 0

;
прп

п пр

Ф Ф


 =  =

 
. 

С учетом последнего краевого условия можно сделать заключение о том, что 

вязкопластическое течение в панели развивается в случае выполнения следующего неравенства: 

( )0 0

''

2 1 п п пр пр

kRe

Sen S S
 =

 +  + 
 

     (5.42) 

Таким образом неравенство (5.42), полученное на основе модели вязкопластической 

среды, позволяет установить связь между внешней нагрузкой и параметрами панели. Как 

показали проведенные исследования, относительно большие деформации материала панели при 

«косом» ударе возникают, если выполняется неравенство 1.5  . 
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5.6 Частные решения уравнения взаимодействия для инженерных 

приложений 

Решение ( ),U x  , уравнения (5.27) при краевых условиях (5.28)–(5.31) позволяет 

проанализировать поведение панели под действием импульсной нагрузки. Если воспользоваться 

одним из критериев разрушения, например, критерием, ограничивающим максимальный угол 

сдвига, то можно, зная решение ( ),U x  , определить координату *x , и время * , начала 

разрушения панели, а также необходимый для этого импульс внешней нагрузки. 

Пусть импульс нагрузки вызывается ударом пористого тела по панели, тогда контактное 

давление можно определить по формуле: 

( )
2

0 0SU V =  − , 

где 0  – средняя плотность тела; SU   – скорость ударной волны в пористом теле. 

Скорость ударной волны в пористом теле определяется по формуле: 

( ) 03 3
*

0

1 2

S
S

S

U
U

U V

V V

 =
− 

 + −  − 
−  

 

где 0 / T =    - коэффициент пористого тела, T  – плотность материала тела, *V  - 

критическая скорость, учитывающая влияние схлопывания пор на SU  ( *V ≈ 3000…4000 м/с),  

( )0SU a b V= + − – скорость ударной волны в теле при 1 = . 

Если импульс нагрузки вызван ударом пористо-смесевого тела, то скорость ударной 

волны в таком теле SCU   определяется формулой: 

( ) 03 3
*

0

1 2

SC
SC

SC

C

U
U

U V

V V

 =
 − 

 + −  − 
−  

, 

где 1 / i
SC

Si

Y
U

U
=   – скорость ударной волны в смесевом теле при 1= ; iY  – объемная доля 

i-го компонента смеси; SiU  – скорость ударной волны в i-м компоненте; 0
i

i

m
 = 


   – 

коэффициент пористости тела; im  – массовая доля i-го компонента; 
*

CV  - критическая скорость, 

учитывающая влияние схлопывания пор в смеси на SCU . 

С учетом последних зависимостей можно записать, что: 
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( ) ( )
22

0 0 0 0 1SCV U K V u =  − =  − , где ( )0/SCK U V= −  .(При 0,5   коэффициент K  

практически не зависит от скорости 0V  и определяется только значением  . На рисунке 

приведены графически изменения SCU   в функции 0V  при различных значениях   для пористо-

смесевого тела с mFe=0.2, mAl = 0.5, mCu = 0.1 и массовой долей синтетических материалов mC = 

0.2. 

 

Рисунок 5.9. Зависимость параметра коэффициента прa  от удлинения ударника. 

 

Решение уравнения (5.37) при краевых условиях (5.38)–(5.41) позволяет определить 

удаление тела λ = L/2R, необходимое для разрушения панели в функции комплексного параметра 

прa : 

( )
( ) ( )

( )

2

1

2

cos 20,02
1

1 2 cos

П ПР

пр П

П ПР

a S S
a k

R S S

   + +
 

= −
  + + 

 

 

где 
( ) ( )

2

0 0

0 1

cos
П

П ПР

k KV R
a S S


= 

   + +
 

,      
1

1 1
( ) 1,5 1

cos cos
a

 
 = + − 

  
. 

Если требуется определить минимальную скорость подхода тела для разрушения панели 

при известной его длине, то можно воспользоваться формулой: 

2

0
0 min 12

0

[1 2( cos )]
( )

cos 0,02cos

пр пр П

пр

a R S S
V a S

KR

  +  +
= +  + 

    
  (5.43) 

где прa  определяется по при заданном значении 15 2 / ( )пр R a =   . 

На рисунке 5.9 приведен график ( )пр прa   для случая, когда материал панели разрушается 

при угле сдвига γ = 450. 
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5.7 Численное моделирование процесса проникания в ANSYS 

Проведем моделирование описанного выше процесса в системе конечно-элементного 

анализа Ansys. В качестве расчетного модуля будем использовать Ansys LS DYNA - решение в 

области расчетов явной динамики, то есть моделирования быстропротекающих, высоко 

нелинейных процессов. Широко используемый для анализа высокоскоростных ударов, 

столкновений и динамических процессов.  

Для моделирования необходимо создать два геометрических объекта – стальную пластину 

и ударник из эквивалентного пористого материала. Рассматриваемый пример стальной пластины 

не подразумевает наличие поперечного и продольного силового набора, таким образом 

0П ПРS S= = . Принимая во внимание следующие исходные параметры: cos cos0 1 = = ; 0 750 =

кг/м3; 0.6Пk = ; K = 1.1; решение (5.43) для определения минимальной скорости пробития 

ударником о преграду записывается следующим образом: 

min0

0

2
0,02

прa R
V

KR

 
=  + 

  
     (5.44) 

В результате моделирования необходимо получить минимальную скорость пробития 

преграды для ударника с заданными геометрическими характеристиками (см. табл. 4). Для 

оценки корректности решения, полученного в соответствии с формулой (5.44), будем 

сопоставлять результаты моделирования в Ansys и результаты расчета по формуле. Результаты 

расчета по формуле (5.44) и моделирования сведены в таблицу 4. Параметры пластического 

поведения стали 4340 по Johnson-Cook (5.45) сведены в таблицу 5. 

 

Таблица 4 

№ 

Толщина 

преграды, 

[м] 

Диаметр 

ударника, 

[м] 

Длинна 

ударника, 

[м] 

Минимальная скорость пробития 

Ansys, 

[м/c] 

Математ. 

модель, 

[м/c] 

Отклонение 

числ. 

моделирования  

и мат. модели, 

% 

1 0,001 0,3 0,4 76 108 29 

2 0,002 0,3 0,4 140 152 8 

3 0,003 0,3 0,4 174 186 6 

 

Таблица 5 

A, B, n C m Tm, 
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 [МПа]  [МПа]  [Co] 

792 510 0,15 0,014 1,03 1520 

 

Рассматривался временной период от начала контакта между пористым ударником и 

стальной преградой до момента пробития. В качестве конечных элементов для ударника 

задавались гексоэдральные объёмные конечные элементы (тип HEX8, 8-узловой явный 

динамический элемент, SOLID164), преграда моделировалась плоскими четырехугольными 

конечными элементами (тип QUAD4, 4-узловой явный динамический элемент). 

Для определения упругопластического поведения пористого ударника задавались 

следующие данные: плотность 750 кг/м3, модуль Юнга 0.85 ГПа, коэффициент Пуассона 0.4, 

предел текучести 30 МПа и касательный модуль 100 МПа.  

Стальная преграда марки 4340 характеризуется модулем сдвига 82 ГПа, объёмным 

модулем сжатия 159 ГПа, плотностью 8000 кг/м3 Пластическое поведение описывается по закону 

Johnson Cook в условиях различных скоростей деформаций. Это феноменологическая модель, 

которая включает в себя деформацию, скорость деформации и влияние температуры на предел 

текучести материала: 

( ) *

0

1 ln (1 )n mA B C T
  

 = +   +   −     




    (5.45) 

здесь   - эквивалентные напряжения по фон Мизесу, A, B, C, n, m, 
* r

m r

T T
T

T T

−
=

−
 – параметры 

модели (чаще всего определяются экспериментально, в данной задаче брались из библиотеки 

материалов Ansys для стали 4340, диаграмма напряжения-деформации показана на рисунке 5.10. 

Разрушение для стали возможно задать также с привлечением критерия разрушения 

Johnson Cook, используемого для моделирования эволюции повреждения через деформацию 

разрушения, зависящую от коэффициента триаксиальности напряжений, скорости деформации и 

температуры. Такой критерий предпочтителен для определения чувствительности металлов к 

скорости деформации. Но ввиду своей сложности, а также необходимости идентификации всех 

параметров модели [63], было принято решение привлечь критерий, связанный с заданием 

эквивалентных пластических деформаций 0.15pl = , поскольку сталь 4340 известна своими 

значительными пластическим свойствами [62]. Диаграмма кривых истинных напряжений-

деформаций при различной температурой активации показана на рисунке 5.10. Определение 

упруго-пластического поведения и характер разрушения вышеописанными подходами, даёт 

хорошее согласование результатов численного моделирования и предложенной математической 

модели (см. табл. 4).  
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Рисунок 5.10. Диаграмма упругопластического поведения стали 4340 при различных 

скоростях деформации по модели Johnson Cook. 

 

В качестве граничных условий использовались жёсткие закрепления по краям пластины и 

назначалась скорость ударника в нормальном направлению по отношению к преграде. Скорость 

подбиралась таким образом, чтобы зафиксировать первый момент пробития. Схематичное 

изображение конечно-элементного разбиения объектов и иллюстрация граничных условий 

показана на рисунке 5.11. 

 

 

Рисунок 5.11. Пример сетчатого разбиения ударника и пластины. 

 

На рисунках 5.12-5.16 представлена визуализация решения в среде Ansys LS-DYNA. 

Случай полного пробития панель, когда 0 0 min1.05V V=   показан на рисунке 5.15. Для полного 

удара характерно отслоение стали в виде окружности. Случаи, когда панель не пробивается, и 

ударник отскакивает от преграды показаны на рисунке 5.16. Случаи, когда зафиксирован 

первоначальный момент пробития преграды различной толщины, соответствующий 
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минимальной скорости показаны на рисунках 5.12-5.14. Примечательно, что здесь можно 

наблюдать отслоение части преграды. 

 

  

 

Рисунок 5.12. Панель толщиной 1 =  мм. Слева направо – мгновение до пробития 

(распределение эквивалентных напряжений), далее момент пробития (распределение 

перемещений). 
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Рисунок 5.13. Панель толщиной 2 =  мм. Слева направо – мгновение пред пробитием, 

далее эволюция пробития. Сверху – перемещения, снизу – напряжения по Мизесу. 

 

   

   

Рисунок 5.14. Панель толщиной 3 =  мм. Слева направо – мгновение пред пробитием, 

далее эволюция пробития. Сверху – перемещения, снизу – напряжения по Мизесу. 
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Рисунок 5.15. Полное пробитие стальной преграды с отслоением в виде круга. 

 

  

 

Рисунок 5.16. Случай, когда панель не пробивается. 
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ЗАКЛЮЧЕНИЕ 

В первой главе сформулирована обобщенная модель градиентной пористой среды. Её 

физические свойства определялись семью модулями, входящими в выражение плотности 

потенциальной энергии. Здесь рассматривается линейная изотропная среда, в качестве 

кинематических переменных выступает вектор перемещения, тензор девиатора деформаций 

дилатация (шаровой тензор деформаций), скалярный параметр, который является по сути 

шаровым тензором свободных дисторсий, использующимся при построении кинетических 

моделей Миндлина с полями дефектов.  

В данном случае неявно используется упрощенный вариант теории Миндлина, когда 

свободная деформация связана только шаровым тензором.  

Коэффициенты, входящие в выражение плотности потенциальной энергии отвечают за 

наличие дефектов, «градиентность», эволюцию пор и связанность градиентных упругих 

дилатационных эффектов 

Особенность вариационной постановки в том, что она учитывает градиентную дилатацию 

и дефектную модель среды, связанную с наличием неинтегрируемых полей. 

Модули   и 
11 2 / 3K =  +  , входящие в (1.30)  определяют классические свойства среды, 

модуль 22K   –  свойство среды с алгебраической пористостью, модуль 12K  является константой 

взаимодействия классической среды и среды с «алгебраической» пористостью, модуль 11C   

определяет градиентные свойства бездефектной среды Тупина, модуль 22C  определяет 

градиентные свойства дефектной среды Миндлина с сохраняющимися дислокациями. Наконец, 

модуль 12C  является константой взаимодействия градиентной среды Тупина и градиентной 

пористой среды Миндлина. Рассмотрены четыре частных случая модели: 

Первый частный случай – классическая теория упругости, при 12 22 0K K= =  и 

11 12 22 0C C C= = = . 

Второй частный случай – среда с алгебраической пористостью, при 11 12 22 0C C C= = = .  

Третий частный случай – градиентная бездефектная среда Тупина, при 12 22 0K K= =  и 

12 22 0C C= = . 

Четвертый частный случай – градиентная дефектная среда Миндлина, при 11 12 0C C= = . 

Анализ разрешающего уравнения (3.38) показывает, что эффективный модуль упругости 

при растяжении: 

- Не зависит от масштабного параметра; 

- Определяется исключительно поврежденным модулем, связанным с деградацией 

пористого материала через алгебраическую пористость. 
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Такое решение является физически естественным и называется «хорошим решением», 

поскольку эффективная жесткость при растяжении не зависит ни от масштабного параметра, ни 

от толщины стержня. 

Как видно из уравнений (3.50) и (3.51), классическая составляющая - четвертая 

производная включает изгибную жесткость.  

Общее решение представляет собой сумму: 

- Классического решения, определяемого приведенной жесткостью; 

- Двух специальных решений, соответствующих: эффекту пористости и градиентным 

эффектам. 

Нетрудно видеть, что в приведенных уравнениях коэффициенты при четвертой 

производной от прогиба в окончательном уравнении изгиба определяют приведенную изгибную 

жесткость и эта изгибная жесткость определяется с точностью до масштабных параметров и при 

малых толщин определяется соотношением 

2

11l

h

 
 
 

. В этом нетрудно убедиться уже по первому 

слагаемому в уравнении прогиба (3.42) вида 11 11 211( ) , ( )
l

EJ C F w C
h

+  . 

В ходе экспериментальных исследований в главе 3 были проведены исследования 

структуры акрримида и механические испытания образцов на изгиб. По результатам 

исследования микроскопии определен характерный размер пор и их распределение. Размер пор 

отличается на 9% между образцами с плотностями 80 кг/м3 и 100 кг/м3. Образцы испытывались 

на трехточечный изгиб, где результат показал значительное влияние пористости на модуль 

упругости материалов. Для материалов с плотностью 80 кг/м3 модуль упругости составляет 

порядка 136 МПа, а с плотностью 100 кг/м3 модуль упругости составляет порядка 159 МПа. При 

этом предел прочности для материалов с плотностью 80 кг/м3 составляет 2.5 МПа, а с плотностью 

100 кг/м3 составляет 3 МПа. Проведено численное моделирование в квазистатической 

постановке. Результат, полученный при численном моделировании, хорошо согласуется с 

результатом, полученным в ходе экспериментального исследования. 

Рассмотренная в пятой главе диссертации математическая модель пористо-смесевого 

ударника является обобщением известных ранее моделей однородных ударников. Формула 

(5.15), позволяющая определить количественную оценку контактного давления, развиваемого 

при соударении пористо-смесевого ударника с деформирующейся преградой (металлической 

панелью) при β=1, т.е. при отсутствии пустот в теле ударника, совпадает с ранее известными 

результатами исследований. Результаты расчетов по представленной модели практически не 

отличаются от результатов, полученных экспериментальным путем что подтверждает 

корректность полученных в данной работе результатов. 
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Таким образом, разработана математическая модель процесса соударения ударника 

неоднородной структуры с преградой, на основании которой получены уравнения для описания 

данного процесса. Рассмотрены две разновидности удара – «нормальный», когда вектор скорости 

ударника перпендикулярен плоскости преграды, и «косой», когда вектор скорости ударника 

направлен под углом к плоскости преграды. 

Результаты проведенных расчетов, которые в значительной мере согласуются с 

результатами более ранних экспериментальных исследований [71], позволили сделать 

следующие основные выводы о характере соударения пористо-смесевого ударника с 

деформирующейся преградой: 

- зона вязкопластического течения материала преграды локализована и 

сосредоточена преимущественно в пределах контура следа ударника; 

- при высокоскоростной нагрузке разрушение преграды достигается в том случае, 

когда возникающее в ней напряжение значительно превышает предел текучести материала 

преграды; 

- влияние роста температуры на физико-механические характеристики преграды 

незначительно и при проведении расчетов им можно пренебречь. 
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