Влияние конденсированной фазы на акустическую неустойчивость в энергетических установках на твердом топливе

Куроедов А.А.*, Лаптев И.В.**, Борисов Д.М.***

Унитарное предприятие «Исследовательский центр имени М.В.Келдыша», Онежская ул., 8, Москва, 125438, Россия *e-mail: <u>kaa8000@yandex.ru</u> **e-mail: <u>igor_laptev@hotbox.ru</u> ***e-mail: <u>borisovdm62@mail.ru</u>

Аннотация

В вычислительном эксперименте исследуется влияние частиц конденсированной фазы на распространение возмущения конечной амплитуды в канале переменного сечения с проницаемыми стенками. Рассматриваются твёрдые сферические частицы одинакового размера. Численно определяется коэффициент затухания для конденсированной фазы. Показано существование оптимального размера частиц, способствующего наилучшему демпфированию возмущения.

Ключевые слова: акустическая неустойчивость, двухфазный, коэффициент затухания, диссипация.

Введение

Проблема неустойчивости рабочего процесса является одной из ключевых при проектировании энергетических установок на твердом топливе (ЭУТТ). Подобного рода процессы сопровождаются колебаниями давления продуктов сгорания в

различных направлениях с частотами от нескольких герц до нескольких десятков килогерц [1], [2]. Основным вопросом при исследовании устойчивости работы ЭУТТ является определение факторов, усиливающих и ослабляющих акустические колебания в камере сгорания установки (рис. 1) [3],[4].

Рис. 1. Факторы, влияющие на устойчивость работы ЭУТТ

В случае потенциальной возможности перехода на неустойчивые режимы работы возникает задача разработки эффективных методов борьбы с акустической неустойчивостью.

Одним из методов борьбы с колебаниями давления является введение мелкодисперсного порошка в объём камеры сгорания. Наличие частиц порошка в потоке приводит к рассеянию акустической энергии и уменьшению амплитуды колебаний давления. В случае использования металлизированных твердых топлив такими частицами выступают капли конденсированной фазы, представляющие собой окислы металлов.

Как показано в [5], для возмущения частоты ω , распространяющегося в потоке, существует оптимальный размер частиц, при котором диссипация энергии будет максимальной:

$$d_{y.onm} = \sqrt{\frac{18\eta}{\omega\rho_y}},\tag{1}$$

где η – динамическая вязкость несущей среды; $\rho_{_{y}}$ – плотность вещества частиц.

Существование оптимального размера частиц связано с тем, что в зависимости от радиуса и частоты возмущения частица будет либо полностью увлекаться возмущенным потоком, либо будет возникать их относительное движение. В последнем случае диссипация энергии будет выше.

В данной работе предложена математическая модель, описывающая движение газа с частицами. Применение данной модели позволяет определять амплитуды и частоты пульсаций давления в потоке при заданном возмущении.

Постановка задачи

Развитие пульсаций давления исследуем в осесимметричном канале переменного сечения, условно разделяемом на две области – область камеры сгорания и область соплового блока (рис. 2). В камере сгорания существует газоприход с поверхности горения топлива, который учитывается введением объемных источников массы, импульса и энергии в соответствующие уравнения.

Рис. 2. Схема модельной установки

Будем рассматривать движение двухфазной среды как совместное течение газовой фазы и фиктивного газа частиц [6]. Предположим, что частицы представляют собой твердые недеформируемые сферы одинакового размера и массы. Плотность, температура и теплоемкость вещества частицы считаются постоянными по её объёму. Частицы взаимодействуют только с несущей газовой фазой. Столкновения частиц и их взаимодействие с элементами конструкции не учитывается. Взаимодействие фаз осуществляется только посредством передачи Процессы импульса энергии. испарения конденсированной фазы И не рассматриваются.

Сделанные предположения относительно движения и взаимодействия фаз справедливы, если выполнена следующая система неравенств:

$$\lambda \Box \ d_{u} \Box \ l_{u} \Box \ L, \tag{2}$$

где λ – длина свободного пробега в несущей среде; $d_{_{y}}$ – диаметр частиц конденсированной фазы; $l_{_{y}}$ – расстояние между частицами; L – характерный размер задачи.

С учетом введенных допущений и предположений система уравнений, описывающих законы сохранения массы, импульса и энергии несущей газовой фазы имеет следующий вид:

$$\frac{\partial(\rho F)}{\partial t} + \frac{\partial(\rho u F)}{\partial x} = G^m$$
(3)

$$\frac{\partial(\rho uF)}{\partial t} + \frac{\partial(\rho u^2F + pF)}{\partial x} - p\frac{\partial F}{\partial x} = G^p - n_s f_s F$$
(4)

$$\frac{\partial(F)}{\partial t} + \frac{\partial(uF + puF)}{\partial x} = G^E - n_s f_s F u_s - n_s q_s F, \qquad (5)$$

где ρ , u, $p \in \varepsilon = \rho \left(c_v T + \frac{u^2}{2} \right)$ - плотность, скорость, давление и полная энергия

несущей фазы; T - температура продуктов сгорания; c - удельная теплоемкость несущей газовой фазы; F = F(x) – площадь канала; f_s – сила, действующая на отдельную частицу в потоке газа; q_s – тепловой поток от частицы к газу; n_q – концентрация частиц конденсированной фазы; G^m , G^p , G^E – величины, описывающие изменение массы, импульса и энергии несущей газовой фазы в камере сгорания за счёт притока массы с поверхности горения; z - массовая доля частиц конденсированной фазы; ρ_m - плотность вещества твердого наполнителя; $w(p) = ap^v$ – скорость выгорания твердого топлива; a, v - константы.

Аналогичные соотношения справедливы для фиктивного газа частиц:

$$\frac{\partial(\rho_s F)}{\partial t} + \frac{\partial(\rho_s u_s F)}{\partial x} = G_s^m \tag{6}$$

$$\frac{\partial(\rho_s u_s F)}{\partial t} + \frac{\partial(\rho_s u_s^2 F + \rho_s F)}{\partial x} - \rho_s \frac{\partial F}{\partial x} = G_s^p - n_s f_s F \tag{7}$$

$$\frac{\partial \left({}_{s}F\right)}{\partial t} + \frac{\partial \left({}_{s}u_{s}F + p_{s}u_{s}F\right)}{\partial x} = G_{s}^{E} - n_{s}f_{s}Fu_{s} - n_{s}q_{s}F,$$
(8)

где ρ_s , u_s , p_s , $\mathcal{E}_s = \rho_s \left(c_s T_s + \frac{u_s^2}{2} \right)$ – плотность, скорость, давление и полная

энергия газа частиц; T_s – температура газа частиц; c_s - удельная теплоёмкость газа частиц; G_s^m , G_s^p , G_s^E – величины, описывающие изменение массы, импульса и энергии фиктивного газа частиц в камере сгорания за счёт притока массы с поверхности сгорания.

Стоит отметить, что ρ и ρ_s не есть истинные плотности соответственно газообразной фазы ρ_s и вещества частиц ρ_s . В данном случае ρ и ρ_s - плотность газообразных продуктов сгорания и газа частиц, полностью занимающих некоторый

объём V. Воспользовавшись тем, что собственно частицы занимают конечный объём, получим связь между истинными и фиктивными плотностями [6]

$$\frac{\rho}{\rho_{e}} = 1 - \frac{\rho_{s}}{\rho_{e}} \tag{9}$$

Для теплоемкостей c и c_s имеем следующее соотношение [6]:

$$c_{cmecb} = (1-z)c + zc_s, \tag{10}$$

где *С_{смеси}*, - удельная теплоёмкость газовой смеси.

Система уравнений (3) – (8) замыкается уравнениями состояния для несущей и конденсированной фаз $p = \rho RT$ и $p_s = \rho_s R_s T_s$, где $R = \frac{R_{y_H}}{\mu}; R_s = \frac{R_{y_H}}{\mu_s}; \mu, \mu_s$ -

молярные массы несущей газовой фазы и газа частиц, $R_{y_{H}} = 8,314 \frac{\square \mathcal{H}}{MOЛb \cdot K}$.

Предположим, что продукты сгорания поступают в камеру с нулевой проекцией скорости на ось камеры. Исходя из этого, выражения для $G^m, G^m_s, G^p, G^p_s, G^E, G^E_s$ примут следующий вид:

$$G^{m} = \begin{cases} z\rho_{m}w(p)S_{3apgd}, 0 \le x \le L_{\kappa c} \\ 0, \ L_{\kappa c} < x \le L \end{cases}$$

$$G^{m}_{s} = \begin{cases} (1-z)\rho_{m}w(p)S_{3apgd}, 0 \le x \le L_{\kappa c} \\ 0, \ L_{\kappa c} < x \le L \end{cases}$$

$$G^{p}_{3apgd} = 0$$

$$G^{p}_{s\ 3apgd} = 0$$

$$G^{E} = G^{m}c_{V}T$$

$$G^{E}_{s} = G^{m}_{s}c_{s}T_{s}$$

$$(11)$$

При движении твердой сферической частицы в сплошной среде на нее действуют следующие гидродинамические силы: стационарная сила Стокса, сила Бассэ-Буссинеска, сила Архимеда и сила присоединенных масс [6].

В реальной камере сгорания при исследовании первой моды продольных колебаний ($\omega > 100 \Gamma \mu$) с учётом того, что диаметр частиц конденсированной фазы лежит в диапазоне $10^{-6} \dots 10^{-5} M$, реализуется режим, при котором основной вклад в силовое взаимодействие между частицей и несущей средой вносит стационарная сила Стокса [7]:

$$\vec{f}_{St} = 3\pi d_{\scriptscriptstyle y} \eta \left(\vec{V} - \vec{V}_{\scriptscriptstyle S} \right) C_f, \qquad (12)$$

где \vec{V} , $\vec{V_s}$ – скорости несущей среды и частиц газовой фазы соответственно; C_f - поправочный коэффициент для уточнения силы аэродинамического сопротивления [8].

Поток тепла q_s между частицей и несущей средой имеет вид [6]

$$q_s = 2\pi d_{_{Y}}\lambda \big(T - T_s\big)C_h,\tag{13}$$

где λ – коэффициент теплопроводности несущей фазы; C_h - поправочный коэффициент для уточнения межфазного теплового взаимодействия [8].

Начальные и граничные условия

Причиной возникновения возмущений в камере сгорания могут служить различного рода неоднородности в потоке. Одним из примеров такой неоднородности является локальное изменение газоприхода с поверхности заряда, связанное с внезапным увеличением площади горения. Для моделирования генерации данного возмущения в области камеры сгорания (левая граница области) задается конечное по времени гармоническое возмущение давления:

$$p|_{x=0} = p + p_0 sin(\omega t), \ 0 \le t \le t_0,$$
(14)

где $\langle p \rangle$ – среднее давление в камере сгорания; p_0, ω – амплитуда и частота возмущения.

Условие непроницаемой стенки для газа частиц выглядит следующим образом:

$$\left. \frac{\partial \rho_s(t)}{\partial x} \right|_{x=0} = 0 \tag{15}$$

Предположим, что стенки камеры сгорания являются теплонепроницаемыми. Тогда

$$\frac{\partial T(t)}{\partial x}\Big|_{x=0} = 0, \ \frac{\partial T_s(t)}{\partial x}\Big|_{x=0} = 0$$
(16)

Для скорости на левой границе ставиться условие непротекания:

$$u(t)\big|_{x=0} = 0, \ u_s(t)\big|_{x=0} = 0$$
(17)

На правой границе области, соответствующей выходному сечению соплового блока, ставятся следующие граничные условия:

$$\frac{\partial u(t)}{\partial x}\bigg|_{x=L} = 0, \ \frac{\partial u_s(t)}{\partial x}\bigg|_{x=L} = 0$$
(18)

$$\frac{\partial T(t)}{\partial x}\bigg|_{x=L} = 0, \quad \frac{\partial T_s(t)}{\partial x}\bigg|_{x=L} = 0$$
(19)

$$\frac{\partial p(t)}{\partial x}\bigg|_{x=L} = 0, \ \frac{\partial p_s(t)}{\partial x}\bigg|_{x=L} = 0$$
(20)

В момент времени t = 0 камера сгорания и сопловой блок заполнены газообразными продуктами сгорания и фиктивным газом частиц, находящимися при нормальных условиях $p(x,0) + p_s(x,0) = p_{\mu}, \frac{p}{p_s} = \frac{\rho}{\rho_s} \frac{\mu_s}{\mu}, T(x,0) = T_s(x,0) = T_{\mu},$ $u(x,0) = u_s(x,0) = 0.$

Метод моделирования

Система уравнений (3) – (8), решается численно метод контрольных объёмов. Для этого расчётная область покрывается равномерной сеткой с шагом $\Delta x = \frac{L}{N}$, где N – количество узлов сетки. Объем участка проточной части камеры сгорания V_i , соответствующий *i*-й ячейке, равен $F_i \Delta x_i$, где F_i – площадь канала в *i*-м сечении. В общем случае за счёт выгорания заряда площадь канала F является функцией координаты и времени.

Аппроксимация системы уравнений (3) - (5) в каждой ячейке, имеет следующий вид:

$$(\rho_{i}^{k+1} - \rho_{i}^{k})\frac{V_{i}}{\Delta t} + (\rho uF)_{i+1/2}^{k} - (\rho uF)_{i-1/2}^{k} = (G_{3ap_{\pi}\partial}^{m})_{i}^{k}$$
(21)

$$\left[\left(\rho u\right)_{i}^{k+1}-\left(\rho u\right)_{i}^{k}\right]\frac{V_{i}}{\Delta t}+\left[\left(\rho u^{2}F+pF\right)_{i+1/2}^{k}-\left(\rho u^{2}F+pF\right)_{i-1/2}^{k}\right]-(22)$$

$$-p_{i}^{k}\left(F_{i+1/2}^{k}-F_{i-1/2}^{k}\right)=\left(G_{3apgd}^{p}\right)_{i}^{k}-\left(n_{4}f_{s}\right)_{i}^{k}V_{i}$$

$$\left[\left(\rho u\right)_{i}^{k+1}-\left(\rho u\right)_{i}^{k}\right]\frac{V_{i}}{\Delta t}+\left[\left(\rho u^{2}F+pF\right)_{i+1/2}^{k}-\left(\rho u^{2}F+pF\right)_{i-1/2}^{k}\right]-(23)$$
$$-p_{i}^{k}\left(F_{i+1/2}^{k}-F_{i-1/2}^{k}\right)=\left(G_{3ap_{3}ap_{3}}^{p}\right)_{i}^{k}-\left(n_{y}f_{s}\right)_{i}^{k}V_{i}$$

Нижний индекс i обозначает величины функций, отнесенные к центру ячейки пространственного разбиения; нижние полуцелые индексы i-1/2 и i+1/2 обозначают величины функций, отнесенные соответственно к левой и правой границам i-й ячейки. Верхний целый индекс k обозначает номер шага по времени.

Значения функций на границе каждой ячейки вычисляются путем решения задачи Римана о распаде произвольного разрыва на данной границе [9], [10].

Аналогичные соотношения справедливы для фиктивного газа частиц.

Площадь горящей поверхности заряда в *i*-ой ячейке в выражениях для газоприхода (11) вычислялась по формуле:

$$(S_{3apad})_i = l_i \Delta x_i, \tag{24}$$

где l_i – периметр свода заряда твердого топлива, образующего канал течения. Для расчета выгорания поверхностей сложной формы может быть использована методика, предложенная в [11].

Результаты моделирования и их анализ

Изучение влияния частиц конденсированной фазы проводилось на примере модельной установки (рис. 3). Первая и вторая моды продольных колебаний давления такой камеры сгорания имеют частоты $v_1 = 690 \Gamma \mu$ и $v_2 = 1380 \Gamma \mu$.

Рис. 3. Схема измерений

Для несущей фазы принимались следующие значения основных теплофизических параметров: $\mu = 0,0235 \frac{\kappa^2}{MOЛb}, \quad k = 1,224, \quad \lambda = 0.262 \frac{Bm}{M \cdot K},$

 $\eta = 8,905 \cdot 10^{-5} \Pi a \cdot c$, где k – показатель адиабаты.

Свойства фиктивного газа частиц задавались следующими

значениями:
$$\mu_s = 0,102 \frac{\kappa^2}{MOЛb}, z = 0,0775, \rho_s = 3600 \frac{\kappa^2}{M^3}, где \rho_s$$
 - истинная

плотность вещества частиц. Константы в законе горения: $a = 0.01 \frac{M}{c}$, v = 0.3.

В процессе расчетов были получены зависимости относительного отклонения

давления в камере сгорания $\frac{\delta p}{p} = \frac{p-p}{p}$ от диаметра частиц конденсированной

фазы (рис. 4, рис. 5).

Рис. 4. Зависимость относительного отклонения давления от времени (x =

0 мм – переднее днище)

Рис. 5. Зависимость относительного отклонения давления от времени (*x* = 175 мм – 1/4 длины камеры)

Как видно из рис. 4 и рис. 5, происходит затухание колебаний давления в камере сгорания, обусловленное истечением продуктов сгорания из соплового блока и потерями на частицах. При этом падение амплитуды возмущений давления, вызванное потерями на частицах, составляет в среднем 1,8...4,5% за период от начального возмущения давления в камере сгорания, тогда как потери, вызванные истечением продуктов сгорания через сопло, составляют 10...14,4%.

Для выявления зависимости потерь акустической энергии от диаметра частиц конденсированной фазы рассмотрим, как ведет себя коэффициент затухания пульсаций давления. Зависимость отклонения давления δp от времени имеет вид:

$$\delta p = \left(\delta p\right)_0 e^{-\beta t},\tag{25}$$

где β – коэффициент затухания. В предположении аддитивности β его можно представить в виде суммы двух слагаемых:

$$\beta = \beta_{convo} + \beta_{y}, \tag{26}$$

где β_{conno} , β_{u} – коэффициенты затухания, обусловленные стоком продуктов сгорания через сопло и присутствием частиц в потоке соответственно.

Согласно расчётам коэффициент затухания колебаний давления β_{conno} , для первой и второй моды колебаний составляет соответственно $302,85\frac{1}{c}$ и $329,61\frac{1}{c}$. Изменение коэффициента затухания β_{u} в зависимости от размера частиц представлено на рис. 6.

Рис. 6. Зависимость коэффициента затухания от радиуса частиц

Как видно из рис. 6 коэффициент затухания β_{u} имеет максимум при $r_{u}^{max} = 5 \, M \kappa M$ для возмущения давления с частотой $v = 690 \, \Gamma u$ и максимум при $r_{u}^{max} = 3 \, M \kappa M$ для частоты $v = 1380 \, \Gamma u$. Полученные экстремумы находятся в соответствии с теоретическими значениями оптимального радиуса частиц [5]. Так оптимальный радиус частиц для первой и второй моды колебаний равен соответственно 5,06 $M \kappa M$ и 3,58 $M \kappa M$.

Выводы

Предложенная математическая модель позволяет определить влияние конденсированной фазы на распространение произвольного возмущения давления в модельной ЭУТТ.

Установлено, что для модельной камеры сгорания наличие частиц приводит к понижению амплитуды колебаний давления на 1,8...4,5% за период от начального возмущения давления в камере сгорания. Наибольшее затухание колебаний давления наблюдается на частицах радиусом 5 *мкм* для первой моды колебаний и 3 *мкм* для второй моды. Полученные значения размеров частиц согласуются с теоретическими. Данные результаты могут быть полезны при создании металлизированных рецептур твердого топлива энергетических установок.

Библиографический список

- Blomshield F.S. Historical perspective of combustion instability in motors: case studies / F.S.Blomshield // 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit July 8-11, 2001. - Salt Lake City, Utah. - 2001. - P. 1-14.
- Blomshield F.S. Lessons learned in solid rocket combustion instability / F.S. Blomshield // 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 8 - 11 July 2007. - Cincinnati, OH. - 2007. - P. 1-19.
- Присняков В.Ф. Динамика ракетных двигателей твердого топлива. М.: Машиностроение, 1984. – 248 с.
- Кашина И.А., Сальников А.Ф. Методы определения собственных частот элементов системы ракетного двигателя твердого топлива // Труды МАИ, 2010, №65: http://www.mai.ru/science/trudy/published.php?ID=35947
- Орлов Б.В., Мазинг Г.Ю. Термодинамические и баллистические основы проектирования ракетных двигателей на твердом топливе. – М.: Машиностроение, 1979. - 392 с.
- 6. Нигматулин Р.И. Динамика многофазных сред. Ч.1 М.: Наука, 1987. 464 с.
- Губайдуллин Д.А., Осипов П.П. Дрейф включений в акустических полях с учетом нестационарных сил:

http://www.imm.knc.ru/sb2011/Gubaidullin_Osipov.pdf.

 Carlson D.J. R.F. Hoglund Particle drag and heat transfer in rocket nozzles // AIAA Journal. 1964. Vol. 2. №11. PP. 1980-1984.

- Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики. – М.: Наука, 1992. - 424 с.
- 10.Куликовский А.Г., Погорелов Н.В., Семенов А.Ю. Математические вопросы численного решения гиперболических систем уравнений. – М.: ФИЗМАТЛИТ, 2001. - 608 с.
- 11.Лаптев И.В. Семёнов П.А., Дегтярёв С.А. Автоматизация моделирования процесса выгорания заряда твердого топлива в системе Solidworks // Автоматизация. Современные технологии. 2016. №3. С.14-18.