На правах рукописи

fe

Сухов Егор Аркадьевич

Исследование орбитальной устойчивости и бифуркации периодических движений симметричного спутника на круговой орбите

01.02.01 – Теоретическая механика

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук Работа выполнена на кафедре «Мехатроника и теоретическая механика» федерального государственного бюджетного образовательного учреждения высшего образования «Московский авиационный институт (национальный исследовательский университет)» (МАИ).

Научный руководитель:	Бардин Борис Сабирович доктор физико-математических наук, доцент.
Официальные оппоненты:	Тихонов Алексей Александрович доктор физико-математических наук, про- фессор кафедры теоретической и приклад- ной механики Санкт-Петербургского Госу- дарственного Университета.
	Трофимов Сергей Павлович кандидат физико-математических наук, на- учный сотрудник Института прикладной ма- тематики имени М. В. Келдыша РАН.
Ведущая организация:	Московский физико-технический институт (национальный исследовательский универси- тет).

Защита состоится 20 декабря 2019 г. в 16 часов на заседании диссертационного совета Д 212.125.14 в Московском авиационном институте (национальном исследовательском университете), по адресу: 125993, г. Москва, А-80, ГСП-3, Волоколамское шоссе, д. 4

С диссертацией можно ознакомиться в научно-технической библиотеке Московского авиационного института (национального исследовательского университета) и на сайте института http://www.mai.ru.

Автореферат разослан «____» ____ 2019 г.

Отзывы и замечания по автореферату в двух экземплярах, заверенные печатью, просьба высылать по вышеуказанному адресу на имя ученого секретаря диссертационного совета.

Учёный секретарь диссертационного совета, *к.ф.-м.н*, *доцент*

lug-

Гидаспов В.Ю.

Общая характеристика работы

Актуальность темы.

В последнее время существенно возрастает количество исследований в области изучения и практического освоения космического пространства. В связи с этим одним из актуальных направлений динамики космических аппаратов остаётся изучение движения спутника – твёрдого тела относительно центра масс. Важную роль здесь играет анализ особых частных случаев движения, таких, как стационарные и периодические движения. В частности, значительный интерес представляет задача о построении и исследовании периодических движений динамически симметричного спутника относительно центра масс на круговой орбите.

Исследованию периодических движений спутника – твёрдого тела относительно его центра масс посвящено большое количество работ. Плоские вращения и колебания спутника на эллиптической и круговой орбите исследовались в работах В. В. Белецкого, А. П. Маркеева, А. А. Хентова, В. А. Сарычева, В. А. Златоустова и др.

В случае динамически симметричного спутника на круговой орбите возможны так называемые регулярные прецессии: цилиндрическая, коническая и гиперболоидальная. При регулярной прецессии спутник совершает перманентные вращения относительно своей оси динамической симметрии, которая равномерно вращается относительно неизменного в абсолютном пространстве направления. Регулярные прецессии подробно исследованы в работах В. Т. Кондураря, Г. Н. Дубошина, В. В. Белецкого, Ф. Л. Черноусько и др. Из теории, развитой А. М. Ляпуновым, следует, что в окрестности регулярных прецессий возможны периодические движения, которые могут быть получены в виде рядов по степеням малого параметра. Аналитическое построение указанных движений в окрестности регулярных прецессий ранее выполнялось в работах А. Г. Сокольского, С. А. Хованского, А. П. Маркеева, О. В. Холостовой, Б. С. Бардина и др. Численному исследованию периодических движений, рождающихся из гиперболоидальной прецессии спутника, посвящены работы А. Г. Сокольского, С. А. Хованского.

В ряде случаев периодические движения могут быть построены с использованием аналитических методов. Классический метод аналитического построения указанных движений изложен в работе Ляпунова. Однако, при наличие в системе резонансов данный метод не применим, что связано с явлением бифуркации периодических движений. Анализу бифуркации и построению периодических движений в резонансном случае посвящены работы А. П. Маркеева, Б. С. Бардина и др.

В общем случае не представляется возможным получить периодические движения аналитическими методами. В связи с этим, актуальна задача их численного построения. В частности, существенный интерес представляют так называемые методы численного продолжения по параметрам. Впервые метод численного продолжения по параметрам был предложен А. Депри и Ж. Анраром. Указанный метод основан на введении в окрестности известного (опорного) периодического движения локальных координат, что позволяет свести решение краевой задачи поиска периодического движения к более простой задаче Коши. Данный метод был развит в работах М. Лара, А. Г. Сокольского, С. А. Хованского и С. Р. Каримова.

Другим важным направлением исследований является анализ устойчивости периодических движений. Периодические движения консервативных механических систем, как правило, неустойчивы по Ляпунову. Это связано с тем, что период данных движений зависит от их начальных условий. Большой интерес представляет, однако, вопрос об их орбитальной устойчивости. Исследованию орбитальной устойчивости периодических движений посвящены работы А. Д. Брюно, , А. П. Маркеева, Б. С. Бардина, О. В. Холостовой и др.

Цель работы.

Целью данной диссертационной работы является численное и аналитическое построение семейств периодических движений, рождающихся из регулярных прецессий динамически симметричного спутника и исследование их орбитальной устойчивости, а также анализ бифуркации указанных семейств в трёхмерном пространстве параметров задачи.

Методы исследования.

Для достижения цели работы в диссертации применялись современные методы гамильтоновой механики, методы теории устойчивости, метод нормальных форм, метод численного продолжения по параметрам семейств периодических движений автономной гамильтоновой системы.

Достоверность результатов

Достоверность выводов, сформулированных в диссертации, обусловлена использованием строгих математических методов, высокой точностью численных расчетов, а также полным соответствием результатов аналитического и численного исследования. Выводы диссертационной работы хорошо согласуются с результатами исследований, проведенных ранее.

Научная новизна.

В диссертации получены следующие новые научные результаты:

- 1. Построены асимптотические выражения для семейств периодических движений, рождающихся регулярных прецессий спутника в нерезонансном случае. Получены новые классы долгопериодических движений спутника, рождающихся из гиперболоидальной прецессии в случае резонансов третьего и четвёртого порядков.
- 2. В трёхмерном пространстве параметров задачи численно построены области существования семейств короткопериодических движений спутника, рождающихся регулярных прецессий, а также семейств долгопе-

риодических движений спутника, рождающихся из гиперболоидальной прецессии в случае резонансов третьего и четвёртого порядков.

- 3. Для всех допустимых значений параметров задачи получены выводы об орбитальной устойчивости в линейном приближении короткопериодических движений, рождающихся из регулярных прецессий спутника.
- 4. Построены диаграммы бифуркации короткопериодических движений спутника, рождающихся из регулярных прецессий, а также долгопериодических движений спутника, рождающихся из гиперболоидальной прецессии в случае резонансов третьего и четвёртого порядков.
- 5. Предложена модификация метода численного продолжения по параметрам периодических движений автономной гамильтоновой системы с двумя степенями свободы, позволяющая существенно повысить скорость вычислений.

Положения и результаты, выносимые на защиту.

- 1. Выполнено численное и аналитическое построение семейств короткопериодических движений, рождающихся из регулярных прецессий спутника. Построены также семейства долгопериодических движений, рождающихся из гиперболоидальной прецессии при резонансных и нерезонансных значениях параметров. Построены области существования указанных семейств в трёхмерном пространстве параметров задачи.
- Решена линейная задача об орбитальной устойчивости короткопериодических движений спутника, рождающихся из регулярных прецессий, и долгопериодических движений, рождающихся из гиперболоидальной прецессии. В пространстве параметров задачи численно построены области орбитальной устойчивости указанных периодических движений в линейном приближении.
- 3. Для произвольных значений параметров рассмотрена задача о бифуркации периодических движений спутника, рождающихся из его регулярных прецессий. Дано подробное описание возможных сценариев бифуркации и приведены соответствующие бифуркационные диаграммы. Для получения представления о глобальном характере движения вблизи бифуркационных значений параметров и верификации результатов применялся метод сечений Пуанкаре.
- 4. Разработан программный комплекс, реализующий алгоритм численного продолжения по параметрам периодических движений автономной гамильтоновой системы с двумя степенями свободы.

Теоретическая и практическая ценность. Теоретическая ценность данной работы состоит в том, что на основании её результатов можно получать качественные выводы о характере движения как естественных небесных тел, так и космических аппаратов. Практическая ценность настоящей диссертационной работы состоит в том, что её результаты могут быть применены на этапе проектирования и конструирования космических аппаратов, а также при решении задач ориентации и стабилизации спутников. Представленный в данной работе алгоритм численного продолжения по параметрам, основанный на методе А. Г. Сокольского и С. Р. Каримова, может быть использован при исследовании динамики механических систем, движение которых описывается автономной гамильтоновой системой с двумя степенями свободы.

Апробация результатов.

Результаты диссертации докладывались

- на научных семинарах кафедры теоретической механики Московского авиационного института,
- на XL академических чтениях по космонавтике, (МГТУ, 2016, Москва),
- на XLI академических чтениях по космонавтике, (МГТУ, 2017, Москва),
- на Международной конференции по математической теории управления и механике, (2017, Суздаль),
- на Международной конференции «8-е Поляховские чтения» (СПбГУ, 2018, Санкт-Петербург),
- на Международной конференции по дифференциальным уравнениям и динамическим системам «DIFF-2018» (2018, Суздаль),
- на Международной конференции «Научное наследие С. А. Чаплыгина: неголономная механика, вихревые структуры и гидродинамика» (ЧГУ, 2019, Чебоксары),
- на XII Всероссийском съезде по фундаментальным проблемам теоретической и прикладной механики (БашГУ, 2019, Уфа).

Работа выполнена в рамках госзадания (проект № 3.3858.2017/4.6) и поддержана грантом РНФ № 14-21-00068.

Публикации.

Основные положения диссертационного исследования опубликованы в 8 научных работах, из них 4 статьи [1–4] в журналах, входящих в перечень ВАК, и 4 публикации [5–8] в различных сборниках и материалах конференций.

Личный вклад автора. Содержание диссертационной работы и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы и получены лично автором. Постановки задач, исследованных в рамках подготовки диссертационной работы, задавались научным руководителем.

Структура и объем работы.

Диссертационная работа состоит из введения, пяти глав, заключения, списка литературы из 97 наименований и двух приложений. Работа содержит 32 иллюстрации. Общий объём диссертации составляет 114 страниц.

Содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулирована цель и задачи работы, приведен обзор исследований плоских резонансных движений спутника и дано краткое изложение содержания работы по главам.

В первой главе сформулирована задача о численном продолжении по параметрам семейств периодических решений консервативной механической системы и изложен алгоритм Сокольского А. Г. и Каримова С. Р. численного продолжения по параметрам семейств периодических решений автономной гамильтоновой системы [9]. Для указанного алгоритма предложена новая методика выбора шага приращений параметров и найден явный вид матрицы перехода к локальны координатам для случая системы с двумя степенями свободы. Данные модификации позволили существенно оптимизировать вычисления и повысить скорость построения периодических решений.

Кратко изложим используемый в данной работе алгоритм численного продолжения по параметрам периодических решений автономной гамильтоновой системы

$$\dot{q}_i = \frac{\partial H}{\partial p_i}, \quad \dot{p}_i = -\frac{\partial H}{\partial q_i}, \quad (i = 1, 2)$$
 (1)

с двумя степенями свободы, где функция Гамильтона $H(q_1, q_2, p_1, p_2, \vec{\pi})$ явно не зависит от времени и сохраняет своё значение H = h на решениях системы, то есть является первым интегралом. Через $\vec{\pi} = (\pi_1, \ldots, \pi_k)$ обозначен вектор параметров.

Допустим, что система (1) имеет периодическое решение с начальными условиями $q_{i0}^* = q_i^*(0, \vec{\pi}^*), \quad p_{i0}^* = p_i^*(0, \vec{\pi}^*)$ (i = 1, 2) и периодом $T^* = T^*(\vec{\pi}^*)$, которому соответствуют фиксированные значения параметров $\vec{\pi}^*$ и постоянной h^* . Следуя [15], будем называть данное периодическое решение «опорным».

Дадим величинам $\vec{\pi}^*$ и h^* малые приращения $\Delta \vec{\pi}$ и Δh и будем искать

начальные условия и период

$$q_{i0} = q_i(0, \vec{\pi}), \quad p_{i0} = p_i(0, \vec{\pi}), \quad T = T(\vec{\pi}),$$
(2)

нового периодического решения, отвечающего значениям параметров $\vec{\pi} = \vec{\pi}^* + \Delta \vec{\pi}$, $h = h^* + \Delta h$. С этой целью введём в окрестности опорного периодического решения локальные координаты $\xi_i = q_i - q_i^*$, $\eta_i = p_i - p_i^*$, (i = 1, 2) и выполним следующее унивалетное каноническое преобразование

$$(\xi_1, \xi_2, \eta_1, \eta_2) = S\vec{w}, \tag{3}$$

где n_u , n_v - нормальные смещения, m_u и m_v - тангенциальное и энергетическое смещения, а S - симплектическая ортогональная матрица. В [6] был предложен следующий явный вид матрицы S

$$S = (\vec{R}, \vec{s}, -I\vec{R}, -I\vec{s}) = \frac{1}{V} \begin{pmatrix} \dot{p_2}^* & \dot{q_1}^* & -\dot{q_2}^* & -\dot{p_1}^* \\ -\dot{p_1}^* & \dot{q_2}^* & \dot{q_1}^* & -\dot{p_2}^* \\ \dot{q_2}^* & \dot{p_1}^* & \dot{p_2}^* & \dot{q_1}^* \\ -\dot{q_1}^* & \dot{p_2}^* & -\dot{p_1}^* & \dot{q_2}^* \end{pmatrix}.$$
 (4)

Выбор матрицы *S* данным образом позволяет существенно упростить вычисление коэффициентов в уравнениях предиктора и корректора по сравнению со схемой, предложенной в [9], и повысить скорость численного построения периодических движений. Выполнив данные преобразования, получим систему дифференциальных уравнений

$$\dot{n_u} = \frac{\partial H^n}{\partial n_v}, \qquad \dot{n_v} = -\frac{\partial H^n}{\partial n_u},$$

$$\dot{m_u} = \frac{\dot{V}}{V}m_u + h_{14}^*n_u + h_{34}^*n_v + \sum_{j=1}^k h_2^j \Delta \pi_j + h_2^{k+1} \Delta h, \qquad (5)$$

$$m_v = \frac{1}{V}(\Delta h - \sum_{j=1}^k \Delta \pi_j \left. \frac{\partial H}{\partial \pi_j} \right|_*),$$

в которой канонические уравнения для нормальных смещений не зависят от тангенциального и энергетического смещений.

В работе [9] было показано, что для определения начальных условий (2) нового периодического движения необходимо определить начальные условия

$$n_u(0), n_v(0), m_v(0)$$
 (6)

 T^* -периодического решения системы (5), полагая $m_u(0) = 0$. Указанные начальные условия определяются в два этапа, называемые шагом предиктора и шагом корректора.

На шаге предиктора для заданных приращениях параметров определяются величины (6), дающие при переходе к исходным переменным прибли-

жённые значения начальных условий и периода (2) нового периодического движения.

На шаге корректора при фиксированных значениях параметров определяются уточнённые значения начальных условий и периода (2) нового периодического движения. Шаг корректора может быть повторён, пока не будет достигнута требуемая точность величин (2).

Скорость вычислений при построении периодических движений с помощью вышеописанного метода существенно зависит от методики выбора шага приращений параметров. Погрешность периодического движения, полученного численно на этапе предиктора, будем определять величиной [1]

$$d = d(\vec{\pi}, h, \vec{\Delta \pi}, \Delta h) = max(|\Delta q_1|, |\Delta q_2|, |\Delta p_1|, |\Delta p_2|), \tag{7}$$

где $\Delta q_i = q_i(T) - q_i(0), \Delta p_i = p_i(T) - p_i(0), (i = 1, 2).$ Разложим (7) в ряд Тейлора и, отбросив члены выше первого порядка малости, получим

$$d(\vec{\pi}, h, \vec{\Delta \pi}, \Delta h) = d_0 + d_h \Delta h + d_{\Delta h} \Delta (\Delta h) + \sum_{i=1}^k (d_{\pi_i} \Delta \pi_i + d_{\Delta \pi_i} \Delta (\Delta \pi_i)),$$

где

$$d_h = \frac{\partial d}{\partial h}, \ d_{\Delta h} = \frac{\partial d}{\partial (\Delta h)}, \ d_{\pi_i} = \frac{\partial d}{\partial \pi_i}, \ d_{\Delta \pi_i} = \frac{\partial d}{\partial (\Delta \pi_i)}$$

В случае, когда приращения параметров остаются постоянными ($\Delta \vec{\pi} = const$, $\Delta h = const$), данное разложение принимает вид

$$d(\vec{\pi}, h) = d_0 + d_h \Delta h + \sum_{i=1}^k (d_{\pi_i} \Delta \pi_i).$$
 (8)

Условие постоянства приращений параметров обеспечивается за счёт объединения шагов предиктора в группы конечной длины. В пределах группы шагов приращения параметров остаются постоянными. Исходя из (8) и учитывая известные погрешности d предыдущих шагов построения, можно подобрать значения приращений параметров так, что будут выполнены оценки $d_h \Delta h \approx \varepsilon_e, d_{\pi_i} \Delta \pi_i \approx \varepsilon_e$, где ε_e - задаваемый порядок погрешности.

Во второй главе приведена постановка задачи о движении динамически симметричного спутника относительно центра масс на круговой орбите. С помощью метода нормальных форм получены аналитические выражения, описывающие семейства периодических движений симметричного спутника, рождающихся из его регулярных прецессий.

Спутник моделировался динамически симметричным твёрдым телом, центр масс O которого движется в центральном ньютоновском гравитационном поле сил по круговой орбите с орбитальной скоростью ω_0 . Для описания движения спутника введена орбитальная OXYZ и связанная Oxyz системы координат. Оси OX, OY, OZ орбитальной системы координат направлены по радиус-вектору центра масс спутника, по трансверсали к орбите и по нормали к плоскости орбиты, соответственно. Оси Ox, Oy, Oz связанной системы координат направлены вдоль главных центральных осей инерции спутника, моменты инерции относительно которых обозначены через J_1 , J_2 и J_3 ($J_2 = J_3$). В указанном случае движение спутника относительно центра масс описывается канонической системой уравнений с двумя степенями свободы и гамильтонианом

$$H = \frac{p_{\psi}^2}{2\sin^2\theta} + \frac{p_{\theta}^2}{2} - \left(\frac{\gamma\cos\theta}{\sin^2\theta} + \cos\psi\cot\theta\right)p_{\psi} - \\ -\sin\psi p_{\psi} + \frac{1}{2}\gamma^2\cot^2\theta + \gamma\frac{\cos\psi}{\sin\theta} + \frac{1}{2}\delta\cos^2\theta, \quad (9)$$

где p_{ψ} , p_{θ} - безразмерные импульсы, соответствующие координатам ψ , θ , а $\gamma = \frac{J_3}{J_1} \frac{r_0}{\omega_0}$, $\delta = 3\left(\frac{J_3}{J_1} - 1\right)$ - кинематический и инерционный параметры. Через r_0 обозначена проекция абсолютной угловой скорости спутника на его ось динамической симметрии Oz, а независимой переменной является истинная аномалия $\nu = \omega_0 t$. В работах [11, 12] было показано, что каноническая система с гамильтонианом (9) имеет три типа стационарных решений, которые описывают регулярные прецессии спутника.

Решение $\theta_0 = \frac{\pi}{2}$, $\psi_0 = \pi$, $p_{\theta_0} = 0$, $p_{\psi_0} = 0$ существует при любых значениях параметров γ , δ и называется цилиндрической прецессией. В данном случае ось динамической симметрии Oz коллинеарна нормали к плоскости орбиты и описывает в абсолютном пространстве цилиндрическую поверхность с радиусом, равным радиусу орбиты.

Решение $\sin \theta_0 = \frac{\gamma}{\delta - 1}$, $\psi_0 = 0$, $p_{\theta_0} = 0$, $p_{\psi_0} = \delta \sin \theta_0 \cos \theta_0$ существует при $|\gamma| \leq |\delta - 1|$ и называется конической прецессией. В этом случае ось динамической симметрии Oz описывает в абсолютном пространстве конус с углом раствора, равным $\pi - 2\theta_0$.

Решение $\theta_0 = \frac{\pi}{2}$, $\cos \psi_0 = -\gamma$, $p_{\theta_0} = \sin \psi_0$, $p_{\psi_0} = 0$ называется гиперболоидальной прецессией спутника и существует при $|\gamma| \leq 1$. При гиперболоидальной прецессии ось динамической симметрии Oz лежит в плоскости, перпендикулярной радиус-вектору центра масс и составляет угол $\pi - \psi_0$ с нормалью к плоскости орбиты, описывая в абсолютном пространстве гиперболоид вращения.

Если регулярная прецессия устойчива по Ляпунову, то в её сколь угодно малой окрестности существуют два типа периодических движений [13]: короткопериодические с периодом, близким к $2\pi/\omega_2$ и долгопериодические с периодом, близким к $2\pi/\omega_1$, где ω_1 и ω_2 – частоты линейной системы ($\omega_1 < \omega_2$). Указанные периодические движения представляют собой малые колебания оси динамической симметрии спутника Oz в окрестности регулярной прецессии и могут быть построены в виде сходящихся рядов по степеням малого параметра – амплитуды колебаний.

Для случая, когда частоты линейной системы не связаны резонансными соотношениями вида $\omega_2 = N\omega_1$, в данной главе, следуя методике работы [13], были получены следующие асимптотические выражения для периодических движений, рождающихся из регулярных прецессий спутника

$$\begin{split} \psi &= \psi_0 + c \,\kappa_2^j A_{21}^j \sin \Omega_2 (\nu - \nu_0) + O(c^2), \\ \theta &= \theta_0 + c \,\kappa_2^j A_{22}^j \cos \Omega_2 (\nu - \nu_0) + O(c^2), \\ p_\psi &= p_{\psi_0} + c \,\kappa_2^j A_{23}^j \cos \Omega_2 (\nu - \nu_0) + O(c^2), \\ p_\theta &= p_{\theta_0} + c \,\kappa_2^j A_{24}^j \sin \Omega_2 (\nu - \nu_0) + O(c^2), \end{split}$$
(10)

$$\psi = \psi_0 + c \kappa_1^j A_{11}^j \sin \Omega_1 (\nu - \nu_0) + O(c^2),
\theta = \theta_0 + c \kappa_1^j A_{12}^j \cos \Omega_1 (\nu - \nu_0) + O(c^2),
p_{\psi} = p_{\psi_0} + c \kappa_1^j A_{13}^j \cos \Omega_1 (\nu - \nu_0) + O(c^2),
p_{\theta} = p_{\theta_0} + c \kappa_1^j A_{14}^j \sin \Omega_1 (\nu - \nu_0) + O(c^2),$$
(11)

где $\Omega_2 = \omega_2 + 4c^2 a_{02} + O(c^4)$, $\Omega_1 = \omega_1 + 4c^2 a_{20} + O(c^4)$, c - амплитуда колебаний оси Oz вблизи регулярной прецессии, а κ_1^j , κ_2^j , A_{11}^j , A_{12}^j , A_{13}^j , A_{14}^j , A_{21}^j , A_{22}^j , A_{23}^j , A_{24}^j , a_{20}^j , a_{02}^j ($j = Z, K, \Gamma$) - постоянные, зависящие от параметров задачи коэффициенты, отвечающие случаю цилиндрической (Z), конической (K) и гиперболоидальной (Γ) прецессии, соответственно. Выражения (10) отвечают семействам короткопериодических движений, рождающихся из цилиндрической, конической и гиперболоидальной прецессий, которые будем именовать Z_s , K_s и Γ_s , соответственно. Выражения (11) отвечают семействам долгопериодических движений, рождающихся из регулярных прецессий.

В данной главе была также описана методика построения семейств долгопериодических движений, рождающихся из гиперболоидальной прецессии спутника в резонансных случаях. Указанная методика основана на результатах работ [10, 14, 16]. В случае резонанса третьего порядка в окрестности гиперболоидальной прецессии существует два семейства долгопериодических движений, именуемые в данной работе Γ_1 и Γ_2 . В случае резонанса четвёртого порядка в окрестности гиперболоидальной прецессии существует три семейства долгопериодических движений, именуемые Γ_2 , Γ_3 и Γ_4 .

В третьей главе семейства периодических движений спутника, рождающихся из регулярных прецессий, были численно продолжены до границ областей существования с помощью алгоритма, описание которого приведено в Главе 1. В качестве опорных использовались аналитические выражения, полученные для указанных семейств в Главе 2. Для всех допустимых значений параметров задачи γ , δ , h из области $\gamma \ge 0$, $0 < \delta \le 3$, h < 3 были построены границы областей существования семейств короткопериодических движений, рождающихся из цилиндрической, конической и гиперболоидальной прецессии в нерезонансном случае и семейств долгопериодических движений, рождающихся из гиперболоидальной прецессии спутника в случае резонансов третьего и четвёртого порядков.

Рис. 1: Области существования семейств Z_s (серый цвет), K_s (горизонтальная штриховка), Γ_s (косая штриховка) короткопериодических движений, рождающихся из конической, цилиндрической и гиперболоидальной прецессии спутника, построенные в плоскости параметров γ , h при фиксированных значениях $\delta = 0, 5$ (a), $\delta = 1.0$ (b) $u \delta = 2.8$ (c, d).

На Рис. 1 показаны области существования семейств Z_s , K_s , Γ_s короткопериодических движений, рождающихся из цилиндрической, конической и гиперболоидальной прецессии спутника, построенные в плоскости параметров γ , h при фиксированных значениях параметра δ . На данном рисунке кривые S_0^K , S_0^Z и S_0^{Γ} определяют уровень энергии исходной канонической системы, при котором существует коническая, цилиндрическая и гиперболоидальная прецессия, соответственно. Кривые S_i^K , S_i^Z и S_i^{Γ} отвечают значениям параметров, при которых происходит бифуркация, либо завершение семейств K_s , Z_s и Γ_s .

Рис. 2: Область существования семейства короткопериодических движений, рождающихся из гиперболоидальной прецессии спутника, в пространстве параметров задачи γ, δ и h при $0 < \delta \leq 3.0$.

На Рис. 2 в трёхмерном пространстве параметров задачи γ, δ и h представлена область существования короткопериодических движений спутника, рождающихся из гиперболоидальной прецессии. Граница указанной области состоит из 5 поверхностей. Поверхность S_0^{Γ} отвечает значениям параметров задачи, при которых существует гиперболоидальная прецессия, и ограничивает область существования снизу. Поверхность S_2^{Γ} ограничивает область существования сверху и определяется критерием завершения семейства. На поверхности S_1^{Γ} происходит бифуркация и периодические движения, принадлежащие к семейству Γ_s , совпадают с периодическими движениями, рождающимися из цилиндрической прецессии спутника и принадлежащими к семейству Z_s . Боковые поверхности задаются равенствами $\delta = 0$, $\delta = 3$. Семейство Γ_s может быть также численно продолжено по параметру δ в область значений $\delta > 3$, однако в данной работе указанный случай не рассматривался.

На Рис. 3 для фиксированного значения $\delta = 1$ и h < 0.3 показаны области существования семейств долгопериодических движений Γ_i (i = 1..4), рождающихся из гиперболоидальной прецессии спутника. Указанный вид областей существования сохраняется при значениях параметра $\delta > 0.115$. На данном рисунке область существования семейства Γ_s показана серым цветом, а сплошными линиями показаны границы, разделяющие плоскость параметров на подобласти с различным числом долгопериодических движений Γ_i

Рис. 3: Сечение областей существования семейств долгопериодических движений $\Gamma_1, \Gamma_1^*, \Gamma_2, \Gamma_3, \Gamma_4$, рождающихся из гиперболоидальной прецессии, плоскостью $\delta = 1$.

Рис. 4: Траектории точки пересечения оси динамической симметрии спутника с единичной сферой, соответствующие периодическим движениям семейств K_s , Z_s и Γ_s , построенным при фиксированных значениях параметров $\gamma = 0.5$, $\delta = 0.5$

Рис. 5: Траектории точки пересечения оси динамической симметрии спутника с единичной сферой, соответствующие долгопериодическим движениям семейства Γ_i (i = 1..4) и короткопериодическим движениям семейства Γ_s , построенным при фиксированных значениях параметров $\gamma = 0.6$, $\delta = 1.0$ и $\gamma = 0.8$, $\delta = 1$. Синим цветом показаны траектории, соответствующие значению постоянной энергии h = 0.01, красным цветом – соответствующие значению h = 0.3. Белой точкой показано положение оси динамической симметрии спутника при гиперболоидальной прецессии.

(*i* = 1..4). При переходе через границы подобластей может происходить бифуркация, рождение, либо завершение семейства периодических движений. Исследованию бифуркации указанных семейств посвящена четвёртая глава настоящей диссертационной работы.

Для иллюстрации полученных результатов в данной работе были построены траектории точки пересечения оси динамической симметрии и единичной сферы, соответствующие семействам периодических движений, рождающихся из регулярных прецессий спутника. На Рис. 4, 5 показаны данные траектории для короткопериодических движений, принадлежащих к семействам K_s , Z_s и Γ_s , и долгопериодических движений, принадлежащих к семействам Γ_i (i = 1..4).

В четвертой главе для всех значений параметров из области $\gamma \geq 0$, $0 < \delta \leq 3$, h < 3 решена линейная задача об орбитальной устойчивости короткопериодических движений спутника, рождающихся из регулярных прецессий, и долгопериодических движений, рождающихся из гиперболоидальной прецессии спутника в случае резонансов третьего и четвёртого порядков. Изучен характер бифуркации указанных периодических движений и построены соответствующие бифуркационные диаграммы. Для получения представления о глобальном характере движения вблизи бифуркационных значений параметров и верификации результатов применялся метод сечений Пуанкаре.

Рис. 6: Области существования (обозначены серым цветом) и орбитальной неустойчивости (обозначены штриховкой) семейства короткопериодических движений K_s при фиксированных значениях $\delta = 0.5$ и $\delta = 2.8$.

На Рис. 6 и 7 показаны области существования (обозначены серым цветом) и орбитальной неустойчивости (обозначены штриховкой) семейств K_s , Z_s , Γ_s короткопериодических движений спутника, рождающихся из конической, цилиндрической и гиперболоидальной прецессии, соответственно. В незаштрихованных подобластях, обозначенных серым цветом, периодические движения семейств K_s , Z_s , Γ_s орбитально устойчивы в линейном приближении. Как и ранее, на указанных рисунках кривые S_0^K , S_0^Z и S_0^{Γ} отвечают уровню постоянной энергии h, при котором существует соответствующая регулярная прецессия.

На Рис. 6-а для фиксированного значения $\delta = 0.5$ показаны области существования и орбитальной неустойчивости семейства K_s короткопериодических движений, рождающихся из конической прецессии. Данное семейство орбитально неустойчиво всюду внутри своей области существования, ограниченной кривыми S_0^K , S_1^K , S_2^K . Кривая S_1^K совпадает с границей S_2^Z области орбитальной неустойчивости семейства Z_s , на которой происходит бифуркация: семейство K_s сливается с семейством Z_s . Численное исследование показало, что с увеличением значения параметра δ точка P_2 , принадлежащая кривой S_1^K , приближается к точке P_1 и при значении $\delta = 1.0$ происходит вырождение области существования семейства K_s .

При при значениях $\delta > 1$ области существования и орбитальной устойчивости семейства K_s принимают вид, показанный на Рис. 6-b. Семейство K_s орбитально устойчиво в линейном приближении в подобласти, ограниченной кривыми S_0^K , S_1^K , S_3^K и осью h и орбитально неустойчиво в подобласти, ограниченной кривыми S_2^K , S_3^K и осью h. На границе S_2^K происходит завершение семейства K_s , а границе S_1^K имеет место бифуркация: K_s сливается с семейством Z_s .

На Рис. 7-а для фиксированного значения $\delta = 0.5$ показаны области существования и орбитальной устойчивости семейства Z_s короткопериодических движений, рождающихся из цилиндрической прецессии. Область существования семейства Z_s ограничена сверху кривой S_1^Z , на которой происходит завершение указанного семейства, а снизу – кривой S_0^K . Из точек P_2 и P_6 исходят кривые S_1^{Γ} , S_1^K , ограничивающие область орбитальной неустойчивости семейства Z_s . Семейство Z_s орбитально устойчиво в линейном приближении в области, ограниченной кривыми S_0^Z , S_1^Z , S_1^Γ , S_1^K . С ростом значения параметра δ точка области существования и орбитальной неустойчивости принимают вид Рис. 7-с,е. При значении $\delta = 2.8$ были также численно построены области, ограниченные кривыми S_3^Z , S_4^Z и S_5^Z , внутрь которых семейство Z_s не может быть численно продолжено при помощи алгоритма, применяемого в данной диссертационной работе.

Области существования и орбитальной устойчивости семейства Γ_s короткопериодических движений, рождающихся из гиперболоидальной прецессии, показаны на Рис. 7-b,d,f. Семейство Γ_s существует в области, ограниченной кривыми S_0^{Γ} , S_1^{Γ} , S_2^{Γ} и осью h. На кривой S_2^{Γ} происходит завершение указанного семейства, а при переходе через кривую S_1^{Γ} происходит бифуркация и Γ_s сливается с семейством Z_s . Из точки $P_{1:2}$, соответствующей резонансу

Рис. 7: Области существования (обозначены серым цветом) и орбитальной неустойчивости (обозначены штриховкой) семейств короткопериодических движений Z_s и Γ_s при фиксированных значениях $\delta = 0.5$, $\delta = 1$ и $\delta = 2.8$.

третьего порядка, исходят кривые S_3^{Γ} и S_4^{Γ} , ограничивающие область орбитальной неустойчивости семейства Γ_s . При увеличении значения параметра δ область орбитальной неустойчивости расширяется и при $\delta > 1.1$ принимает вид, показанный на Рис. 7-f.

Для проверки полученных выше результатов было проведено исследование бифуркации семейств периодических движений K_s , Z_s и Γ_s с помощью метода сечений Пуанкаре. Ниже на На Рис. 8, 9, 10 для фиксированных значений $\delta = 0.5$, h = 0.35 приведены диаграммы бифуркации указанных семейств и соответствующие сечения Пуанкаре.

Рис. 8: Диаграмма бифуркации семейств короткопериодических движений K_s, Z_s, Γ_s при фиксированном значении $\delta = 0.5$ (a.) и график зависимости их периодов T_K, T_Z и T_{Γ} от значения параметра γ при $\delta = 0.5$ и h = 0.35 (b.) Серым цветом показана область существования семейства Z_s , перекрёстной штриховкой – область существования семейства K_s . Семейство Γ_s существует в областях, отмеченных косой и перекрёстной штиховками.

При $\gamma < 0.16$ существует одно семейство орбитально устойчивых в линейном приближении короткопериодических движений – Γ_s . При увеличении значения γ в точке $\gamma = 0.16$ из цилиндрической прецессии рождается семейство орбитально устойчивых в линейном приближении короткопериодических движений Z_s , а в точке $\gamma = 0.46$ из конической прецессии рождается семейство орбитально неустойчивых короткопериодических движений K_s . При переходе через границу S_1^K в точке B_1 семейство K_s сливается с семейством Z_s , при этом движения семейства Z_s становятся орбитально неустойчивыми. На Рис. 9-а показано сечение Пуанкаре, построенное в окрестности точки бифуркации B_1 . При переходе через границу S_1^{Γ} в точке B_2 семейство Γ_s сливается с семейством Z_s , принадлежащие к которому движения становятся орбитально устойчивыми в линейном приближении. Сечения Пуанкаре, построенные в окрестности точки B_2 , представлены на Рис. 9-b и 10. В точке P_3 семейство Z_s завершается, совпадая с цилиндрической прецессией. Через Z_i (i = 1..5) и K_1 на Рис. 9, 10 обозначены семейства долгопериодических движений, рождающихся из цилиндрической и конической прецессии спутника.

Рис. 9: Отображения Пуанкаре, построенные в окрестности точек B_1 (a) и B_2 (b) бифуркации семейств короткопериодических движений K_S , Z_S , Γ_S при фиксированных значениях параметров $\delta = 0.5$, h = 0.35, $\gamma = 0.77$ (a) и $\gamma = 1.09$ (b).

В данной главе также было выполнено исследование орбитальной устойчивости и бифуркации семейств Γ_i (i = 1..4) долгопериодических движений рождающихся из гиперболоидальной прецессии. В пространстве параметров задачи γ , δ , h были построены диаграммы бифуркации указанных семейств и графики зависимости их периодов от параметра γ при фиксированных значениях параметров δ и h. Для верификации результатов был применён метод сечений Пуанкаре.

На Рис. 3 для фиксированного значения $\delta = 1$ сплошными линиями показаны границы, разделяющие область существования периодических движений, рождающихся из гиперболоидальной прецессии, на подобласти с различным числом долгопериодических движений Γ_i (i = 1..4). При переходе через границы подобластей может происходить бифуркация, рождение либо завершение семейства периодических движений. Границы подобластей примыкают к точкам кривой S_0^{Γ} , отвечающим резонансам $\omega_2 = 2\omega_1$ и $\omega_2 = 3\omega_1$. При значениях константы энергии h > 0.05 также существует семейство долгопериодических движений Γ_1^* , которое не может быть построено аналитически в малой окрестности гиперболоидальной прецессии. Начальные условия опорного движения, использовавшиеся для численного построения указанного семейства, были получены с помощью метода отображений Пуанкаре.

Для исследования характера бифуркаций периодических движений, возникающих при переходе из одной подобласти в другую при различных фик-

Рис. 10: Отображение Пуанкаре, построенное в окрестности точки бифуркации B_2 семейств короткопериодических движений K_S , Z_S , Γ_S при фиксированных значениях параметров $\delta = 0.5$, $\gamma = 1.15$, h = 0.35.

сированных значениях энергии h и заданном значении $\delta = 1$ в плоскости γ , Т были построены диаграммы, описывающие зависимость периода Т периодических движений от параметра γ . На Рис. 11 показана диаграмма, соответствующая значению постоянной энергии h = 0.001. На данной диаграмме нижняя кривая T_s соответствует периоду семейства Γ_s , а верхние кривые (обозначенные через NT_s) отвечают кратным значениям периода того же семейства, то есть удвоенному, утроенному и учетверённому периоду, соответственно. Через T_i (i = 1..4) обозначены кривые зависимости периодов долгопериодических движений Γ_i (i = 1..4) от параметра γ . Сплошными линиями показаны отрезки данных кривых, которым соответствует орбитальная устойчивость периодического движения в линейном приближении, а пунктирными линиями – орбитальная неустойчивость. При малых значениях параметра γ существует два семейства периодических движений, рождающихся из гиперболоидальной прецессии спутника: семейство короткопериодических движений Γ_s и семейство долгопериодических движений Γ_1 . При увеличении значения параметра γ период долгопериодических движений семейства Г₁ возрастает и приближается к удвоенному периоду короткопериодических движений Γ_s . При значении параметра $\gamma = 0.605$ период T_1 становится равен удвоенному периоду T_s (точка B_2 на Рис. 11), что соответствует бифуркации удвоения периода, при этом семейство Γ_1 сливается с Γ_s и прекращает своё существование.

В точке B_1 (Рис. 11), отвечающей значению $\gamma = 0.596$, берёт начало кривая T_2 периода семейства долгопериодических движений Γ_2 . При данном значении параметра имеет место бифуркация, при которой от семейства короткопериодических движений Γ_s отделяется семейство долгопериодических

Рис. 11: Диаграмма зависимости периодов T_s , T_i (i = 1..4) семейств Γ_s , Γ_i (i = 1..4)периодических движений, рождающихся из гиперболоидальной прецессии симметричного спутника, от параметра γ при фиксированных значениях параметров h = 0.001 и $\delta = 1$. Сплошные линии соответствуют значениям γ , при которых семейства Γ_s , Γ_i (i = 1..4)орбитально устойчивы в линейном приближении, а пунктирные линии - значениям γ , при которых указанные семейства орбитально неустойчивы.

движений Γ_2 . При этом орбитальная устойчивость семейства короткопериодических движений Γ_s сменяется на неустойчивость. На Рис. 11 интервал неустойчивости показан пунктирной линией. При возрастании параметра γ период семейства Γ_2 возрастает до тех пор, пока его значение не станет равным утроенному периоду семейства короткопериодических движений Γ_s . На Рис. 11 точка B_4 ($\gamma = 0.801$) соответствует бифуркации, при которой семейство Γ_2 сливается с Γ_s и прекращает своё существование.

В точке B_3 (значение $\gamma = 0.797$) берут начало кривые T_3 и T_4 , соответствующие периодам семейств долгопериодических движений Γ_3 и Γ_4 . С увеличением параметра γ период движений, принадлежащих к семейству Γ_3 , уменьшается, пока кривая T_3 не совпадает с T_s в точке B_4 ($\gamma = 0.801$). Периодические движения, принадлежащие к семейству Γ_3 , орбитально неустойчивы. Период T_4 долгопериодических движений семейства Γ_4 возрастает с увеличением γ . В точке B_5 , отвечающей значению $\gamma = 0.84$, семейство Γ_4 сливается с семейством короткопериодических движений Γ_s , при этом период T_4 принадлежащих к данному семейству движений становится равен учетверённому периоду T_s . Движения, принадлежащие к семейству Γ_4 , орбитально устойчивы в линейном приближении. При значении h = 0.001, соответствующем малым амплитудам c, поведение семейств периодических движений хорошо согласуется с выводами аналитической теории, развитой в [10, 14].

В заключении сформированы основные результаты диссертационной работы.

1. Для алгоритма численного продолжения по параметру семейств пери-

одических движений автономной гамильтоновой системы с двумя степенями свободы предложен явный вид матрицы перехода к локальным координатам и изложена методика выбора приращений параметров, что позволило существенно повысить скорость построения семейств периодических движений. Разработан программный комплекс, реализующий указанный алгоритм в среде символьных вычислений Maple 15.

- 2. Получены аналитические выражения для семейств периодических движений симметричного спутника, рождающихся из регулярных прецессий в нерезонансном случае и семейств долгопериодических движений, рождающихся их гиперболоидальной прецессии в случае резонансов третьего и четвёртого порядка.
- 3. В трёхмерном пространстве параметров задачи численно построены области существования семейств короткопериодических движений, рождающиеся из цилиндрической, конической и гиперболоидальной прецессии спутника и семейств долгопериодических движений, рождающиеся из гиперболоидальной прецессии спутника в случае резонансов третьего и четвёртого порядка. Выполнен линейный анализ орбитальной устойчивости указанных семейств.
- Построены диаграммы бифуркации семейств короткопериодических движений, рождающихся из регулярных прецессий и семейств долгопериодических движений, рождающихся из гиперболоидальной прецессии. Для верификации полученных результатов был применён метод сечений Пуанкаре.

Публикации автора диссертации в журналах, входящих в перечень ВАК

- 1. Сухов Е. А., Бардин Б. С. Численно-аналитическое построение семейства периодических движений симметричного спутника, рождающихся из его гиперболоидальной прецессии // Инженерный журнал: наука и инновации. 2016. Т. 53.
- 2. Сухов Е. А., Бардин Б. С. Численно-аналитическое построение и исследование устойчивости периодических движений симметричного спутника // Инженерный журнал: наука и инновации. 2017. 11.
- 3. E. A. Sukhov. Bifurcation analysis of periodic motions originating from regular precessions of a dynamically symmetric satellite // Russian Journal of Nonlinear Dynamics. 2019. V. 15, no. 4.
- 4. E. Sukhov. Analytical and Numerical Computation and Study of Long-periodic motions Originating from Hyperboloidal Precession of a Symmetric Satellite // AIP Conference Proceedings. 2018. V. 1959, no. 040021.

Прочие публикации автора диссертации

- 5. Сухов Е. А., Бардин Б. С. О периодических движениях, рождающихся из гиперболоидальной прецессии симметричного спутника // Тез. докл. LIII Всероссийской конференции по проблемам динамики, физики частиц плазмы и оптоэлектроники / РУДН. Москва: 2017. С. 164–168.
- 6. Бардин Б. С., Сухов Е. А. Об алгоритме продолжения по параметрам семейств периодических движений автономной гамильтоновой системы с двумя степенями свободы // Тез. докл. LIV Всероссийской конференции по проблемам динамики, физики частиц плазмы и оптоэлектроники / РУДН. Москва: 2018. С. 198–202.
- 7. *Сухов Е. А.* Численно-аналитическое построение периодических движений симметричного спутника, рождающихся из его гиперболоидальной прецессии // Труды XXVII международной конференции МИКМУС / ИМАШ РАН. Москва: 2015. Р. 253–256.
- 8. Сухов Е. А. Построение и исследование устойчивости долгопериодических движений симметричного спутника, рождающихся из его гиперболоидальной прецессии // тезисы Международной конференции по математической теории управления и механике МСТМ-2017 / ВлГУ им. А. Г. и Н. Г. Столетовых, МГУ, Математический институт им. В. А. Стеклова РАН. Суздаль: 2017.

Цитируемая литература

- 9. *Каримов С. Р., Сокольский А. Г.* Метод продолжения по параметрам естественных семейств периодических движений гамильтоновых систем // Препринт / ИТА АН СССР. № 9. 1990. С. 32.
- 10. Бардин Б. С., Чекин А. М. О нелинейных колебаниях гамильтоновой системы при резонансе 3:1 // Прикладная математика и механика. 2009. Т. 73, 3.
- 11. Кондураръ В. Т. Частные решения общей задачи о поступательно-вращательном движении сфероида под действием притяжения шара // Астрономический журнал. 1959. Т. 36, 5. С. 890–901.
- 12. Дубошин Г. Н. О вращательном движении искусственных небесных тел // Бюлл. ИТА АН СССР. 1960. Т. 7, 7. С. 511–520.
- 13. Ляпунов А.М. Общая задача об устойчивости движения // Собр. соч. Т. 2. М.-Л.: Изд-во АН СССР, 1956. С. 7–263.
- 14. *Маркеев А.П.* О нелинейных колебаниях гамильтоновой системы при резонансе 2:1 // *ПММ*. 1999. Т. 63, Вып. 5. С. 757–769.
- A. Deprit, J. Henrard. Natural families of periodic orbits // The Astronomical Journal. 1967. V. 72, no. 2. P. 158–172.
- 16. D. S. Schmidt. Periodic solutions near a resonant equilibrium of a Hamiltonian system // Celestial Mechanics. 1974. no. 9.