ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ» (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

На правах рукописи

Иванов Артем Викторович

ТЕХНОЛОГИЯ КОМПЛЕКСНЫХ ПОЛУНАТУРНЫХ ИССЛЕДОВАНИЙ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ СООСНЫХ ВИНТОВЕНТИЛЯТОРОВ ТУРБОВИНТОВЕНТИЛЯТОРНЫХ ДВИГАТЕЛЕЙ

Специальность 05.07.05 «Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов»

Диссертация на соискание ученой степени кандидата технических наук

Научный руководитель кандидат технических наук, доцент Бабин Сергей Васильевич

ОГЛАВЛЕНИЕ

введени	1E				7
Глава 1	Технология	комплексных	полунатурных	испытаний	соосных
винтовент	иляторов и агр	егатов САУ в з	замкнутых канал	ах управлени	я. Анализ
проблем, і	возникающих пр	ои разработке ви	нтовентиляторов	и их САУ	21
1.1 Струк	турная организ	ация и базовые	характеристики	стенда полу	натурного
моделиро	вания для испыт	аний винтовент	иляторов и их СА	У	21
1.2 Структ	гура и характери	истики программ	ного обеспечени	я современног	го СПМ
		•••••			25
1.3 Струк	тура математич	еских моделей	СПМ, их описан	ие и взаимод	ействие с
объектом	испытания				35
1.4 Анали	з программных	комплексов, поз	вволяющих модел	пировать рабо	ту ГТД, и
анализ воз	зможности их пр	оименения на СГ	IM		48
1.4.1 GasT	urb 12 (Германи	ия)(ки		•••••	48
1.4.2 GSP	11 (Нидерландь	ı)		•••••	51
1.4.3 ГРА	Д, ГРЭТ (Россия	, Казань)		•••••	52
1.4.4 Прог	раммный компл	екс АСТРА (Рос	ссия, Самара)	•••••	52
1.4.5 Комі	плексный матем	атический стенд	(Россия, Москва)	53
1.4.6 DVI	Gw (Россия, Уфа	a)			54
1.5 Постан	новка цели и зад	ач исследования	[55
Глава 2	Разработка	поузловой	поэлемен	тной) нє	линейной
термодина	амической ММ	ТВВД на пример	ое ТВВД Д-27 дл	я стенда полу	натурного
моделиро	вания				57
2.1 Основа	ные подходы пр	и разработке поз	узловой нелинейн	ной термодина	имической
MM TBB	Į				57
2.2 Структ	гурная схема по	узловой (поэлем	ентной) нелинейн	ной термодина	імической
MM TBB	I на примере ТЕ	ВВД Д-27			58
2.3 Расче	т условий пол	ета: значений	давления тормо	жения и тем	пературы
торможен	ия на входе в дв	игатель		•••••	61

3
2.3.1 Расчет наружной физической температуры и наружного физического
давления по МСА на заданной высоте
2.3.2 Расчет наружной физической температуры и наружного физического
давления с учетом отклонения от МСА
2.3.3 Расчет показателя адиабаты наружного воздуха с учетом отклонения
температуры от МСА
2.3.4 Расчет числа Маха
2.3.5 Расчет температуры торможения и давления торможения на входе в двигатель
2.4 Термодинамический расчет основных элементов газогенератора ТВВД на
примере ТВВД Д-27
2.4.1 Термодинамический расчет компрессора низкого давления
2.4.1.1 Расчет приведенной частоты вращения ротора НД
2.4.1.2 Расчет массового приведенного расхода воздуха через КНД 65
2.4.1.3 Расчет термогазодинамических параметров на входе в КНД 69
2.4.1.4 Расчет термогазодинамических параметров на выходе из КНД 69
2.4.1.5 Расчет удельной работы, совершаемой КНД
2.4.1.6 Расчет мощности, потребляемой КНД
2.4.1.7 Расчет массового расхода воздуха на выходе из КНД
2.4.2 Термодинамический расчет компрессора высокого давления 70
2.4.2.1 Расчет приведенной частоты вращения ротора ВД
2.4.2.2 Расчет массового приведенного расхода воздуха через КВД71
2.4.2.3 Расчет степени повышения давления торможения КВД и КПД по
параметрам торможения
2.4.2.4 Расчет термогазодинамических параметров на выходе из КВД 72
2.4.2.5 Расчет удельной работы, совершаемой КВД
2.4.2.6 Расчет мощности, потребляемой КВД
2.4.2.7 Расчет массового расхода воздуха на выходе из КВД (на входе в КС) 73
2.4.3 Термодинамический расчет камеры сгорания
2.4.3.1 Расчет массового расхода газа на выходе из КС (на входе в ТВД)
2.4.3.2 Расчет параметров топлива, подаваемого в КС

2.4.3.3 Расчет термогазодинамических параметров на выходе из КС	. 74
2.4.3.4 Расчет температуры торможения газа на выходе из КС пут	гем
последовательного приближения	.76
2.4.4 Термодинамический расчет турбины высокого давления	.76
2.4.4.1 Расчет пропускной способности ТВД	. 77
2.4.4.2 Расчет степени понижения давления торможения ТВД и КПД ТВД	ПО
параметрам торможения	. 77
2.4.4.3 Расчет термогазодинамических параметров на выходе из ТВД	.79
2.4.4.4 Расчет удельной работы, совершаемой над ТВД	. 79
2.4.4.5 Расчет мощности, развиваемой ТВД	80
2.4.4.6 Расчет массового расхода газа на выходе из ТВД (на входе в ТНД)	80
2.4.5 Термодинамический расчет турбины низкого давления	80
2.4.5.1 Расчет пропускной способности ТНД	80
2.4.5.2 Расчет степени понижения давления торможения ТНД и КПД ТНД	по
параметрам торможения	81
2.4.5.3 Расчет термогазодинамических параметров на выходе из ТНД	. 82
2.4.5.4 Расчет удельной работы, совершаемой над ТНД	83
2.4.5.5 Расчет мощности, развиваемой ТНД	. 83
2.4.5.6 Расчет массового расхода газа на выходе из ТНД (на входе в ТВВ)	83
2.4.6 Термодинамический расчет турбины винтовентилятора	84
2.4.6.1 Расчет приведенной частоты вращения ротора ТВВ	84
2.4.6.2 Расчет пропускной способности ТВВ	84
2.4.6.3 Расчет степени понижения давления торможения ТВВ и КПД ТВВ	по
параметрам торможения	84
2.4.6.4 Расчет термогазодинамических параметров на выходе из ТВВ	86
2.4.6.5 Расчет удельной работы, совершаемой над ТВВ	. 87
2.4.6.6 Расчет мощности, развиваемой ТВВ	. 87
2.4.7 Термодинамический расчет выходного устройства	. 88
2.5 Динамический расчет частот вращения роторов ВД, НД и ТВВ	. 88
2.5.1 Динамический расчет ротора ВД	. 88
2.5.2 Динамический расчет ротора НД	89

2.5.3 Динамический расчет редуктора Д-2790
Глава 3 Разработка модуля реализации поузловой нелинейной
термодинамической математической модели турбовинтовентиляторного двигателя
Д-27 в среде программирования, применяемой на стенде полунатурного
моделирования91
3.1 LabView как программная среда стенда полунатурного моделирования 91
3.2 Описание разработанного программного обеспечения для моделирования
ТВВД Д-27
3.2.1 Расчет условий полета
3.2.2 Расчет двигателя Д-27
Глава 4 Исследование адекватности поузловой нелинейной математической
модели ТВВД Д-27
4.1 Сравнение результатов отработки ММ ТВВД Д-27 с результатами летных
испытаний самолета AH-70107
4.2 Сравнение результатов отработки ММ ТВВД Д-27 с дроссельными
характеристиками от 2012г., представленными ГП «ЗМКБ «Прогресс» им. А.Г.
Ивченко
4.3 Сравнение результатов отработки ММ ТВВД Д-27 с высотно-скоростными
экспериментально-расчетными характеристиками от 2002г., представленными
ЗМКБ «Прогресс» им. А.Г. Ивченко
Глава 5 Корректировка поузловой нелинейной ММ ТВВД Д-27 по
результатам верификации
5.1 Уточнение ММ ТВВД Д-27 в части расхода топлива в КС
5.2 Уточнение ММ в части мощности, развиваемой ТВВ
Глава 6 Идентификация уточненной поузловой нелинейной ММ ТВВД Д-27
6.1 Идентификация уточненной ММ ТВВД Д-27 в части статических параметров
6.2 Идентификация ММ ТВВД Д-27 в части динамических параметров на стенде
полунатурного моделирования в замкнутых каналах управления 132

Глава 7 Исследование применения нечеткой логики и генетического алгоритма
для нахождения совместной точки работы компрессоров и турбин в поузловой
нелинейной ММ ТВВД Д-27
7.1 Актуальность применения генетического алгоритма для нахождения
совместной точки работы компрессоров и турбин в поузловой нелинейной ММ
ТВВД Д-27
7.2 Реализация генетического алгоритма в среде LabView совместно с поузловой
нелинейной ММ ТВВД Д-27 для нахождения совместной точки работы
компрессоров и турбин
7.3 Результаты работы генетического алгоритма в поузловой нелинейной ММ
ТВВД Д-27 для нахождения совместной точки работы компрессоров и турбин
Глава 8 Апробация поузловой ММ ТВВД на стенде полунатурного
моделирования при испытаниях агрегатов САУ СВВ в замкнутых каналах
управления
8.1 Результаты апробации поузловой ММ ТВВД Д-27 в замкнутых каналах
управления на стенде полунатурного моделирования
8.2 Результаты апробации поузловой ММ ТВД ТВ7-117СТ на стенде
имитационного моделирования
ЗАКЛЮЧЕНИЕ
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ163
СПИСОК ЛИТЕРАТУРЫ171
ПРИЛОЖЕНИЕ А_– Характеристики узлов двигателя Д-27 184
ПРИЛОЖЕНИЕ Б – Результаты исследования адекватности разработанной ММ
ТВВД Д-27, представленные в графическом виде
ПРИЛОЖЕНИЕ В – Результаты исследования адекватности разработанной ММ
ТВВД Д-27, представленные в табличном виде
ПРИЛОЖЕНИЕ Г – Значения коэффициентов идентификации ММ ТВВД Д-27
ПРИЛОЖЕНИЕ Д – Результаты идентификации уточненной ММ ТВВД Д-27 262

ВВЕДЕНИЕ

Актуальность темы исследования.

Создание и доводка современных воздушных винтов (ВВ), в том числе соосных винтовентиляторов (СВВ), и их систем автоматического управления (САУ), включая гидромеханические регуляторы (ГМР), немыслимы без стендов полунатурного моделирования (СПМ) [1, 2]. Идея полунатурного моделирования заключается в подмене одного или нескольких натурных объектов, участвующих в испытаниях, на их модель с целью снижения себестоимости испытаний или с целью исключения влияния натурных объектов друг на друга (в случае поиска дефектов в изделии). Нередко полунатурное моделирование является единственным способом проведения испытаний в условиях отказных или аварийных ситуаций в связи с техническими проблемами их имитаций, рисками и недопустимостью по причине опасности [3, 4, 5].

При испытаниях BB и ГМР на СПМ основным объектом моделирования является газотурбинный двигатель (ГТД).

Современный ГТД – это сложная, многомерная динамическая система. Для авиационного ГТД основными особенностями работы являются: высокая напряженность рабочего процесса, многорежимность и широкий диапазон изменения параметров внешней среды, управляющих и других воздействий. В соответствии с термогазодинамической и механической основой рабочих процессов в ГТД при его моделировании основными являются фундаментальные сохранения массы, движения и энергии. Для моделирования уравнения нестационарных процессов в уравнениях должны учитываться процессы накопления (расходования) вещества и энергии (механической, внутренней, производимой газом работы) в элементах двигателя (в проточной части, в роторе и т.д.). При этом часть элементов двигателя (компрессоры, турбины) достаточно трудно описать аналитически, и их модели чаще используют в эмпирической форме в виде так называемых «характеристик», например, в виде графических, табличных или регрессионных зависимостей. [6]

Эффективность проектирования, доводки, отладки ГТД, контроля его технического состояния в эксплуатации определяется степенью адекватности и продуктивности используемых на этих этапах математических моделей (ММ) [7, 8].

Достоверность испытаний ВВ и их САУ на СПМ также зависит от соответствия заложенных ММ реальным объектам и от способности исполнительных механизмов воспроизвести параметры ММ [9, 10].

Сегодня, ввиду сложности достоверного моделирования параметров ГТД в режиме реального времени, ОАО «НПП «Аэросила», являющееся единственным в стране предприятием, занимающимся созданием современных ВВ и винтовентиляторов гражданского и военного применения, при разработке и доводке соосного винтовентилятора СВ-27 столкнулось с проблемой достоверного моделирования на СПМ турбовинтовентиляторного двигателя (ТВВД) Д-27.

Существующие подходы к моделированию ГТД на СПМ в режиме реального времени не позволяют в полной мере проводить испытания СВВ и их САУ, что вызвано следующими особенностями.

1 ММ ТВВД, представленная в виде внешней характеристики двигателя $N_{\text{твв}} = f(\alpha_{\text{руд}}, n_{\text{твв}})$ (см. Рисунок ВВ.1.), не обеспечивает достоверное моделирование переходных процессов, а также моделирование особо важных параметров двигателя, таких как: суммарная степень повышения давления компрессоров $\pi_{\text{к}\Sigma}^*$, температура газа за турбиной $t_{\text{твд}}^*$ и др., являющихся необходимыми для взаимодействия с САУ [11, 12] и, следовательно, для идентификации ММ (существующий закон управления расходом топлива в камеру сгорания (КС), заложенный в системе автоматического управления и контроля (САУиК) ЭСУ-27, использует в качестве основного параметра $\pi_{\text{к}\Sigma}^*$ [13]).

В целом можно отметить, что данная модель является моделью нулевого уровня [14], ориентированной на упрощенное моделирование параметров турбины винтовентилятора (ТВВ).

Рисунок ВВ.1 – Внешняя характеристика двигателя Д-27

2 Использование на СПМ расчетных высотно-скоростных характеристик (ВСХ) ТВВД Д-27 позволяет методом линейной интерполяции рассчитать основные параметры двигателя на различных высотах и скоростях полета, что дает возможность проведения испытаний совместно с САУ, однако, не позволяет достаточно точно моделировать параметры двигателя на неустановившихся режимах работы [15, 16]. Для моделирования переходных процессов двигателя BCX, необходимо статическими режимами, определяемыми дополнительно применять динамическую характеристику ГТД, представленную в виде $\dot{n} = f(n_{\rm np}, G_{\rm T.np})$ – см. Рисунок ВВ.2. Динамическая характеристика ГТД базируется на учете инерционности ротора турбокомпрессора [17] и не предусматривает учет следующих внешних воздействий на двигатель: изменение геометрии проточной части двигателя, изменение параметров отборов воздуха (место отбора, величина отбора) и параметров отбора механической мощности (привод вспомогательных агрегатов и энергоузлов), влияние числа Re на характеристики двигателя и др. Кроме того, для трехвального двигателя Д-27

необходимо использовать многомерную динамическую характеристику, что значительно усложняет проведение расчетов.

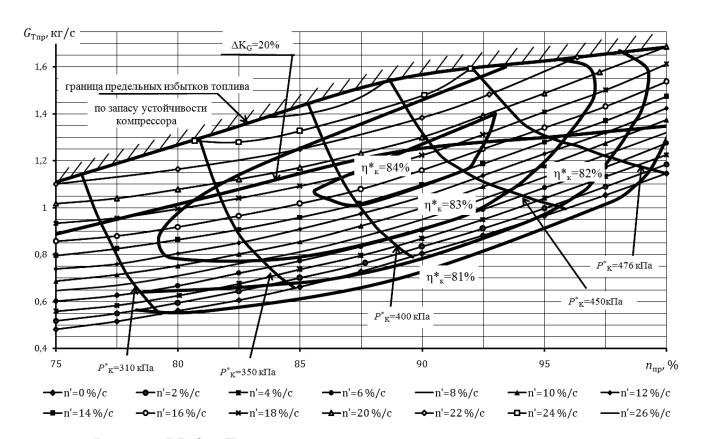


Рисунок ВВ.2 – Динамическая характеристика двигателя в виде зависимости $\dot{n} = f(n_{\rm np}, G_{\rm т.np})$

З Кусочно-линейная динамическая математическая модель (КЛДМ) ТВВД Д-27, представленная в приложении Д к ТЗ на ЭСУ-27М [18], работает на основе статической характеристики двигателя и, в настоящее время, является наиболее достоверным методом моделирования переходных процессов ТВВД на СПМ. КЛДМ применена при создании и доводке ЭСУ-27М на СПМ разработчика САУиК для ТВВД Д-27 и СВ-27 (АО УНПП «Молния») [19, 20]. Несмотря на преимущества КЛДМ ТВВД Д-27, статическая характеристика двигателя, лежащая в основе разработанной ММ, приведена только для земных условий по Международной стандартной атмосфере (МСА) — в приложении Д к ТЗ на ЭСУ-27М [18] не описывается возможность использования ММ ТВВД Д-27 при высотах и скоростях полета отличных от нуля, в том числе при нарушении подобия процессов в узлах

двигателя вследствие влияния числа Re на их характеристики. Применение такой ММ для воспроизведения переходных процессов при различных внешних условиях требует проведение дополнительного расчета массива динамических коэффициентов для каждой необходимой комбинации внешних условий, что значительно увеличивает трудоемкость доработки такой модели. Кроме того, КЛДМ работает только в окрестности установившегося режима на линии рабочих режимов (ЛРР) [21] и не может использоваться для моделирования в широком диапазоне режимов работы компрессоров и турбин, т.к. разгон и торможение двигателя являются существенно нестационарными процессами с достаточно большими сигналами управления, и применение линейных методов здесь приводит к большим погрешностям. [6, 15, 16, 22].

Учитывая несовершенство существующих подходов к моделированию ТВВД на СПМ, возникает необходимость создания и внедрения в СПМ поузловой (поэлементной) нелинейной термодинамической математической модели ТВВД Д-27 первого уровня [14, 23, 24], которая способна качественно описывать переходные процессы двигателя в широком диапазоне режимов работы компрессоров и турбин, моделировать работу двигателя на различных высотах и скоростях полета. Такая модель позволяет получить термодинамические параметры рабочего тела (температуры и давления) в сечениях между основными элементами двигателя, что дает возможность проводить исследовательские испытания, в том числе совместно с САУ ЭСУ-27М.

Поузловая ММ ТВВД является универсальной, позволяет корректировать отдельные элементы (КНД, КВД, КС, ТВД, ТНД, ТВВ, ВУ), не изменяя модель в целом, что делает возможным создание на ее базе математических моделей других двигателей для применения на СПМ, путем корректировки характеристик элементов двигателя и изменения количества элементов.

Актуальным, в настоящее время, является также внедрение в СПМ поузловой нелинейной термодинамической математической модели двигателя ТВ7-117СТ (АО «Климов») с целью реализации полунатурных испытаний САУ разрабатываемого ВВ АВ112 для легкого военно-транспортного самолета Ил-112В.

В целом, можно отметить, что существующие математические модели и технологии полунатурных исследований САУ ГТД, включая ТВВД, позволяют прежде всего решать задачи устойчивости и качества регулирования в замкнутых контурах, как необходимые условия обеспечения работоспособности САУ. В дополнение к указанным задачам необходимо добавить задачи, связанные с исследованием характеристик систем контроля и диагностики как внутренних, так и внешних отказов, а также задачи, связанные с анализом вибрационной прочности и явлениями газодинамической устойчивости (помпаж, флаттер, акустика и др.), которые требуют моделирования дополнительных параметров или их физической имитации.

Цели и задачи исследования.

Целью работы является разработка технологии полунатурных испытаний агрегатов САУ соосных винтовентиляторов в замкнутых каналах управления с применением поузловой ММ ТВВД для повышения эффективности проектирования и доводки СВВ и их САУ (включая ГМР).

Для достижения цели в работе ставятся следующие задачи:

- 1 Провести анализ структурной организации и базовых характеристик стенда полунатурного моделирования для испытания агрегатов САУ соосных винтовентиляторов, определить недостатки существующего подхода.
- 2 Разработать поузловую нелинейную термодинамическую ММ ТВВД на примере ТВВД Д-27 для замыкания каналов управления на стенде полунатурного моделирования.
- 3 Разработать модуль реализации ММ ТВВД в среде программирования, применяемой на стенде полунатурного моделирования.
- 4 Исследовать реализованную ММ для ТВВД Д-27 на адекватность, по результатам исследования провести уточнение ММ с последующей идентификацией.
- 5 Исследовать пути возможной оптимизации расчета разработанной ММ ТВВД Д-27 с применением современных методов нечеткой логики и выработать

рекомендации для применения указанной ММ на других СПМ ОАО «НПП «Аэросила», предназначенных для испытаний аналогичных ВВ и ГМР.

6 Внедрить идентифицированную ММ ТВВД на стенд полунатурного моделирования 311ПР ОАО «НПП «Аэросила».

Научная новизна.

Новыми научными результатами, полученными в работе, является технология полунатурных испытаний агрегатов САУ соосных винтовентиляторов с применением поузловой ММ ТВВД для замыкания на нее каналов управления.

Теоретическая и практическая значимость работы.

Предложенная технология полунатурных испытаний агрегатов САУ с применением в стенде полунатурного моделирования поузловой нелинейной термодинамической ММ ТВВД Д-27 в замкнутых каналах управления представляет теоретическую и практическую ценность — позволяет максимально достоверно проводить исследовательские испытания воздушных винтов, соосных винтовентиляторов и агрегатов их САУ, отвечать на интересующие разработчиков вопросы:

- синтезирование оптимальных законов и алгоритмов управления САУ СВВ для различных режимов работы ТВВД, в том числе, для режима реверса тяги;
- отработка комплексного управления СВВ в составе ТВВД в различных высотно-скоростных и климатических условиях;
 - оценка запасов устойчивости САУ СВВ во всем диапазоне режимов работы;
- построение статических и динамических характеристик CBB и агрегатов CAУ;
- отработка алгоритмов функционирования агрегатов САУ при отказах элементов конструкции ТВВД и его систем, в том числе, сложно воспроизводимых в эксплуатации ввиду их опасности;
 - своевременное выявление системных ошибок при проектировании САУ;
 - выявление скрытых дефектов в опытных и серийных изделиях;
 - отработка алгоритмов и средств систем контроля и диагностики.

Методология и методы исследования.

При выполнении работы использовались следующие теории и законы теоретического уровня исследований:

1 теории:

- теория воздушно-реактивного двигателя (ВРД);
- теория воздушного винта;
- теория математического моделирования;
- теория нечеткой логики и генетических алгоритмов;
- теория САУ.

2 законы:

- закон сохранения энергии;
- закон сохранения массы;
- второй закон Ньютона для вращательного движения.

Кроме того, применялись следующие методы эмпирического и теоретического уровней исследования [25]:

1 эмпирического уровня:

- **сравнение** для оценки результатов математического моделирования в отношении реального объекта;
- анализ для выявления общих и частных проблем при испытаниях САУ винтовентиляторов и ВВ на стенде полунатурного моделирования;
- абстракция для упрощения представления и реализации математических молелей.

2 теоретического уровня:

- индукция для обобщения отклонений, полученных в результате сравнения параметров работы поузловой математической модели двигателя и параметров работы реального двигателя в различных высотно-скоростных условиях;
- интуиция для выявления эффективности использования нечеткой логики и генетического алгоритма при нахождении совместной точки работы компрессоров и турбин в поузловой математической модели двигателя;

- доказательство для осуществления процесса идентификации поузловой математической модели двигателя;
- моделирование для осуществления имитации работы турбовинтовентиляторного двигателя на стенде полунатурного моделирования при помощи его поузловой математической модели, взаимодействующей с асинхронным электродвигателем привода маслонасоса ГМР.

Положения, выносимые на защиту.

На защиту выносятся:

- 1 Применение поузловой математической модели ТВВД на стенде полунатурного моделирования для замыкания каналов управления и отработки систем контроля и диагностики.
- 2 Технология полунатурных испытаний САУ соосных винтовентиляторов в замкнутых каналах управления.
- 3 Результаты апробации поузловой математической модели ТВВД, работающей в замкнутых каналах управления на стенде полунатурного моделирования.

Достоверность результатов проведенных исследований.

Достоверность результатов выполнения научной работы основывается на:

- корректном использовании фундаментальных уравнений теории ВРД, полученных на основе фундаментальных законов физики;
- применении программно-математического аппарата, отвечающего современному уровню;
- положительных результатах сравнения параметров, полученных при моделировании, с параметрами реального объекта исследования.

Авторский вклад.

Автор внес значительный вклад в создание стенда полунатурного моделирования 311ПР ОАО «НПП «Аэросила». Автором лично разработаны

программные модули графических интерфейсов стенда, программные модули системы для анализа и постобработки результатов испытаний, программный конфигурирования модуль систем стенда, математические модели аэродинамических характеристик соосного винтовентилятора СВ-27; разработана, идентифицирована нелинейная реализована, И внедрена В стенд термодинамическая поузловая математическая модель двигателя Д-27. На базе разработанных программных модулей поузловой математической двигателя Д-27 автором лично реализована, идентифицирована и внедрена в комплекс имитационного моделирования и стенд полунатурного моделирования поузловая математическая модель турбовинтового двигателя ТВ7-117СТ.

Апробация результатов.

Основные положения и результаты, изложенные в диссертации, докладывались и обсуждались на следующих конференциях и конгрессах:

- II Всероссийской научно-практической конференции «Академические Жуковские чтения» (Воронеж, ВУНЦ ВВС «ВВА имени профессора Н.Е. Жуковского и Ю.А. Гагарина», 2014);
- Межвузовской молодежной научно-практической конференции Университетского округа Ступинского муниципального района «Первые Колачёвские чтения» (Ступино, МАТИ, 2015);
- Международной молодежной научной конференции «XLI Гагаринские чтения» (Москва, МАТИ, 2015);
- 14-ой Международной конференции «Авиация и космонавтика 2015» в рамках II Международной недели авиакосмических технологий «Aerospace Science Week» (Москва, МАИ, 2015);
- Всероссийской научно-технической конференции «Авиадвигатели XXI века» (Москва, ЦИАМ, 2015);
- Межвузовской молодежной научно-практической конференции «Вторые Колачёвские чтения», посвященной 50-летию Ступинского филиала МАИ (Ступино, МАИ, 2015);

- Научно-техническом конгрессе по двигателестроению НТКД-2016 (Москва, ВДНХ, 2016);
- Научно-техническом конгрессе по двигателестроению НТКД-2018 (Москва, ВДНХ, 2018).

Публикации.

По результатам научных исследований, изложенных в диссертации, опубликовано 11 работ, из них 3 – в рецензируемых научных изданиях из перечня ВАК, 8 – в материалах международных конгрессов и конференций.

Внедрение в промышленность.

Работа проводилась в тесном сотрудничестве с ведущими специалистами ОАО «НПП «Аэросила», являющимися разработчиками СВВ СВ-27 и других ВВ гражданского и военного назначения, уникальных СПМ (в том числе и 311ПР для СВ-27 и РСВ-27), а также имеющими огромный опыт в создании и доводке вспомогательных газотурбинных двигателей (ВГТД), И получила отражение в научно-техническом отчете № 271.100.050.2014 «Разработка термодинамической поэлементной нелинейной математической модели турбовинтовентиляторного двигателя Д-27. Реализация поэлементной нелинейной термодинамической модели турбовинтовентиляторного двигателя Д-27 в среде NI LabVIEW 7.1» [26].

Математическая модель, реализованная на примере ТВВД Д-27, внедрена в промышленности — на стенде полунатурного моделирования 311ПР ОАО «НПП «Аэросила» [27, 28, 29, 30, 31, 32, 33].

На основе программных модулей разработанной математической модели была реализована математическая модель ВГТД со свободной турбиной УБЭ-1700 в рамках составной части опытно-конструкторских работ (СЧ ОКР) «Разработка бортовой энергетической установки УБЭ-1700 для установки на самолеты специального назначения» (ОАО «НПП «Аэросила») для отладки законов управления двигателем в процессе запуска и на режиме в различных высотноскоростных условиях полета.

Также на базе программных модулей ММ ТВВД Д-27 была реализована поузловая MMтурбовинтового двигателя TB7-117CT ПО материалам, предоставленным АО «Климов», примененная в составе ММ силовой установки (СУ) военно-транспортного самолета Ил-112B в рамках СЧ ОКР «Разработка винта воздушного для самолета Ил-112В» по заказу ОАО «Ил». Математическая модель, двигателя TB7-117CT, реализованная на примере также внедрена промышленности – на стенде полунатурного моделирования для испытания ВВ АВ112 и ГМР РСВ-34С.

Кроме того, ММ ТВ7-117СТ в составе ММ СУ Ил-112В в настоящее время проходит адаптацию с целью ее применения в комплексном тренажере самолета Ил-112В (КТС-112В) и в процедурном тренажере самолета Ил-112В (ПТС-112В) для обучения летного состава и отработки им сложных ситуаций [34]. Адаптация ММ СУ Ил-112В осуществляется в рамках СЧ ОКР «Разработка компонентов динамической библиотеки программного модуля силовой установки самолета Ил-112В» по заказу АО ЦНТУ «Динамика».

Структура и объем работы.

Диссертация состоит из введения, восьми глав, заключения, списка сокращений и условных обозначений, списка литературы, четырех приложений. Диссертационная работа изложена на 263 машинописных страницах, содержит 143 рисунка, 39 таблиц и список литературы включает в себя 98 наименований.

Краткое содержание работы.

Во введении обоснована актуальность темы, сформулированы цели и задачи исследования, отражены: научная новизна, практическая значимость, приведены научные положения, выносимые на защиту.

В первой главе рассмотрены структурная организация и базовые характеристики стендов полунатурного моделирования для испытания соосных винтовентиляторов и их систем автоматического управления, сформулированы основные проблемы комплексных полунатурных испытаний, проведен анализ возможности применения при полунатурных испытаниях различных

отечественных и зарубежных программных продуктов, выработаны подходы к повышению качества проводимых комплексных полунатурных испытаний.

Вторая глава работы посвящена разработке поузловой нелинейной термодинамической математической модели турбовинтовентиляторного двигателя на примере двигателя Д-27 для стенда полунатурного моделирования. Приведена структурная схема математической модели, а также основные расчетные формулы и методики расчета.

Третья глава диссертации посвящена разработке программного модуля поузловой нелинейной термодинамической математической модели турбовинтовентиляторного двигателя Д-27. Представлены структура входных и выходных типов данных, программный код и его описание.

В четвертой главе проводится исследование адекватности поузловой нелинейной термодинамической математической модели турбовинтовентиляторного двигателя Д-27. Приводятся результаты сравнения статических характеристик математической модели с экспериментальными и расчетными данными.

В пятой главе приводится методика коррекции поузловой нелинейной термодинамической математической модели турбовинтовентиляторного двигателя Д-27 для повышения точности основных моделируемых параметров. Приводится программный код уточненных модулей математической модели.

Шестая глава диссертации посвящена идентификации статических и динамических параметров уточненной поузловой нелинейной термодинамической математической модели турбовинтовентиляторного двигателя Д-27. Описан подход и представлены результаты идентификации.

Седьмая глава посвящена исследованию применения нечеткой логики и генетического алгоритма для нахождения совместной точки работы компрессоров и турбин в поузловой нелинейной термодинамической математической модели турбовинтовентиляторного двигателя Д-27. Приведена методика применения генетического алгоритма, программный код модулей его реализации и основные результаты его применения.

В восьмой главе работы представлены результаты апробации применения поузловой нелинейной термодинамической математической модели

турбовинтовентиляторного двигателя Д-27 на стенде полунатурного моделирования при испытаниях системы автоматического управления соосного винтовентилятора СВ-27. Также представлены результаты апробации поузловой математической модели турбовинтового двигателя ТВ7-117СТ, созданной на основе единой универсальной программной базы, на стенде имитационного моделирования.

Заключение содержит основные результаты и выводы диссертационной работы.

В приложениях представлены используемые в работе характеристики узлов двигателя, основные результаты исследования в табличном и графическом видах.

Автор выражает искреннюю благодарность Первому заместителю Генерального директора – Заместителю Генерального директора по науке ОАО «НПП «Аэросила» Распопову Е.В., Заместителю Генерального директора, Главному конструктору ОАО «НПП «Аэросила» | Шатланову М.И., Заместителю Генерального директора, Главному конструктору ОАО «НПП «Аэросила» Точилину П.Г., начальнику РКО ОАО «НПП «Аэросила» Баранову В.В., начальнику бригады МДГС КО САУ ОАО «НПП «Аэросила» Данилихину А.М., ведущему конструктору КО САУ ОАО «НПП «Аэросила» Хилько В.И., научному руководителю – кандидату технических наук, доценту кафедры ТПАД Бабину С.В., а также заведующему кафедрой 201 – доктору технических наук, доценту Агульнику А.Б.

Глава 1 Технология комплексных полунатурных испытаний соосных винтовентиляторов и агрегатов САУ в замкнутых каналах управления. Анализ проблем, возникающих при разработке винтовентиляторов и их САУ

1.1 Структурная организация и базовые характеристики стенда полунатурного моделирования для испытаний винтовентиляторов и их САУ

Современный СПМ обеспечивает проведение различных видов испытаний в замкнутых каналах управления: обкатка ГМР, приемо-сдаточные испытания (ПСИ) и предъявительские испытания (ПИ) винтовентиляторов, ВВ и их САУ, эквивалентно-циклические испытания (ЭЦИ) гидромеханических регуляторов, износные испытания втулок винтовентиляторов, а также различного рода Огромный исследовательские испытания. интерес представляют исследовательские испытания, позволяющие воспроизводить переходные процессы, отрабатывать алгоритмы и законы управления, оценивать запасы устойчивости САУ во всем диапазоне режимов работы, отслеживать поведение САУ в отказных ситуациях, получать статические и динамические характеристики винтовентиляторов и их САУ, выявлять скрытые дефекты в изделиях, а также отрабатывать алгоритмы и средства полетной диагностики.

СПМ позволяет проводить испытания в автоматическом режиме по заранее заданному алгоритму. Высокая степень автоматизации и постоянно возрастающие требования превращают СПМ в сложную многосвязную систему, состоящую из следующих основных частей (см. Рисунок 1.1):

1 Следящий электропривод с механической трансмиссией. Является приводом маслонасоса ГМР, электромеханическим имитатором выходного звена редуктора турбовинтового двигателя. Точность воспроизведения следящим электроприводом динамических характеристик ГТД оказывает прямое влияние на точность воспроизведения переходного процесса (амплитудные и фазовые искажения), параметры которого зависят от изменения производительности маслонасоса ГМР, работы непосредственно самого ГМР и электронной системы

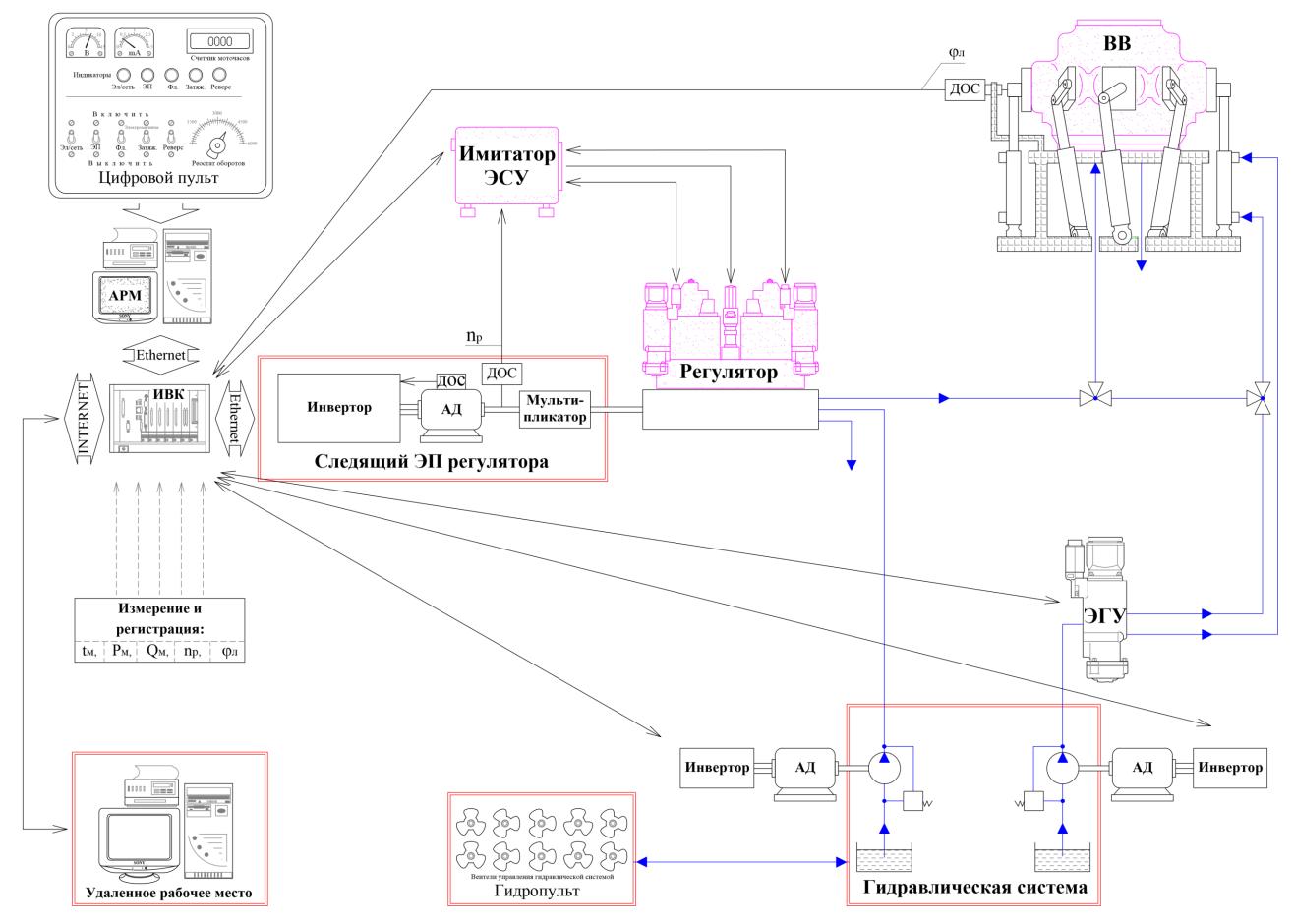


Рисунок 1.1 – Структура современного СПМ для испытаний одиночных ВВ и регуляторов

управления (ЭСУ). Управление следящим электроприводом осуществляется от измерительно-вычислительного комплекса (ИВК) по результатам решения ММ двигателя.

- 2 Имитатор электронной системы управления винтовентилятором и двигателем. Необходим при проведении испытаний на основном канале управления. Представлен в виде ММ ЭСУ, реализованной в ИВК и управляющей при помощи специального драйвера шаговым двигателем узла электрогидропреобразователя (ЭГП), установленного в ГМР. В современных СПМ вместо имитатора ЭСУ используется бортовая электронная система управления с технологическим программным обеспечением (ПО), взаимодействующая с ММ объекта управления, реализованными в ИВК.
- **3 Система имитации полетной нагрузки.** Воспроизводит крутящие моменты от лопастей, действующие на механизм изменения шага винтовентилятора. Представлена гидроцилиндрами, кинематически связанными со стаканами втулки винтовентилятора и управляемыми сервоклапанами с помощью ММ полетной нагрузки, реализованной в ИВК.
- **4** Гидравлическая система. Обеспечивает работу объекта испытаний (ОИ) и структурно представлена следующими элементами:
- входная масломагистраль ГМР с регулируемым маслонасосом для воспроизведения реальных расходов и давлений рабочей жидкости на входе в маслонасос ГМР:
- система воспроизведения перетоков по кольцам редуктора и гидравлических сопротивлений по каналам редуктора на участке от ГМР до ВВ;
- система обеспечения заданной температуры рабочей жидкости, влияющей на величину утечек в гидравлической системе и параметры управления ВВ;
 - система отвода и возврата в маслобаки рабочей жидкости.
- **5** Измерительно-вычислительный комплекс. Обеспечивает взаимодействие всех систем стенда и управление ОИ, реализован на базе программно-технических средств National Instruments, позволяющих решать широкий спектр задач. Структуру ИВК формируют:

- математические модели (ГТД, топливо-регулирующей аппаратуры, ЭСУ, ГМР, ВВ, полетной нагрузки);
- измерительная система (параметры давлений, расходов, температур, частот вращения, угловых и линейных положений, уровней и дискретных величин);
- система управления (аналоговое управление электроприводами и сервоклапанами, а также дискретное управление шаговыми электродвигателями, электромагнитами и реле);
- система контроля и защиты (мониторинг технического состояния ОИ, защита стендового оборудования и ОИ от непреднамеренных действий, нештатных или аварийных ситуаций, минимизация человеческого фактора);
- система регистрации (высокочастотная и низкочастотная регистрация измеряемых, управляющих и моделируемых параметров, а также логирование хода эксперимента и построение линии тренда исследуемого параметра);
- система сетевого взаимодействия (удаленная передача данных, в том числе на рабочее место конструктора, и межсетевое взаимодействие с цифровыми системами стенда).
- **6 Автоматизированное рабочее место оператора (APM).** Обеспечивает мониторинг хода испытаний и параметров ОИ посредством сетевого взаимодействия с ИВК и позволяет:
- визуализировать параметры работы стендовых систем и состояния ОИ в режиме реального времени;
 - управлять в режиме реального времени процессом испытания;
- конфигурировать оборудование стенда под различные виды испытаний и планировать ход эксперимента;
 - реализовать функции цифрового пульта управления;
- вести постобработку зарегистрированных данных (параметрические графики, спектральный анализ, интегрирование, дифференцирование и др.).

1.2 Структура и характеристики программного обеспечения современного СПМ

Среда графического программирования LabVIEW [35, 36] корпорации National Instruments (США), применяемая на испытательном комплексе в ИВК и АРМ СПМ ОАО «НПП «Аэросила», была выбрана специалистами предприятия, после проведения глубокого анализа аналогичных сред разработки с аппаратной поддержкой, как наиболее подходящая с точки зрения использования аппаратных средств, удобства и быстроты программирования, а также применения специальных пакетов прикладных программ, позволяющих, в том числе, разрабатывать ПО, работающее под управлением операционной системы реального времени. Необходимо отметить, что язык программирования LabVIEW нашел широкое применение в различных областях науки и техники для решения различных инженерно-технических задач:

- **Авиация и ракетно-космическая техника.** Технические средства и ПО National Instruments применяется для решения широкого спектра задач, начиная с систем аппаратно-программного моделирования, заканчивая автоматизированными системами тестирования авиационной радиоэлектроники и системами для проведения стендовых статических и динамических испытаний [37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]. В частности, среда графического программирования LabView находит применение при испытаниях ГТД и их САУ [50, 51, 52, 53, 54, 55, 56, 57, 58].
- Электроника. Контрольно-измерительные системы National Instruments, имеющие модульную архитектуру и открытое ПО, позволяют проводить тестирование компонентов электроники и микроэлектроники, средств беспроводной связи, систем записи и воспроизведения звука, а также систем записи и воспроизведения видео.
- Энергетика. Автономные, высокопроизводительные, надежные контрольно-измерительные системы National Instruments позволяют успешно

решать задачи вибродиагностики и мониторинга объектов энергосети, а также мониторинга качества электроэнергии [59, 60].

- **Нефтегазовая промышленность.** Специализированные системы управления и мониторинга для бурения скважин, повышения безопасности и эффективности нефтедобычи, автоматизации штангового глубинного насоса, автоматизации кустовой насосной станции, мониторинга утечек, контроля состояния поверхности трубопровода и др.
- **Медицина.** Безопасные, высококачественные устройства для ухода за пациентами, тестирование сложного медицинского оборудования.

В настоящее время оборудование National Instruments применяется на ОАО «НПП «Аэросила» при проведении исследовательских испытаний ВВ и ГМР на стендах полунатурного моделирования 311ПР и С-3М (испытания СВВ СВ-27 и ГМР РСВ-27), С-6М (испытания ВВ СВ-34 и АВ140 и ГМР РСВ-34 и РСВ-34М), С-9М (испытания АВ-24Ан и ГМР Р-24Ан), а также при проведении вибрографирования ВГТД.

Структура ПО современного СПМ 311ПР, создаваемого для проведения исследовательских испытаний СВВ СВ-27, ГМР РСВ-27 и ЭСУ-27М представлена на Рисунке 1.2.

Как видно из Рисунка 1.2, ПО СПМ 311ПР состоит из двух основных частей: ПО ИВК и ПО АРМ.

В связи с разнородностью выполняемых задач, требующих различный шаг детерминирования (частоты решения) для работы СПМ, ПО ИВК разбито на три параллельных процесса (цикла): основная программа, дискретное управление и система регистрации. Программный код ИВК в среде LabView представлен на Рисунке 1.3.

Цикл основной программы работает с частотой 100 Гц и содержит следующие подпрограммы:

- Измерительная система измерение аналоговых, цифровых и дискретных сигналов с датчиков и вспомогательных систем.
 - Циклограмма испытаний формирует управляющие сигналы в ММ и

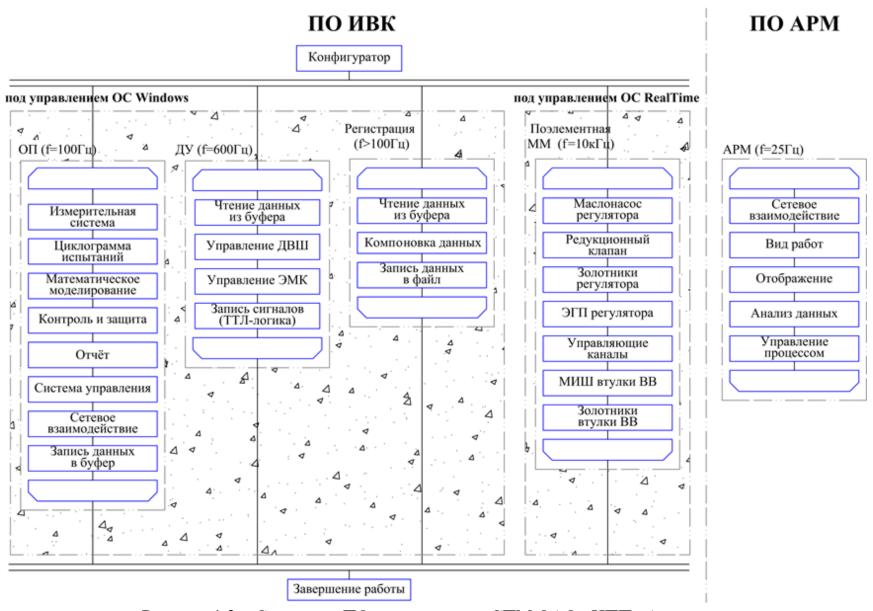


Рисунок 1.2 – Структура ПО современного СПМ ОАО «НПП «Аэросила»

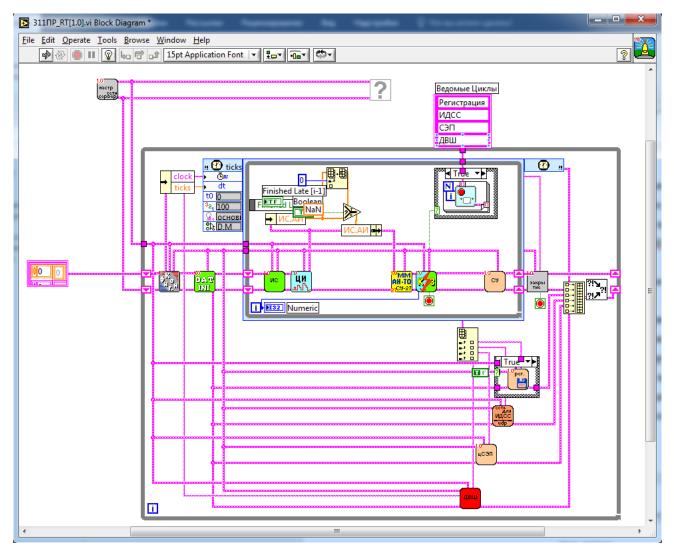


Рисунок 1.3 – Программный код ИВК СПМ 311ПР в среде LabView

систему управления по заранее заложенной программе (циклограмме). Для проведения ЭЦИ ГМР в циклограмму закладывают изменяющееся по времени угловое положение рычага управления двигателем (РУД) $\alpha_{\rm руд}$, а также команды на включение и выключение электромагнитных клапанов (ЭМК). Для проведения износных испытаний втулки ВВ в циклограмму закладываются конкретные значения углового положения лопасти, по которым происходит многократное переключение ВВ.

- Математическое моделирование расчет математических моделей.
- Контроль и защита анализ управляющих и измеряемых параметров, ограничение величин управляющих сигналов, формирование команд на

выключение стенда и стендовых систем в случае срабатывания заложенных защитных алгоритмов.

- Отчет запись в файл кодов ошибок, полученных от подпрограммы контроля и защиты (логирование).
- Система управления выдача управляющих сигналов на цифро-аналоговые преобразователи, дискретные преобразователи и цифровые управляющие устройства.
- Сетевое взаимодействие прием и передача данных между ИВК и АРМ через сеть Ethernet, используя протокол TCP/IP; публичная отправка данных в сеть, использую протокол UDP для мониторинга параметров работы стенда с удаленных вспомогательных систем.
- Запись данных в буфер записывает данные основного цикла в буфер для передачи их между параллельными циклами.

Цикл дискретного управления работает на частоте 600 Гц, являющейся рабочей для формирования управляющих команд драйвером управления волнового шагового двигателя (ДВШ), и содержит следующие подпрограммы:

- Чтение данных из буфера производит чтение команд из буфера, записанных из основного цикла программы, для выдачи их на исполнительные управляющие модули ИВК.
- Управление ДВШ формирование набора дискретных команд для управления двигателем волновым шаговым (ДВШ) узла ЭГП.
- Управление ЭМК формирование дискретных команд для управления ЭМК, установленными в ГМР, и различными реле стендовых систем (включение маслонасосов, тэн, запорных клапанов и др.
- Запись сигналов (ТТЛ-логика) запись сформированных дискретных команд в исполнительные модули ИВК.

Цикл регистрации работает с переменной частотой не менее 100 Гц и содержит следующие подпрограммы:

- Чтение данных из буфера — производит чтение всех данных в буфере, предназначенных для регистрации.

- Компоновка данных производит разбиение данных по группам и подгруппам: аналоговые или дискретные параметры, низкочастотная или высокочастотная регистрация, по адресному признаку подпрограммы из которой пришли данные.
- Запись данных в файл производит запись скомпонованных данных в файл регистрации.

СПМ может проводить испытания с различной степенью натурности. Максимальная степень натурности подразумевает наличие на стенде ЭСУ, втулок ВВ, ГМР. При отсутствии натурных втулок и (или) ГМР они заменяются соответствующими ММ и исполнительными механизмами. При имитации гидравлической системы ПО СПМ должно выполняться под управлением операционной системы реального времени, т.к. решение ММ гидравлических описываемых дифференциальными уравнениями элементов, часто только порядка, может быть осуществлено на высокой частоте (порядка 10 кГц).

Выполнение ПО ИВК начинается с подпрограммы «Конфигуратор» в которой происходит настройка системы с участием пользователя: определение натурности испытания, определение типа испытания, определение регистрируемых параметров, инициализация и настройка оборудования стенда и др.

При завершении работы ПО ИВК происходит выполнение подпрограммы «Завершение работы», которая отвечает за корректное выключение оборудования ИВК (снятие напряжения с выходов цифро-аналоговых преобразователей, выключение входов аналого-цифровых преобразователей, формирование отчета о работе стенда и др.), завершение работы всех стендовых систем.

ПО APM выполняется в одном основном цикле, работающем с частотой 25 Гц, на удаленном компьютере и состоит из следующих подпрограмм и программных комплексов:

- Сетевое взаимодействие — производит прием данных от ИВК и передачу данных на ИВК, используя протокол TCP/IP.

- Вид работ интерфейс (см. Рисунок 1.4), позволяющий пользователю настроить ИВК до запуска испытаний (работает совместно с подпрограммой «Конфигуратор»).
- Отображение интерфейсный многооконный программный комплекс, отвечающий за отображение параметров работы стенда на цифровых индикаторах, сигнализаторах, графических окнах и окнах текстовых сообщений, а также управление пользователем стендовыми системами при помощи специальных элементов (тумблеров, кнопок, переключателей, точных задатчиков и др).

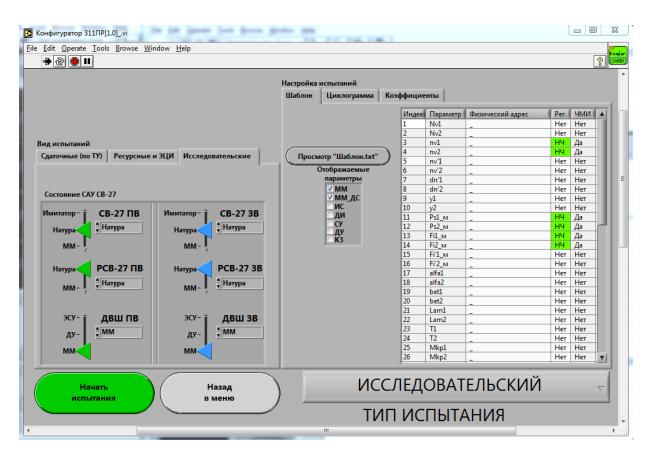


Рисунок 1.4 – Интерфейс для конфигурирования ИВК СПМ 311ПР

Элементы индикации и управления комбинируются и располагаются на экране в зависимости от вида испытаний и полноты натурности (см. Рисунок 1.5 – 1.8). Описываемый программный комплекс является основным в APM, обладает высокой степенью ответственности и обеспечивает удобное взаимодействие испытателя со стендовыми системами.

- Анализ данных – отдельный программный комплекс, предназначенный для анализа данных, зарегистрированных стендом в процессе проведения испытаний. Программный комплекс имеет гибкий настраиваемый многошкальный интерфейс (см. Рисунок 1.9). Встроенный математический аппарат позволяет находить производную от параметра, строить параметрические зависимости и проводить спектральный анализ. Меню программы содержит множество функций, позволяющих изменять цвета и толщины линий и шкал, сохранять и загружать профили отображения, оставлять настроенные комментарии экспортировать графики в документ или печатать их на различных форматах и др.

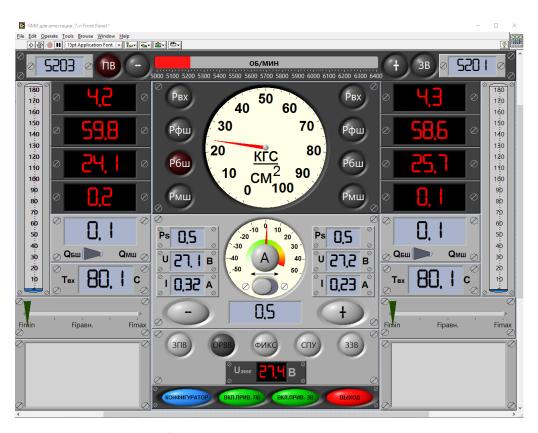


Рисунок 1.5 – Интерфейс СПМ 311ПР для проведения ПИ и ПСИ в ручном режиме

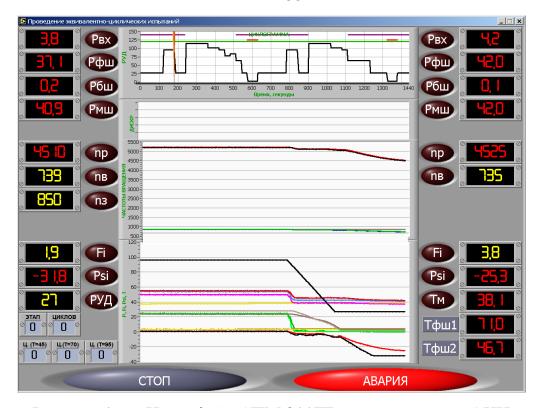


Рисунок 1.6 – Интерфейс СПМ 311ПР для проведения ЭЦИ

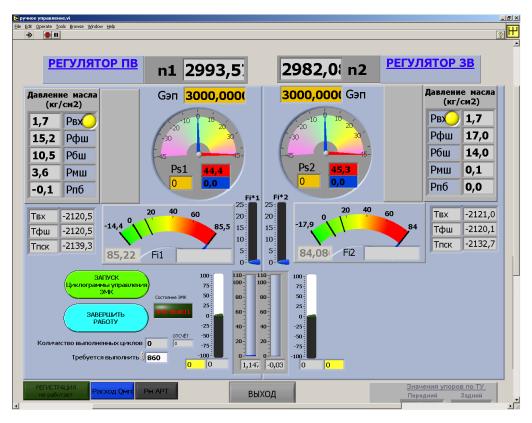


Рисунок 1.7 – Интерфейс СПМ 311ПР для проведения испытаний в ручном режиме

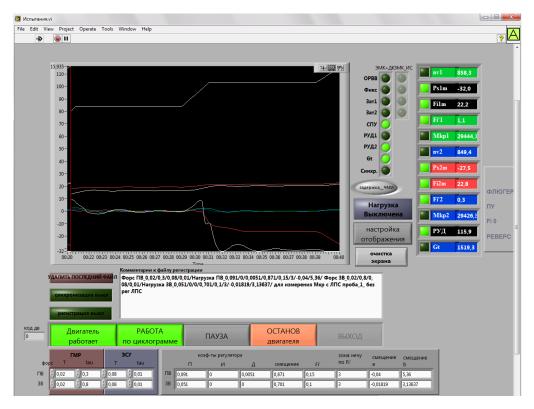


Рисунок 1.8 – Интерфейс СПМ 311ПР для проведения исследовательских испытаний



Рисунок 1.9 – Интерфейс программного комплекса «Анализатор»

- Управление процессом — подпрограмма, предназначенная для проведения ПСИ в автоматическом режиме с формированием протокола испытаний.

Помимо ПО ИВК и APM существует также ПО, предназначенное для мониторинга параметров работы стенда с удаленных рабочих мест, используя протокол UDP. ПО удаленного мониторинга не имеет возможности вмешательства в ход испытаний.

1.3 Структура математических моделей СПМ, их описание и взаимодействие с объектом испытания

Идея полунатурного моделирования подразумевает под собой применение ММ объектов, которые невозможно или экономически нецелесообразно использовать в натурном виде. В зависимости от степени натурности проводимых испытаний к основным ММ, решаемым на СПМ, могут быть подключены ММ втулок винтовентиляторов, ГМР и ЭСУ. Основные же ММ используются всегда, вне зависимости от степени натурности.

Взаимодействие основных ММ СПМ 311ПР с объектами испытания при максимальной степени натурности структурно представлено на Рисунке 1.10 (для упрощения понимания на Рисунке 1.10 показан только задний винт (ЗВ); для переднего винта (ПВ) взаимодействие аналогично). На Рисунке 1.11 представлен программный код ММ СПМ 311ПР, реализованных в среде LabView.

В ММ «Условия полета» происходит расчет температуры, давления, плотности воздуха в окружающей среде в зависимости от высоты полета. Расчет ведется в соответствии с ГОСТ 4401-81.

ММ «Расход топлива» имитирует работу топливного регулятора и дозирующей иглы в зависимости от углового положения РУД. В ММ топливного регулятора также заложены алгоритмы подачи топлива, применяемые в ЭСУ-27М [13].

ММ «Двигатель» состоит из двух основных частей. В первой части происходит расчет мощности, развиваемой ТВВ, в зависимости от количества топлива, подаваемого в КС. Расчет ведется путем линейной интерполяции внешней характеристики двигателя, представленной в виде зависимости $N_{\text{твв}} = f(\alpha_{\text{руд}}, n_{\text{твв}})$ (см. Рисунок ВВ.1). Во второй части происходит расчет частоты вращения ТВВ по уравнениям, полученным из уравнений второго закон Ньютона для вращательного движения:

$$\dot{n}_{\text{IIB}} = \frac{6839}{I_{\text{IIB}} + I_{\text{TBB}} \cdot \left(i_{\text{IIB}}^2 + i_{\text{3B}}^2 \cdot \frac{I_{\text{IIB}}}{I_{\text{3B}}}\right)} \cdot \left(i_{\text{IIB}} \cdot \frac{N_{\text{TBB}}}{n_{\text{TBB}} \cdot 735,49875} + i_{\text{IIB}} \cdot i_{\text{3B}} \cdot \frac{I_{\text{TBB}}}{I_{\text{3B}}} \cdot \frac{N_{\text{3B}}}{n_{\text{3B}} \cdot 735,49875} - \left(1 + \frac{I_{\text{TBB}}}{I_{\text{3B}}} \cdot i_{\text{3B}}^2\right) \cdot \frac{N_{\text{IIB}}}{n_{\text{IIB}} \cdot 735,49875} - \left(1.1\right)$$

где $\dot{n}_{\text{пв}}$ – ускорение ротора ПВ, $\frac{1}{c^2}$;

 $I_{\text{пв}} = 30$, кгс·м·с² – момент инерции ПВ;

 $I_{\rm 3B}=23$, кгс·м·с²— момент инерции 3В;

 $I_{\text{твв}} = 0,727$, кгс · м · с²— момент инерции ротора ТВВ;

 $i_{\text{пв}} = 4,69$ — передаточное отношение между ТВВ и ПВ;

 $i_{\rm 3B} = 3,69$ — передаточное отношение между ТВВ и ЗВ;

 $N_{\text{пв}}$ – мощность, потребляемая ПВ, Вт;

 $N_{\rm 3B}$ — мощность, потребляемая ЗВ, Вт;

 $N_{\text{твв}}$ – мощность, развиваемая ТВВ, Вт;

 $n_{\text{пв}}$ – частота вращения ПВ, $\frac{\text{об}}{\text{мин}}$;

 n_{3B} – частота вращения 3B, $\frac{\text{об}}{\text{мин}}$;

 $n_{\text{твв}}$ – частота вращения ротора ТВВ, $\frac{\text{об}}{c}$.

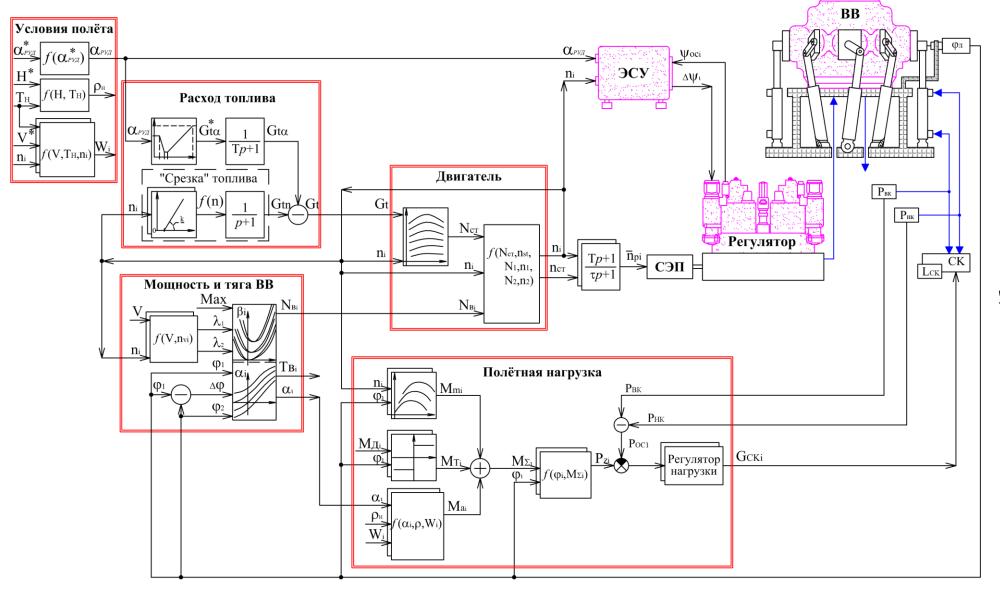


Рисунок 1.10 – Взаимодействие ММ СПМ 311ПР с объектами испытания при максимальной степени натурности

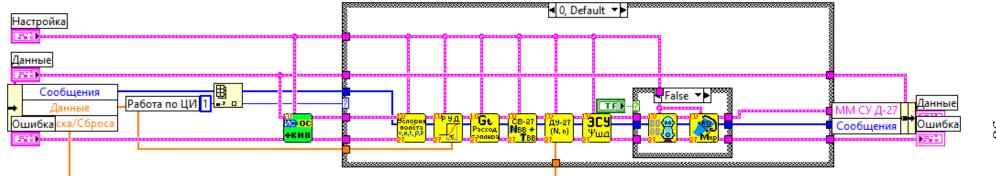


Рисунок 1.11 – Программный код ММ СПМ 311ПР, реализованных в среде LabView

$$\dot{n}_{3B} = \frac{6839}{I_{3B} + I_{TBB} \cdot \left(i_{3B}^{2} + i_{\Pi B}^{2} \cdot \frac{I_{3B}}{I_{\Pi B}}\right)} \cdot \left(i_{3B}^{2} + i_{TBB}^{2} \cdot \frac{I_{3B}}{I_{\Pi B}} \cdot \frac{I_{TBB}}{I_{\Pi B}} \cdot \frac{I_{TBB}}{I_{\Pi B}} \cdot \frac{N_{\Pi B}}{n_{\Pi B} \cdot 735,49875} - \left(1 + \frac{I_{TBB}}{I_{\Pi B}} \cdot i_{\Pi B}^{2}\right) \cdot \frac{N_{3B}}{n_{3B} \cdot 735,49875} - \frac{N_{3B}}{60}, \quad (1.2)$$

где \dot{n}_{3B} – ускорение ротора 3B, $\frac{1}{c^2}$.

Рассчитанные частоты вращения ПВ и ЗВ воспроизводятся на асинхронных электродвигателях, приводящих маслонасосы ГМР. Измеренная с электродвигателей (физическая) частота вращения используется в качестве обратной связи в блоке ЭСУ-27М для управления ВВ.

Как видно из описания, ММ ТВВД представлена упрощенно, что не позволяет проводить испытания в условиях моделирования различных высот и скоростей полета.

В ММ «**Мощность и тяга ВВ**» происходит расчет тяги, создаваемой ВВ, и мощности, потребляемой ВВ, по следующим формулам [61]:

$$T_{\text{B. }\Pi\text{B (3B)}} = \alpha_{\text{ПВ (3B)}} \cdot \rho \cdot \left(\frac{n_{\text{ПВ (3B)}}}{60}\right)^2 \cdot d_{\text{ПВ (3B)}}^4, \quad (1.3)$$
 где
$$T_{\text{B. }\Pi\text{B (3B)}} - \text{тяга, создаваемая }\Pi\text{B (3B), H;}$$

$$\alpha_{\text{ПВ (3B)}} - \text{коэффициент тяги }\Pi\text{B (3B), 1;}$$

$$\rho - \text{плотность воздуха, }\frac{\text{кг}}{\text{м}^3};$$

$$n_{\text{ПВ (3B)}} - \text{частота вращения }\Pi\text{B (3B), }\frac{\text{об}}{\text{мин}};$$

$$d_{\text{ПВ (3B)}} - \text{диаметр }\Pi\text{B (3B), м.}$$

$$N_{\text{пв (3B)}} = \beta_{\text{пв (3B)}} \cdot \rho \cdot \left(\frac{n_{\text{пв (3B)}}}{60}\right)^3 \cdot d_{\text{пв (3B)}}^5, \qquad (1.4)$$

где $N_{\text{пв (3B)}}$ – мощность, потребляемая ПВ (3B), Вт;

 $\beta_{\text{пв (3B)}}$ – коэффициент мощности ПВ (3В), 1.

Коэффициенты тяги и мощности приведены в расчетно-экспериментальных аэродинамических характеристиках (АДХ) ВВ, представленных в виде зависимостей:

$$a_{\text{\tiny IIB}(3B)} = f(\varphi_{\text{\tiny IIB}}, \Delta\varphi, M, \lambda_{\text{\tiny IIB}(3B)}),$$
 (1.5)

$$\beta_{\text{ПB(3B)}} = f(\varphi_{\text{ПB}}, \Delta \varphi, M, \lambda_{\text{ПB(3B)}}), \quad (1.6)$$

где $\phi_{\rm \Pi B}$ – угол установки лопастей ПВ в контрольном сечении на относительном радиусе $\bar{r}=0.75,\,^{\circ};$

 $\Delta \varphi$ – деградация углового положения лопастей BB, °;

M – число Маха полета, 1;

 $\lambda_{\text{пв(3B)}}$ — относительная поступь ПВ (3В), 1.

Пример графического представления АДХ ПВ для постоянного значения числа Маха и постоянного значения деградации углового положения лопастей представлен на Рисунках 1.12 и 1.13.

Расчет коэффициентов тяги ($a_{\text{пв}}$, $a_{\text{зв}}$) и мощности ($\beta_{\text{пв}}$, $\beta_{\text{зв}}$) ведется по методике представления и использования характеристик соосного винтовентилятора при полунатурном моделировании ТВВД [50, 62, 63] путем линейной интерполяции аэродинамических характеристик (см. Рисунок 1.14), линии которых разбиты на одинаковое количество равных отрезков.

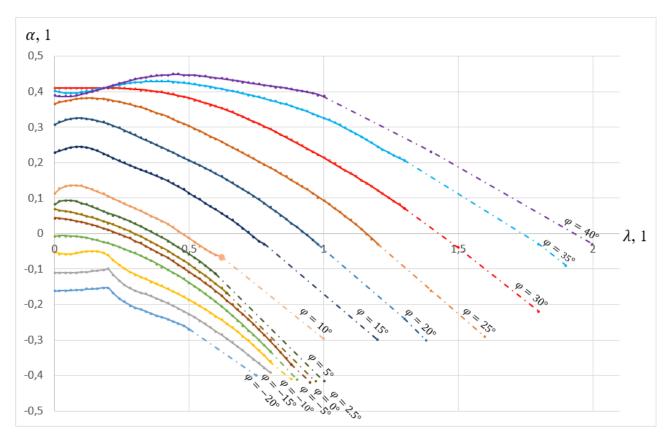


Рисунок 1.12 – Значения коэффициента тяги ПВ при $\Delta \varphi = 0$, M=0÷0,3

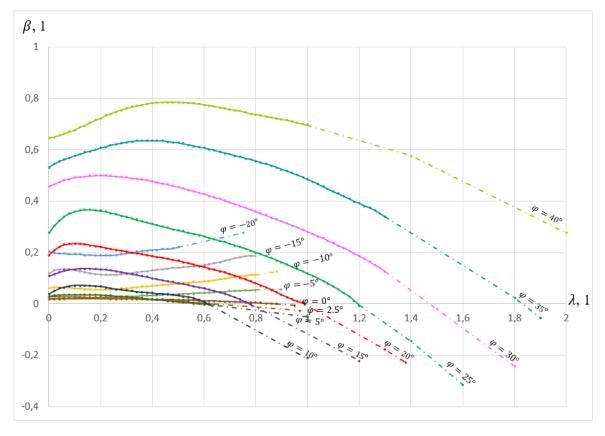


Рисунок 1.13 – Значения коэффициента мощности ПВ при $\Delta \varphi = 0$, M=0÷0,3

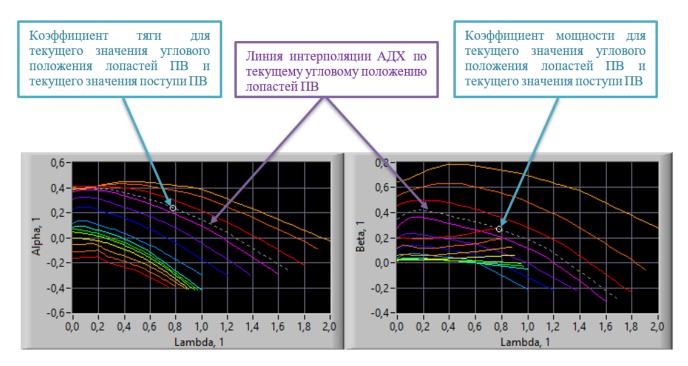


Рисунок 1.14 – Линейная интерполяция коэффициентов тяги и мощности ПВ

Деградация углового положения лопастей в функциях (1.5) и (1.6) находится по формуле:

$$\Delta \varphi = \varphi_{\text{\tiny IIB}} - \varphi_{\text{\tiny 3B}} \quad (1.7)$$

Относительная поступь ΠB (3B) в функциях (1.5) и (1.6) находится по формуле:

$$\lambda_{\text{\tiny \PiB(3B)}} = \frac{V \cdot 60}{d_{\text{\tiny \PiB (3B)}} \cdot n_{\text{\tiny \PiB (3B)}}},$$
 (1.8)

где V – скорость полета, $\frac{M}{c}$.

В ММ «Полетная нагрузка» происходит расчет суммарного крутящего момента, действующего на комли лопастей ВВ, для воспроизведения его на СПМ при помощи гидроцилиндров, механически связанных со стаканами втулки ВВ и управляемых сервоклапанами. Расчет суммарного крутящего момента, действующего на один комель лопасти ВВ, осуществляется по формуле:

$$M_{\text{Kp}.\Sigma \ \PiB(3B)} = M_{\text{Kp}.app \ \PiB(3B)} + M_{\text{Kp}.\text{L}\text{I}\text{G} \ \PiB(3B)} + \Delta M_{\text{Kp}.\text{Tp} \ \PiB(3B)},$$
 (1.9)

где $M_{\text{кр},\Sigma}$ $_{\text{ПВ(3B)}}$ — суммарный крутящий момент, действующий на один комель лопасти ПВ (3В), кгс · м;

 $M_{\rm кр.аэр\ пв(3B)}$ — крутящий момент от аэродинамических сил, действующих на лопасть ПВ (3B), кгс · м;

 $M_{\rm кр.цб\ пв(3B)}$ — крутящий момент от центробежных сил, действующих на лопасть ПВ (3B), кгс · м;

 $\Delta M_{\text{кр.тр пв(3B)}}$ — повышение крутящего момента, требуемого для поворота лопастей ПВ (3В), за счет трения в шариковой заделке лопастей, возникающего от действия центробежных сил, кгс · м.

Крутящий момент от аэродинамических сил, действующих на лопасть ПВ (3B), находится упрощенно по следующей формуле [64]:

$$M_{\text{кр.аэр пв(3B)}} = 0.092 \cdot \frac{T_{\text{в. пв (3B)}}}{g} \cdot \frac{b_{\text{max пв(3B)}}}{Z_{\text{пв (3B)}}},$$
 (1.10)

где g = 9.81 – ускорение свободного падения, $\frac{M}{c^2}$;

 $b_{\max{\text{пв(3B)}}} = 0,617$ – максимальная ширина лопасти ПВ (3В), м;

 $Z_{\text{пв (3B)}} = 8 (6)$ – количество лопастей ПВ (3В), 1.

Для более точного расчета крутящего момента от аэродинамических сил, действующих на лопасть, в современных СПМ используется расчет распределения давлений по поверхности лопасти с применением вихревой теории Н.Е. Жуковского [65].

Схема расположения осей на лопасти при расчете крутящего момента от аэродинамических сил с применением вихревой теории показана на Рисунке 1.15

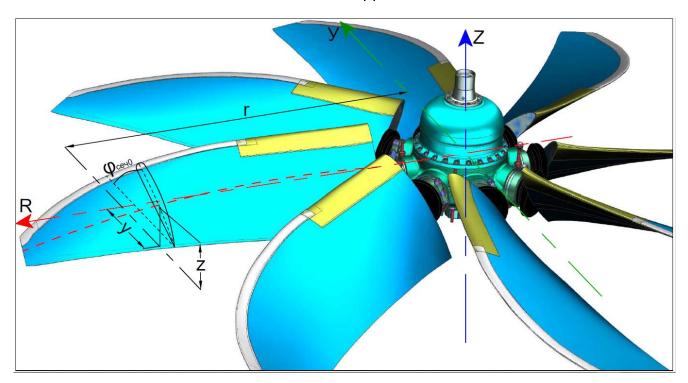


Рисунок 1.15 — Схема расположения осей на лопасти ПВ при нахождении крутящего момента от аэродинамических сил

Крутящий момент от аэродинамических сил, действующих на лопасть ПВ (3B) находится по формуле:

$$\begin{split} M_{\text{кр.аэр пв(3B)}} &= r_{\text{пв(3B)}} \cdot \int_{\bar{r}_{\text{пв(3B)}=0.75}}^{\bar{r}_{\text{пв(3B)}=1}} \left(p_{f \text{ пв(3B)}} \cdot y_{\text{цд пв(3B)}} + q_{f \text{ пв(3B)}} \cdot z_{\text{цд пв(3B)}} \right) d\bar{r}_{\text{пв(3B)}} - \\ &- \left(P_{f \text{ пв(3B)}} \cdot y_{\text{цт пв(3B)}} + Q_{f \text{ пв(3B)}} \cdot z_{\text{цт пв(3B)}} \right), \end{split} \tag{1.11}$$

где $r_{\text{пв(3B)}}$ – радиус лопасти ПВ (3В);

 $p_{f \text{ пв(3в)}}$ – распределенная сила тяги лопасти ПВ (3В), $\frac{\text{кгс}}{\text{м}}$;

 $q_{f \text{ пв(3в)}}$ – распределенная сила сопротивления лопасти ПВ (3В), $\frac{\kappa \Gamma C}{M}$;

 $P_{f \text{ пв(3B)}}$ — сосредоточенная сила тяги лопасти ПВ (3В), кгс;

 $Q_{f \text{ пв(3B)}}$ — сосредоточенная сила сопротивления лопасти ПВ(3В), кгс;

 $y_{\rm цд\;\Pi B(3B)}$ — координата центра давления на сечении лопасти ПВ (3В) по оси Y, мм;

 $Z_{\rm ILM\ \Pi B(3B)}$ — координата центра давления на сечении лопасти ПВ (3B) по оси Z, мм;

 $y_{\text{цт пв(3B)}}$ – координата центра тяжести сечения лопасти ПВ (3В) по оси Y, мм; $z_{\text{цт пв(3B)}}$ – координата центра тяжести сечения лопасти ПВ (3В) по оси Z, мм.

Координаты центра давления на сечении лопасти ПВ (3В) и центра тяжести сечения лопасти ПВ (3В) находятся по формулам:

$$y_{\text{ILД ПВ(3B)}} = y_{\text{ОКТ.ПВ(3B)}} + L_{\text{ТД ПВ(3B)}} \cdot \cos(\varphi_{\text{Сеч ПВ(3B)}}), \quad (1.12)$$

$$z_{\text{ILД ПВ(3B)}} = z_{\text{ОКТ.ПВ(3B)}} + L_{\text{ТД ПВ(3B)}} \cdot \sin(\varphi_{\text{Сеч ПВ(3B)}}), \quad (1.13)$$

$$y_{\text{ILT ПВ(3B)}} = y_{\text{ОКТ.ПВ(3B)}} + L_{\text{ТЖ ПВ(3B)}} \cdot \cos(\varphi_{\text{Сеч ПВ(3B)}}), \quad (1.14)$$

$$z_{\text{ЦТ }\Pi\text{B}(3\text{B})} = z_{\text{ОКТ.}\Pi\text{B}(3\text{B})} + L_{\text{ТЖ }\Pi\text{B}(3\text{B})} \cdot \sin(\varphi_{\text{Сеч }\Pi\text{B}(3\text{B})}), \quad (1.15)$$

где $y_{\text{окт.пв(3B)}}$ – расстояние от оси комля до центра тяжести сечения лопасти ПВ (3В) по оси Y, мм;

 $Z_{\text{ОКТ.ПВ(3B)}}$ — расстояние от оси комля до центра тяжести сечения лопасти ПВ (3B) по оси Z, мм;

 $L_{\rm TД\ \Pi B(3B)}$ — расстояние между центром тяжести сечения лопасти ПВ (3В) и центром давления на сечении лопасти ПВ (3В), мм;

 $L_{\text{тж пв(3B)}}$ — расстояние между центром тяжести сечения лопасти ПВ (3В) и центром жесткости сечения лопасти ПВ (3В), мм;

 $\varphi_{\text{сеч пв(3в)}}$ — угловое положение сечения лопасти ПВ (3В) на заданном радиусе, °.

Расстояние между центром тяжести сечения лопасти ПВ (3В) и центром давления на сечении лопасти ПВ (3В) находится по формуле:

$$L_{\text{ТД} \Pi B(3B)} = x_{\text{ЦТ} \Pi B(3B)} - x_{\text{ЦД} \Pi B(3B)},$$
 (1.16)

где $\chi_{\text{ит пв(3в)}}$ – расстояние от передней кромки сечения лопасти до центра тяжести

сечения лопасти, мм;

 $x_{\text{цд пв(3в)}}$ — координата центра давления на сечении лопасти относительно передней кромки сечения лопасти, мм.

Расстояние между центром тяжести сечения лопасти ПВ (3В) и центром давления на сечении лопасти ПВ (3В) ограничено максимальным значением по передней кромке $L_{\rm TД} \, max \, _{\rm ПВ(3В)} = x_{\rm ЦТ} \, _{\rm ПВ(3В)}$ и минимальным значением по задней кромке $L_{\rm TД} \, min \, _{\rm ПВ(3В)} = x_{\rm ЦТ} \, _{\rm ПВ(3В)} - b_{\rm ПВ(3В)}$.

Координата центра давления на сечении лопасти ПВ (3В) относительно передней кромки сечения лопасти ПВ (3В) находится по формуле:

$$x_{\text{цд пв(3B)}} = b_{\text{пв(3B)}} \cdot \frac{C_{m \text{ пв(3B)}}}{C_{y \text{ пв(3B)}}},$$
 (1.17)

где $b_{\text{пв(3в)}}$ – хорда сечения лопасти, мм;

 $C_{m \text{ пв(3в)}}$ – коэффициент крутящего момента от аэродинамических сил, 1;

 $C_{y \text{ пв(3B)}}$ – коэффициент силы тяги сечения лопасти, 1.

Угловое положение сечения лопасти ПВ (3В) на заданном радиусе находится по формуле:

$$\varphi_{\text{сеч пв(3B)}} = \varphi_{\text{сеч0 пв(3B)}} + \varphi_{\text{пв(3B)}},$$
(1.18)

где $\varphi_{\text{сеч0 пв(3B)}}$ — угловое положение сечения лопасти ПВ (3В) на заданном радиусе при угловом положении лопасти ПВ (3В) в контрольном сечении (на радиусе $\bar{r}_{\text{пв(3B)}}=0.75$) равном $\varphi_{\text{пв(3B)}}=0$ °.

Параметры $p_{f \text{ пв(3в)}}, q_{f \text{ пв(3в)}}, C_{m \text{ пв(3в)}}, C_{y \text{ пв(3в)}}$ рассчитываются с применением программного комплекса POWER [66], работающего по методике поверочного аэродинамического расчета распределения давлений, действующих

на поверхность лопасти ПВ (3В), согласованной с ЦАГИ (вихревая теория). Параметры $y_{\text{окт.пв(3в)}}, z_{\text{окт.пв(3в)}}, L_{\text{тж пв(3в)}}, x_{\text{цт пв(3в)}}, b_{\text{пв(3в)}}$ задаются исходя из конструктивного облика лопасти ПВ (3В).

Крутящий момент от центробежных сил, действующих на лопасть ПВ (3В), находится по формуле [64]:

$$M_{\text{кр.цб пв(3B)}} = 0.00025 \cdot n_{\text{пв(3B)}}^2 \cdot \sin\left(2 \cdot \left(\varphi_{\text{пв(3B)}} + 3^\circ\right)\right)$$
 (1.19)

Повышение крутящего момента, требуемого для поворота лопастей ПВ (3В), за счет трения в шариковой заделке лопастей, возникающего от действия центробежных сил находится по формуле:

$$\Delta M_{\text{кр.тр пв(3B)}} = \left(P_{\text{цб.лоп пв(3B)}} + P_{\text{цб.стак}} \right) \cdot \frac{d_{\text{ц}}}{2} \cdot f \quad (1.20)$$

где $P_{\text{цб.лоп пв(3B)}}$ – центробежная сила от лопасти ПВ (3В), кгс;

 $P_{\text{цб.стак}}$ — центробежная сила от стакана лопасти, кгс;

 $d_{\rm ц}$ – диаметр по центрам шаров в заделке лопасти, м;

f = 0.005 – коэффициент трения для радиально-упорных подшипников при осевой нагрузке.

Центробежная сила от лопасти ПВ (3В) находится по формуле:

$$P_{\text{цб.лоп пв(3B)}} = m_{\text{пв(3B)}} \cdot \omega_{\text{пв (3B)}}^2 \cdot R_{\text{цт. пв(3B)}}$$
 (1.21)

где $m_{\text{пв(3B)}}$ – масса лопасти ПВ (3В), кг;

 $\omega_{\text{пв(3B)}}$ – угловая скорость ПВ (3В), рад/с;

 $R_{\rm цт.\ \Pi B(3B)}$ — расстояние от оси вращения до центра тяжести лопасти ПВ (3B), м.

Центробежная сила от стакана лопасти находится аналогично, как и центробежная сила от лопасти.

Угловая скорость ПВ (3В) находится по формуле:

$$\omega_{\text{пв(3B)}} = \frac{\pi \cdot n_{\text{пв(3B)}}}{30}$$
 (1.22)

Для получения наиболее точного результата моделирования зависимости повышения крутящего момента от силы трения в шариковой заделке лопастей применяется имитация силы трения при помощи гайки преднатяга, создающей повышенное трение в заделке лопасти. Такое мероприятие позволяет избежать проблем, возникающих при имитации повышения крутящего момента от сил трения в процессе страгивания СВВ, а также от сил трения, быстро меняющих свой знак при имитации переходного процесса.

1.4 Анализ программных комплексов, позволяющих моделировать работу ГТД, и анализ возможности их применения на СПМ

разработке поузловой Перед тем, как приступить К нелинейной термодинамической ММ ТВВД, был проведен анализ готовых программных продуктов, позволяющих моделировать работу ГТД, а также рассмотрена СПМ программных продуктов возможность применения ЭТИХ на ОАО «НПП «Аэросила» для испытания САУ ВВ.

1.4.1 GasTurb 12 (Германия)

Программный комплекс GasTurb 12 [67] позволяет производить расчет параметров работы турбореактивных и турбовальных двигателей по заранее заложенным в программе схемам, используя основные термодинамические уравнения. Переходный режим моделируется с учетом полярного момента инерции роторов двигателя.

Внешний вид интерфейса ввода данных в программу представлен на Рисунке 1.16, вывода данных – на Рисунках 1.17 и 1.18.

Программный комплекс GasTurbe 12 является мощным инструментом для моделирования работы турбореактивного двигателя, однако, применение его на СПМ невозможно по ряду причин:

- отсутствует возможность взаимодействия с программно-аппаратными средствами стенда;
- отсутствует возможность расчета параметров работы двигателя в режиме реального времени;
 - отсутствует возможность компоновки требуемой схемы двигателя;
 - отсутствует возможность применения экспериментальных АДХ СВВ.

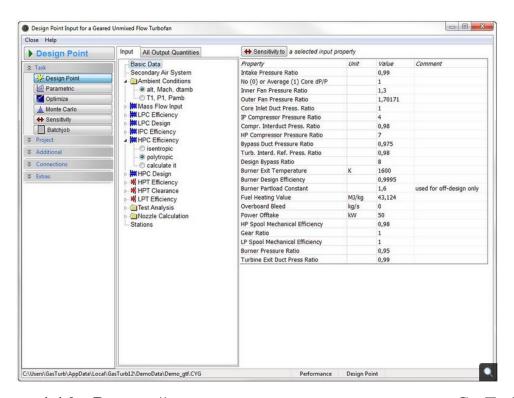


Рисунок 1.16 – Внешний вид окна ввода данных программы GasTurb 12

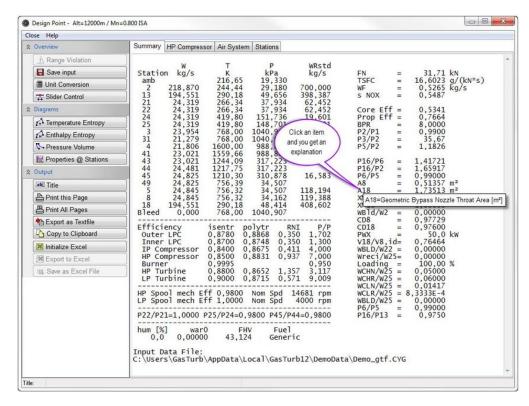


Рисунок 1.17 – Внешний вид окна вывода данных программы GasTurb 12

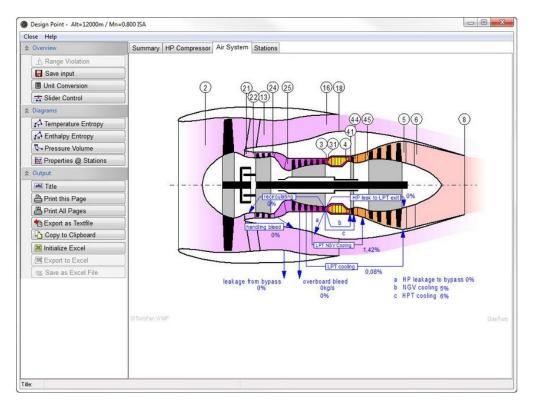


Рисунок 1.18 — Внешний вид окна вывода данных с указанием расчетных точек программы GasTurb 12

1.4.2 GSP 11 (Нидерланды)

Программа моделирования ГТД GSP 11, разработанная в техническом университете Делфта (TUD), представляет инструмент для расчета установившихся и переходных процессов ГТД произвольной схемы [68]. Модель ГТД представляется в GSP 11 в виде набора модулей, соответствующих основным узлам ГТД (см. Рисунок 1.19).

Кроме того, GSP 11 позволяет вносить изменения в библиотеку модулей (характеристики узлов), и может быть применена в стороннем прикладном ПО благодаря интерфейсу программирования приложений – API.

Несмотря на все преимущества GSP 11 не может быть применена на СПМ по следующим причинам:

- отсутствует возможность расчета параметров работы двигателя в режиме реального времени;
- отсутствует возможность полноценного взаимодействия с программноаппаратными средствами стенда;
 - отсутствует возможность применения экспериментальных АДХ СВВ.

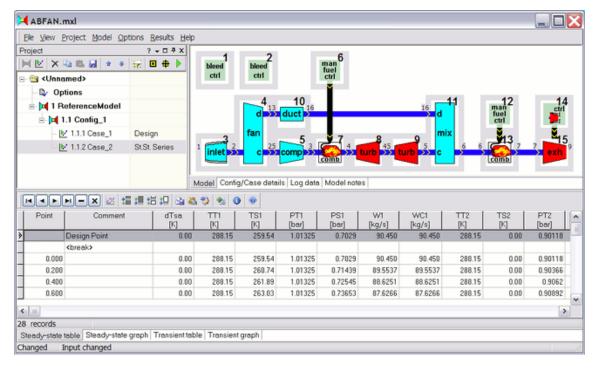


Рисунок 1.19 – Окно программы GSP 11

1.4.3 ГРАД, ГРЭТ (Россия, Казань)

Программный комплекс ГРАД [69] был разработан учеными Казанского национального исследовательского технического университета (КНИТУ-КАИ) на языке программирования Fortran и применяется уже более 25 лет. ГТД в ГРАД представлен поэлементной моделью в виде основных узлов (КНД, КВД, КС, ТВД, ТНД и др). С момента своего создания ГРАД претерпел значительные изменения в части интерфейса и функциональности. Построенный на базе ГРАД программный комплекс ГРЭТ полностью адаптирован к работе в операционной системе Windows [70].

Однако применение ГРАД, ГРЭТ на СПМ не представляется возможным по следующим причинам:

- отсутствует возможность расчета параметров работы двигателя в режиме реального времени;
- отсутствует возможность полноценного взаимодействия с программноаппаратными средствами стенда;
 - отсутствует возможность применения экспериментальных АДХ СВВ.

1.4.4 Программный комплекс АСТРА (Россия, Самара)

Автоматизированная система термогазодинамического расчета и анализа (АСТРА) ГТД и энергетических установок представляет собой интегрированную среду, разработанную Самарским государственным аэрокосмическим университетом для совместного решения задач начального этапа проектирования ГТД различных типов и схем [71, 72]. ГТД в программном комплексе АСТРА представлен в виде базовых модулей, соответствующих основным узлам ГТД, характеристики которых известны.

ACTPA (см. Рисунок 1.20) имеет современный интерфейс, работает в операционной системе Windows и обладает следующими возможностями:

- формирование моделей ГТД произвольных схем;

- использование характеристик узлов;
- расчет ВСХ;
- моделирование полетного цикла;
- идентификация параметров ГТД и др.

Рисунок 1.20 – Внешний вид основного окна АСТРА

Несмотря на ряд преимуществ (по сравнению с рассмотренными программными комплексами), АСТРА не может быть применена на СПМ по следующим причинам:

- отсутствует возможность расчета параметров работы двигателя в режиме реального времени;
- отсутствует возможность полноценного взаимодействия с программно-аппаратными средствами стенда.

1.4.5 Комплексный математический стенд (Россия, Москва)

Центральным институтом авиационного моторостроения им. П.И. Баранова был разработан комплексный математический стенд, позволяющий моделировать работу ГТД совместно с САУ и решающий следующие задачи [73]:

- определение характеристик двигателя на установившемся и переходном режимах работы с реальными характеристиками САУ;

- оценка управляемости двигателя при выбранных методах управления;
- упреждающая оценка влияния коррекции характеристик узлов на характеристики двигателя;
 - исследование и выбор программ и алгоритмов управления САУ;
- отладка функционального программного обеспечения электронных регуляторов САУ;
 - контроль параметров, не измеряемых в натурных экспериментах.

Программа построена по принципу поузловой динамической ММ ГТД [74] и предоставляет широкие возможности по отладке системы управления ГТД, однако, не может быть применена на СПМ по следующим причинам:

- отсутствует возможность применения поверочного аэродинамического расчета CBB с применением вихревой теории;
- отсутствует возможность полноценного взаимодействия с программно-аппаратными средствами стенда.

1.4.6 DVIGw (Россия, Уфа)

Программная среда DVIGw, разработанная Уфимским государственным авиационным техническим университетом, позволяет выполнять термогазодинамические расчеты авиационных ГТД произвольных схем и анализировать их работу при изменении внешних условий и режимов [14, 75, 76, 77, 78, 79]. Модель ГТД представляется в DVIGw в виде набора модулей, соответствующих основным узлам ГТД. Между модулями устанавливается взаимосвязь, описывающая потоки вещества, энергии, количества движения.

Программная среда DVIGw позволяет рассчитывать BCX, дроссельные характеристики ГТД, проводить проектный термогазодинамический расчет и др., однако, не может быть применена на СПМ по следующим причинам:

- отсутствует возможность расчета параметров работы двигателя в режиме реального времени;

- отсутствует возможность полноценного взаимодействия с программноаппаратными средствами стенда;
 - отсутствует возможность применения экспериментальных АДХ СВВ.

1.5 Постановка цели и задач исследования

В п. 1.1 показан широкий круг задач, возникающих при разработке СВВ и их САУ, решить которые позволяет СПМ.

ПО СПМ и среда разработки ПО (п. 1.2) соответствуют современному техническому уровню и позволяют производить расчеты основных ММ в режиме реального времени.

Из п. 1.3 видно, что основными ММ, применяемыми на СПМ и влияющими на точность воспроизведения переходных процессов, являются: ММ двигателя, описывающая мощностные и инерционные характеристики, и ММ СВВ. В настоящее время применение специальной методики интерполяции расчетно-экспериментальных АДХ СВВ [50, 62, 63] позволяет с достаточной точностью рассчитать мощность, потребляемую ПВ и ЗВ. Напротив, ММ двигателя, представленная в виде внешней характеристики ТВВ, ВСХ или в виде КЛДМ [18, 19], вносит значимые погрешности при моделировании переходных процессов и обладает рядом недостатков (см. ВВЕДЕНИЕ). При этом решение всего комплекса задач, связанных с отладкой и доводкой САУ СВВ не представляется возможным.

Возникающая потребность применения на СПМ более совершенной ММ двигателя привела к необходимости проведения анализа готовых программных продуктов, используемых для моделирования ГТД (см. п. 1.4). Проведенный анализ показал, что имеющиеся на сегодняшний день готовые программные продукты не могут быть применены на СПМ по ряду причин. Основными причинами являются: невозможность расчета параметров ГТД в режиме реального времени и невозможность взаимодействия с программно-аппаратными средствами стенда.

Расчет параметров MM в режиме реального времени является обязательным условием для достоверного воспроизведения переходных процессов на СПМ,

поскольку программно-аппаратные средства ИВК непрерывно взаимодействуют с натурными объектами испытания (СВВ, ГМР, ЭСУ).

Таким образом анализ существующей проблемы математического моделирования ТВВД на СПМ для испытания СВВ и их САУ позволил сформулировать цель и направления научного исследования.

Целью является разработка технологии полунатурных испытаний агрегатов САУ соосных винтовентиляторов в замкнутых каналах управления с применением поузловой ММ ТВВД для повышения эффективности проектирования и доводки СВВ и их САУ (включая ГМР).

Исходя из цели работы, для ее реализации поставлены следующие задачи:

1 Провести анализ структурной организации и базовых характеристик стенда полунатурного моделирования для испытания агрегатов САУ соосных винтовентиляторов, определить недостатки существующего подхода.

- 2 Разработать поузловую нелинейную термодинамическую ММ ТВВД на примере ТВВД Д-27 для замыкания каналов управления на стенде полунатурного моделирования.
- 3 Разработать модуль реализации ММ ТВВД в среде программирования, применяемой на стенде полунатурного моделирования.
- 4 Исследовать реализованную ММ для ТВВД Д-27 на адекватность, по результатам исследования провести уточнение ММ с последующей идентификацией.
- 5 Исследовать пути возможной оптимизации расчета разработанной ММ ТВВД Д-27 с применением современных методов нечеткой логики и выработать рекомендации для применения указанной ММ на других СПМ ОАО «НПП «Аэросила», предназначенных для испытаний аналогичных ВВ и ГМР.
- 6 Внедрить идентифицированную ММ ТВВД на стенд полунатурного моделирования 311ПР ОАО «НПП «Аэросила».

Глава 2 Разработка поузловой (поэлементной) нелинейной термодинамической ММ ТВВД на примере ТВВД Д-27 для стенда полунатурного моделирования

2.1 Основные подходы при разработке поузловой нелинейной термодинамической ММ ТВВД

При разработке ММ ТВВД использовались следующие фундаментальные законы.

Закон сохранения энергии газового потока — сумма удельной энтальпии, удельной кинетической энергии, а также удельного подведенного или отведенного количества теплоты или удельной работы сохраняются между условными сечениями:

$$i_1 + \frac{c_1^2}{2} \pm q \pm l = i_2 + \frac{c_2^2}{2},$$
 (2.1)

где i_1, i_2 –значение удельной энтальпии в условных сечениях, $\frac{Дж}{\kappa r}$;

 c_1 , c_2 – скорость течения газового потока в условных сечениях, $\frac{M}{c}$;

q — удельное подведенное или отведенное количество теплоты, $\frac{Д_{ж}}{\kappa r}$;

l — удельная работа, совершенная над газовым потоком или самим газовым потоком, $\frac{{\cal J}_{\rm KF}}{{}_{\rm KF}}.$

Закон сохранения массы газового потока (неразрывность газового потока) — массовый расход газового потока с учетом отбора сжатого воздуха или подачи топлива сохраняется между условными сечениями:

$$G_{\rm r1} - G_{\rm or6} + G_{\rm r} = G_{\rm r2}$$
, (2.2)

где $G_{\Gamma 1}, G_{\Gamma 2}$ — массовый расход газового потока в условных сечениях, $\frac{\kappa \Gamma}{c};$ $G_{\text{отб}}$ — массовый расход отбираемого сжатого воздуха, $\frac{\kappa \Gamma}{c};$ $G_{\text{т}}$ — массовый расход топлива в КС, $\frac{\kappa \Gamma}{c}$.

Второй закон Ньютона для вращательного движения – угловое ускорение ротора прямо пропорционально крутящему моменту и обратно пропорционально моменту инерции:

$$\dot{n} = \frac{\Delta N}{2\pi \cdot n \cdot I} \,, \quad (2.3)$$

где \dot{n} – угловое ускорение, $\frac{\text{рад}}{c}$;

 ΔN — разность мощностей источника и потребителя, Вт;

n – частота вращения, $\frac{\text{об}}{\text{c}}$;

I – момент инерции, кг · м².

2.2 Структурная схема поузловой (поэлементной) нелинейной термодинамической ММ ТВВД на примере ТВВД Д-27

Газогенератор ТВВД Д-27 состоит из следующих основных конструктивных элементов (узлов): КНД, КВД, КС, ТВД, ТНД, ТВВ, ВУ (см. Рисунок 2.1).

Поэлементная нелинейная термодинамическая ММ ТВВД Д-27 структурно повторяет поузловое строение двигателя (см. Рисунок 2.2).

Условно можно разделить ММ ТВВД Д-27 на две основные части: термодинамическая модель газогенератора (ГГ) и динамическая модель роторов.

Термодинамическая модель ГГ состоит из семи основных элементов: КНД, КВД, КС, ТВД, ТНД, ТВВ, ВУ. В термодинамической модели ГГ происходит расчет температур и давлений вдоль проточной части двигателя.

Динамическая модель состоит из трех основных элементов, описывающих динамику роторов высокого и низкого давления (ВД, НД), а также редуктора Д-27.

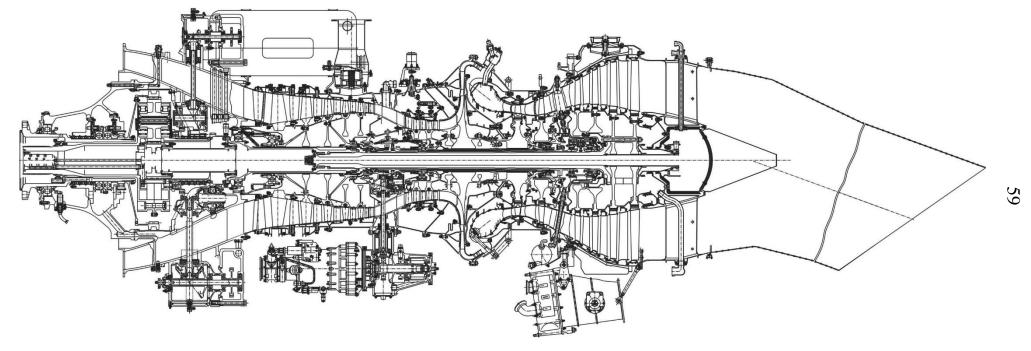


Рисунок 2.1 – Конструкция турбовинтовентиляторного двигателя Д-27

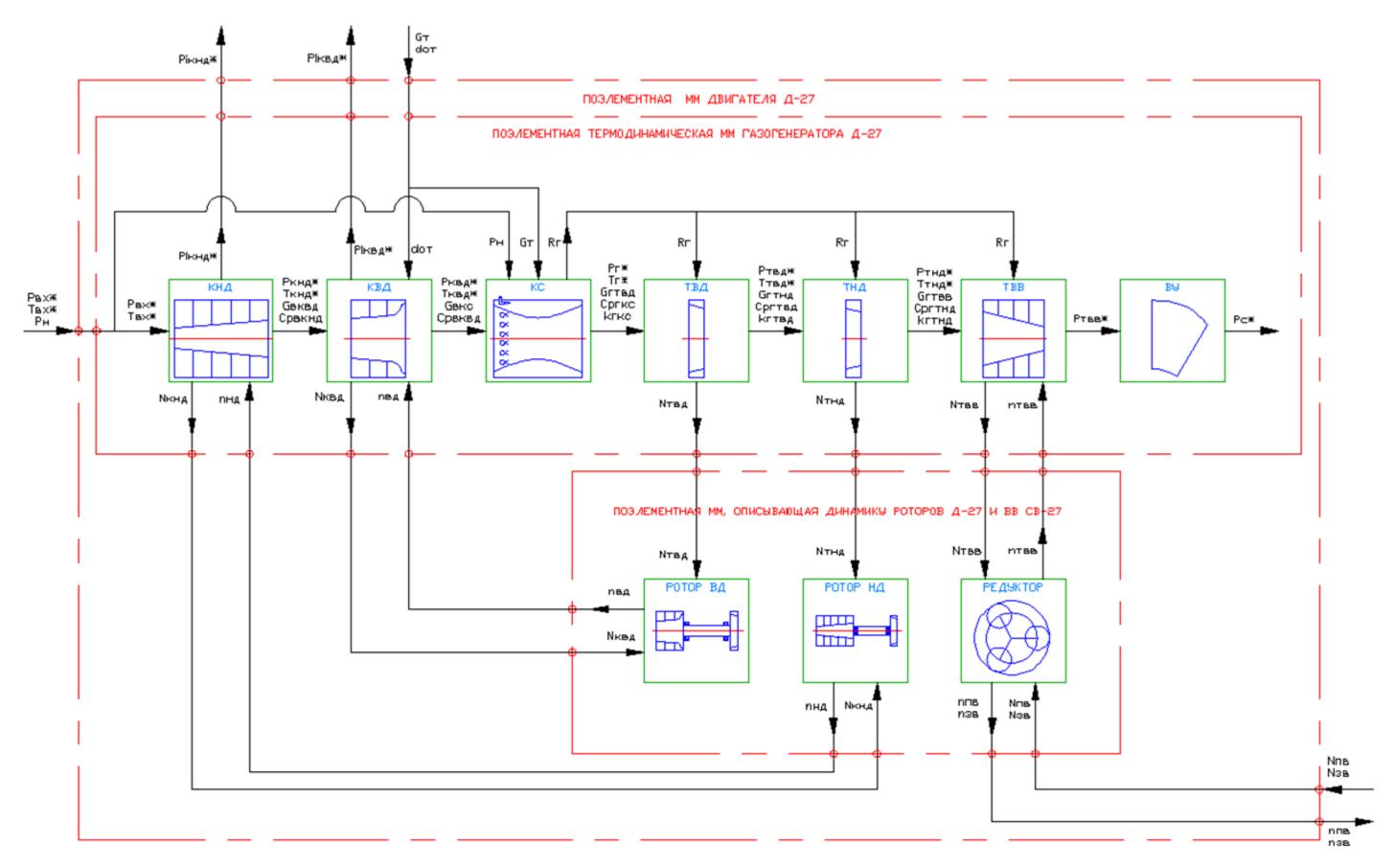


Рисунок 2.2 – Структурная схема поэлементной нелинейной термодинамической ММ ТВВД Д-27

Из структурной схемы (Рисунок 2.1) видно, что на ММ ТВВД Д-27 оказывают влияние внешние возмущения:

- давление торможения воздуха на входе в двигатель $P_{\text{вх}}^*$;
- температура воздуха на входе в двигатель по параметрам торможения $T_{\rm BX}^*$;
- расход топлива в камеру сгорания G_{T} ;
- отбор воздуха за КВД $\delta_{\text{отб}}$;
- мощности, отбираемые передним и задним BB $N_{\text{пв}}$, $N_{\text{зв}}$.

Параметры $P_{\rm BX}^*$, $T_{\rm BX}^*$, $G_{\rm T}$, $\delta_{\rm OTG}$ оказывают влияние на термодинамическую ММ ГГ, а $N_{\rm IIB}$, $N_{\rm 3B}$ — на динамическую модель редуктора Д-27.

Внешними параметрами ММ ТВВД Д-27 являются:

- степень повышения давления торможения КНД $\pi_{\text{кнл}}^*$;
- степень повышения давления торможения КВД $\pi^*_{ ext{KBД}}$;
- частоты вращения переднего и заднего ВВ $n_{\text{пв}},\,n_{\text{зв}}.$

Параметры $\pi_{\text{кнд}}^*$, $\pi_{\text{квд}}^*$ формируются термодинамической ММ ГГ, а $n_{\text{пв}}$, $n_{\text{зв}}$ – динамической моделью редуктора Д-27.

2.3 Расчет условий полета: значений давления торможения и температуры торможения на входе в двигатель

Одними из возмущающих воздействий для ММ ТВВД являются температура торможения и давление торможения на входе в двигатель. Указанные параметры воздуха зависят от высоты и скорости полета, а также от отклонения температуры от значения по МСА.

2.3.1 Расчет наружной физической температуры и наружного физического давления по MCA на заданной высоте

Расчет наружной физической температуры $T_{\rm H0}$ и наружного физического давления $P_{\rm H0}$ по МСА на заданной высоте осуществляется согласно ГОСТ 4401-81.

Для высот до 11000 м можно воспользоваться упрощенной формулой расчета наружной физической температуры $T_{\rm H0}$:

$$T_{\text{H0}} = T_0 - 0.00651 \cdot H,$$
 (2.4)

где $T_0 = 288,15$, К — физическая температура на нулевой высоте по МСА; H — высота, м.

2.3.2 Расчет наружной физической температуры и наружного физического давления с учетом отклонения от MCA

Расчет наружной физической температуры с учетом отклонения от МСА осуществляется по формуле:

$$T_{\rm H} = T_{\rm H0} + \Delta T \,, \qquad (2.5)$$

где ΔT – заданное отклонение физической температуры от MCA, К.

Наружное физическое давление с учетом отклонения наружной физической температуры от МСА может быть найдено по заданной величине отклонения физического давления:

$$P_{\rm H} = P_{\rm H0} + \Delta P \,, \qquad (2.6)$$

где ΔP – заданное отклонение физического давления от MCA, Па.

Также наружное физическое давление с учетом отклонения физической температуры от МСА может быть найдено приближенно по барометрической формуле:

$$P_{\rm H} = P_0 \cdot e^{\frac{M_{T\rm B} \cdot g \cdot H}{R_0 \cdot T_{\rm H}}}, \qquad (2.7)$$

где $P_0=101325$, Па — физическое давление на нулевой высоте по МСА; $M_{r_{\rm B}}=0.02898$, $\frac{\kappa_{\Gamma}}{M_{\rm OJL}}$ — молярная масса воздуха;

 $R_0 = 8,31, \frac{\text{Дж}}{\text{К·моль}} - \text{универсальная газовая постоянная.}$

Необходимо отметить, что реальное распределение давления воздуха в земной атмосфере не следует барометрической формуле, т.к. в пределах атмосферы ускорение свободного падения меняется с высотой и географической широтой. Кроме того, атмосферное давление увеличивается с концентрацией в атмосфере паров воды.

2.3.3 Расчет показателя адиабаты наружного воздуха с учетом отклонения температуры от MCA

Показатель адиабаты наружного воздуха $k_{\rm B.H}$ рассчитывается по следующей эмпирической зависимости:

$$k_{\text{BH}} = -1.1187 \cdot 10^{-7} \cdot T_{\text{H}}^2 + 1.3231 \cdot 10^{-4} \cdot T_{\text{H}} + 1.3674$$
 (2.8)

2.3.4 Расчет числа Маха

Число Маха рассчитывается по формуле:

$$M = \frac{V_{\text{приб}}}{\sqrt{k_{\text{в.н}} \cdot R \cdot T_{\text{H}}}}, \qquad (2.9)$$

где $V_{\text{приб}}$ – приборная скорость полета, $\frac{M}{c}$;

$$R = 287,3, \frac{Дж}{\kappa r \cdot K} -$$
газовая постоянная.

2.3.5 Расчет температуры торможения и давления торможения на входе в двигатель

Температура торможения на входе в двигатель рассчитывается по формуле:

$$T_{\text{BX}}^* = T_{\text{H}} \cdot \left(1 + \frac{k_{\text{B.H}} - 1}{2} \cdot M^2\right)$$
 (2.10)

Давление торможения на входе в двигатель рассчитывается по формуле:

$$P_{\text{BX}}^* = \sigma_{\text{BX}} \cdot P_{\text{H}} \cdot \left(1 + \frac{k_{\text{B.H}} - 1}{2} \cdot M^2\right)^{\frac{k_{\text{B.H}}}{k_{\text{B.H}} - 1}}, \quad (2.11)$$

где $\sigma_{\rm BX} = 0.97$ — коэффициент потери полного давления во входном устройстве, 1.

2.4 Термодинамический расчет основных элементов газогенератора ТВВД на примере ТВВД Д-27

При расчете давлений торможения и температур торможения в характерных сечениях проточной части ГГ приняты обозначены в соответствии Рисунком 2.3.

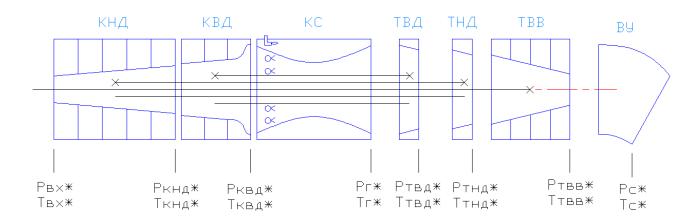


Рисунок 2.3 – Обозначение параметров в характерных сечениях тракта двигателя

2.4.1 Термодинамический расчет компрессора низкого давления

В ММ КНД для упрощения используется характеристика КНД, полученная только для одного положения лопаток входного направляющего аппарата (ВНА).

2.4.1.1 Расчет приведенной частоты вращения ротора НД

Приведенная частота вращения ротора НД рассчитывается исходя из условий подобия физических процессов в двигателе:

$$n_{{ ext{H}}_{ ext{J}}.{ ext{T}}_{ ext{D}}} = n_{{ ext{H}}_{ ext{J}}} \cdot \sqrt{\frac{T_0}{T_{{ ext{BX}}}^*}},$$
 (2.12)

где $n_{\rm HД, np}$ — приведенная частота вращения ротора НД, $\frac{\rm of}{\rm c}$;

 $n_{\rm HД}$ — физическая частота вращения ротора НД, рассчитываемая по формуле (2.66), $\frac{{
m o}6}{{
m c}}$.

2.4.1.2 Расчет массового приведенного расхода воздуха через КНД

На Рисунках 2.4 — 2.5 приведена характеристика компрессора низкого давления [80]. В Приложении А приведена Таблица А.1 с оцифрованными значениями характеристики КНД. Представленная характеристика справедлива для нулевого положения ВНА.

Характеристика КНД представляет собой зависимости степени повышения давления торможения и коэффициента полезного действия (КПД) по параметрам торможения от приведенного массового расхода воздуха и приведенной частоты вращения: $\pi_{\text{кнд}}^* = f(G_{\text{в.кнд.пр}}, n_{\text{нд.пр}})$ и $\eta_{\text{кнд}}^* = f(G_{\text{в.кнд.пр}}, n_{\text{нд.пр}})$. Для расчета расхода воздуха через КНД необходимо произвести интерполяцию двух соседних линий на характеристике по параметру приведенной частоты вращения ротора НД (см. Рисунок 2.6).

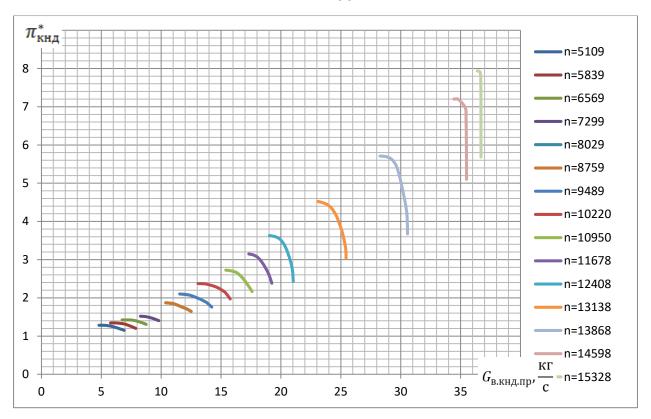


Рисунок 2.4 — Характеристика КНД в виде зависимости $\pi_{\text{кнд}}^* = f(G_{\text{в.кнд.пр}}, n_{\text{нд.пр}})$ (размерность $n_{\text{нд.пр}}$ представлена в $\frac{\text{об}}{\text{мин}}$).

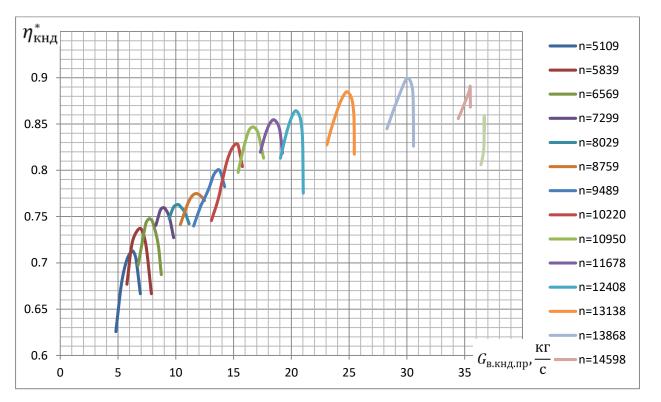


Рисунок 2.5 — Характеристика КНД в виде зависимости $\eta_{\text{кнд}}^* = f(G_{\text{в.кнд.пр}}, n_{\text{нд.пр}})$ (размерность $n_{\text{нд.пр}}$ представлена в $\frac{\text{об}}{\text{мин}}$).

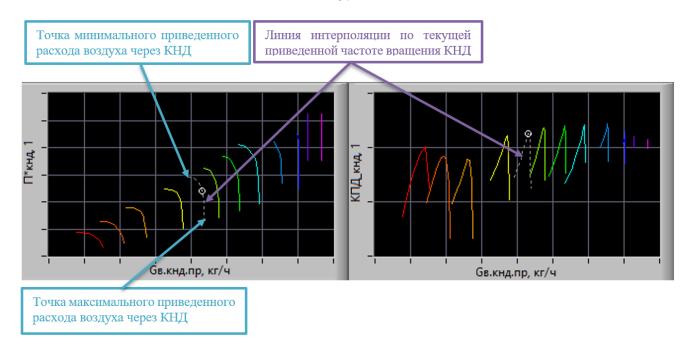


Рисунок 2.6 – Интерполяция характеристики КНД

Таким образом, получим искомую линию постоянной приведенной частоты вращения $n_{\rm Hд.np} = const$, на которой будут находиться точки минимального и максимального массовых приведенных расходов воздуха через КНД $G_{\rm B.KHд.np}_{min}$ и $G_{\rm B.KHд.np}_{max}$ (см. Рисунок 2.6).

В точке $G_{\text{в.кнд.пр}_{min}}$ будет выполняться условие: $P_{\text{с}} > P_{\text{н}}$, т.е. будет иметь место течение газа с недорасширением. В точке $G_{\text{в.кнд.пр}_{max}}$ будет выполняться условие: $P_{\text{с}} < P_{\text{н}}$, т.е. будет иметь место течение газа с перерасширением. Для нахождения точки совместной работы компрессоров и турбин в случае турбовинтовентиляторного двигателя необходимо найти значение массового приведенного расхода воздуха, удовлетворяющее условию: $P_{\text{c}} = P_{\text{н}}$.

Искомое значение массового приведенного расхода воздуха будет находиться между минимальным и максимальным значениями массовых приведенных расходов воздуха: $G_{\text{в.кнд.пр}_{min}} < G_{\text{в.кнд.пр}_{min}} < G_{\text{в.кнд.пр}_{max}}$.

Одним из методов решения данной задачи является метод дихотомии — последовательное приближение путем половинного деления (см. Рисунок 2.7). Точность приближения выбирается из условия: $\frac{|P_{\rm c}-P_{\rm H}|}{P_{\rm u}} \le 5 \cdot 10^{-5}$.

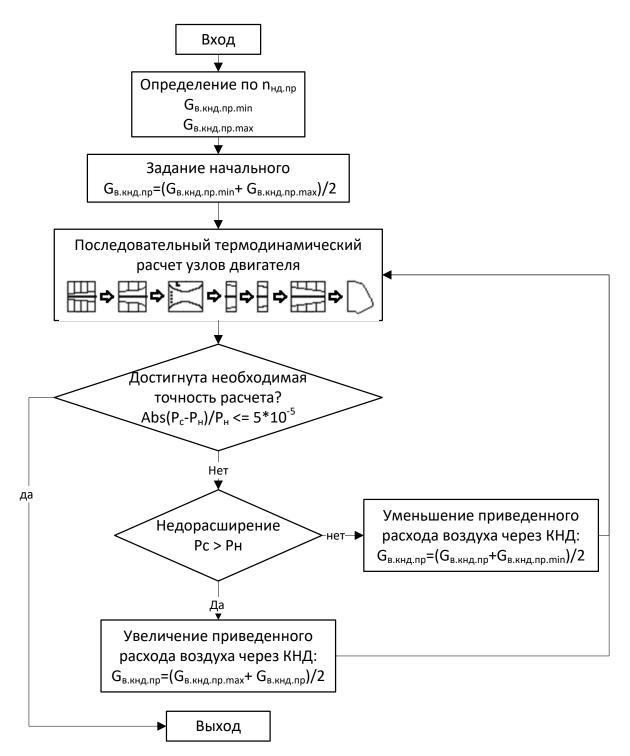


Рисунок 2.7 – Блок-схема алгоритма нахождения совместной точки работы узлов ТВВД

2.4.1.3 Расчет термогазодинамических параметров на входе в КНД

Показатель адиабаты воздуха на входе в КНД рассчитывается по формуле:

$$k_{\text{\tiny B.BX}} = -1,1187 \cdot 10^{-7} \cdot T_{\text{\tiny BX}}^{*2} + 1,3231 \cdot 10^{-4} \cdot T_{\text{\tiny BX}}^{*} + 1,3674$$
 (2.12)

Удельная теплоемкость воздуха на входе в КНД рассчитывается по формуле:

$$C_{p.B.BX} = 1000 + 0.16 \cdot (T_{BX}^* - 200)$$
 (2.13)

2.4.1.4 Расчет термогазодинамических параметров на выходе из КНД

Давление торможения на выходе из КНД рассчитывается по формуле:

$$P_{\text{KH}\pi}^* = P_{\text{BX}}^* \cdot \pi_{\text{KH}\pi}^* \quad (2.14)$$

Температура торможения на выходе из КНД рассчитывается по формуле:

$$T_{\text{кнд}}^* = T_{\text{вх}}^* \cdot \left(1 + \frac{\pi_{\text{кнд}}^* \frac{k_{\text{в.вх}} - 1}{k_{\text{в.вх}}} - 1}{\eta_{\text{кнд}}^*} \right) \quad (2.15)$$

Удельная теплоемкость воздуха на выходе из КНД рассчитывается по формуле:

$$C_{p.в.кнд} = 1000 + 0.16 \cdot (T_{кнд}^* - 200)$$
 (2.16)

2.4.1.5 Расчет удельной работы, совершаемой КНД

Удельная работа, совершаемая КНД, определяется изменением энтальпии торможения воздуха и рассчитывается для адиабатного процесса сжатия воздуха по формуле:

$$l_{\text{кнд}} = C_{p.\text{в.кнд}} \cdot T_{\text{кнд}}^* - C_{p.\text{в.вх}} \cdot T_{\text{вх}}^*$$
 (2.17)

2.4.1.6 Расчет мощности, потребляемой КНД

Мощность, потребляемая КНД, определяется удельной работой КНД и массовым расходом воздуха, проходящего через КНД:

$$N_{\text{кнд}} = l_{\text{кнд}} \cdot G_{\text{вкнд}} \quad (2.18)$$

2.4.1.7 Расчет массового расхода воздуха на выходе из КНД

Массовый расход воздуха определяется исходя из условия неразрывности газового потока (сохранения массы):

$$G_{\text{в.квд}} = G_{\text{в.кнд}} \quad (2.19)$$

2.4.2 Термодинамический расчет компрессора высокого давления

2.4.2.1 Расчет приведенной частоты вращения ротора ВД

Приведенная частота вращения ротора ВД рассчитывается исходя из условий подобия физических процессов в двигателе:

$$n_{{}_{\mathrm{B}\mathrm{\mathcal{I}}.\mathrm{\Pi}\mathrm{p}}} = n_{{}_{\mathrm{B}\mathrm{\mathcal{I}}}} \cdot \sqrt{\frac{T_0}{T_{\mathrm{KH}\mathrm{\mathcal{I}}}^*}}, \quad (2.20)$$

где $n_{\rm BД}$ — физическая частота вращения ротора ВД, рассчитываемая по формуле (2.64), $\frac{\rm o6}{\rm c}$.

2.4.2.2 Расчет массового приведенного расхода воздуха через КВД

Массовый приведенный расход воздуха через КВД рассчитывается исходя из условий подобия физических процессов в двигателе:

$$G_{\text{в.квд.пр}} = G_{\text{в.квд}} \cdot \sqrt{\frac{T_{\text{кнд}}^*}{T_0}} \cdot \frac{P_0}{P_{\text{кнд}}^*}$$
 (2.21)

2.4.2.3 Расчет степени повышения давления торможения КВД и КПД по параметрам торможения

Степень повышения давления торможения КВД $\pi_{\text{квд}}^*$ и КПД КВД по параметрам торможения $\eta_{\text{квд}}^*$ рассчитываются путем линейной интерполяции характеристики КВД. Характеристика КВД представлена на Рисунках 2.8 и 2.9 [80], а также в Таблице А.2.

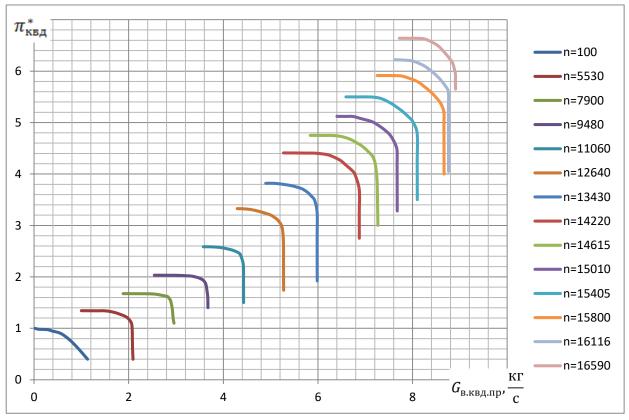


Рисунок 2.8 — Характеристика КВД в виде зависимости $\pi_{\text{квд}}^* = f(G_{\text{в.квд.пр}}, n_{\text{вд.пр}})$ (размерность $n_{\text{вд.пр}}$ представлена в $\frac{\text{об}}{\text{мин}}$).

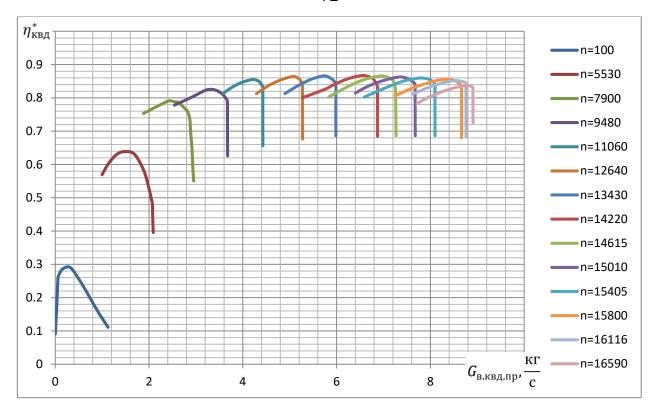


Рисунок 2.9 — Характеристика КВД в виде зависимости $\eta_{\text{квд}}^* = f(G_{\text{в.квд.пр}}, n_{\text{вд.пр}})$ (размерность $n_{\text{вд.пр}}$ представлена в $\frac{\text{об}}{\text{мир}}$).

2.4.2.4 Расчет термогазодинамических параметров на выходе из КВД

Давление торможения на выходе из КВД рассчитывается по формуле:

$$P_{\text{\tiny KBД}}^* = P_{\text{\tiny KHД}}^* \cdot \pi_{\text{\tiny KBД}}^* \quad (2.22)$$

Показатель адиабаты воздуха на выходе из КНД рассчитывается по формуле:

$$k_{\text{в.кнд}} = -1,1187 \cdot 10^{-7} \cdot T_{\text{кнд}}^{*2} + 1,3231 \cdot 10^{-4} \cdot T_{\text{кнд}}^{*} + 1,3674$$
 (2.23)

Температура торможения на выходе из КВД рассчитывается по формуле:

$$T_{\text{KBД}}^* = T_{\text{KHД}}^* \cdot \left(1 + \frac{\pi_{\text{KBД}}^* \frac{k_{\text{B.KHД}} - 1}{k_{\text{B.KHД}}} - 1}{\eta_{\text{KBД}}^*} \right)$$
(2.24)

Удельная теплоемкость воздуха на выходе из КВД рассчитывается по формуле:

$$C_{p.\mathrm{B.KBJ}} = 1000 + 0.16 \cdot (T_{\mathrm{KBJ}}^* - 200)$$
 (2.25)

2.4.2.5 Расчет удельной работы, совершаемой КВД

Удельная работа, совершаемая КВД, определяется изменением энтальпии торможения воздуха и рассчитывается для адиабатного процесса сжатия воздуха по формуле:

$$l_{\text{квд}} = C_{p.\text{в.квд}} \cdot T_{\text{квд}}^* - C_{p.\text{в.кнд}} \cdot T_{\text{кнд}}^* \qquad (2.26)$$

2.4.2.6 Расчет мощности, потребляемой КВД

Мощность, потребляемая КВД, определяется удельной работой КВД и массовым расходом воздуха, проходящего через КВД:

$$N_{\text{\tiny KBД}} = l_{\text{\tiny KBД}} \cdot G_{\text{\tiny B.KBД}} \qquad (2.27)$$

2.4.2.7 Расчет массового расхода воздуха на выходе из КВД (на входе в КС)

Массовый расход воздуха определяется исходя из условия неразрывности газового потока (сохранения массы) с учетом отбора воздуха на нужды воздушного судна:

$$G_{\text{в.кс}} = G_{\text{в.квд}} \cdot \left(1 - \frac{\delta_{\text{отб}}}{100\%}\right), \quad (2.28)$$

где $\delta_{\text{отб}}$ – отбор воздуха за КВД, %.

2.4.3 Термодинамический расчет камеры сгорания

2.4.3.1 Расчет массового расхода газа на выходе из КС (на входе в ТВД)

Массовый расход газа определяется исходя из условия неразрывности газового потока (сохранения массы) с учетом массы подаваемого топлива:

$$G_{\text{г.твд}} = G_{\text{в.кс}} + \frac{G_{\text{т}}}{3600}, \quad (2.29)$$

где $G_{\rm T}$ – расход топлива в КС, $\frac{{\rm \kappa r}}{{\rm q}}$.

2.4.3.2 Расчет параметров топлива, подаваемого в КС

Температура топлива, подаваемого в КС, рассчитывается исходя из допущения:

$$T_{\rm T} = T_{\rm H} + 15$$
 (2.30)

Удельная теплоемкость топлива TC-1, подаваемого в KC, определяется по линейной зависимости:

$$C_{p.t} = -4,6063 \cdot T_t + 3424,7$$
 (2.31)

2.4.3.3 Расчет термогазодинамических параметров на выходе из КС

Давление торможения на выходе из КС рассчитывается с учетом гидравлических потерь:

$$P_{\Gamma}^* = P_{\text{KBJ}}^* \cdot \sigma_{\text{KC}}$$
, (2.32)

где $\sigma_{\rm KC} = 0.95$ – коэффициент потери полного давления в КС.

Газовая постоянная продуктов сгорания рассчитывается по формуле:

$$R_{\Gamma} = 287 + 24.5 \cdot \frac{G_{\text{T}}}{3600 \cdot G_{\text{BKC}}}, \quad (2.33)$$

где $G_{\rm T}$ – расход топлива в КС, $\frac{{\rm K}\Gamma}{{\rm q}}$.

Удельная теплоемкость продуктов сгорания на выходе из КС рассчитывается по формуле:

$$C_{p.r.kc} = R_r \cdot \frac{k_{r.kc}}{k_{r.kc} - 1}, \quad (2.34)$$

где $k_{\text{г.кс}} = 1,333$ – показатель адиабаты продуктов сгорания на выходе из КС.

Температура торможения на выходе из КС рассчитывается по формуле:

$$T_{\Gamma}^{*} = \frac{G_{\text{\tiny B.KC}} \cdot C_{p.\text{\tiny B.KB},\text{\tiny KB}} \cdot T_{\text{\tiny KB},\text{\tiny KB}}^{*} + \frac{G_{\text{\tiny T}}}{3600} \cdot \left(C_{p.\text{\tiny T}} \cdot T_{\text{\tiny T}} + H_{u} \cdot \xi_{\text{\tiny KC}}\right)}{C_{p.\text{\tiny T.KC}} \cdot G_{\text{\tiny T.TB},\text{\tiny I}}}, \quad (2.35)$$

где $G_{\rm T}$ – расход топлива в КС, $\frac{\kappa \Gamma}{q}$;

 $H_u = 42910000, \frac{Дж}{кг}$ — низшая удельная теплотворная способность для керосина TC-1;

 $\xi_{\rm кc} = 0,999$ — полнота горения.

2.4.3.4 Расчет температуры торможения газа на выходе из КС путем последовательного приближения

При расчете T_{Γ}^* необходимо учитывать поправку $C_{p,\Gamma,\text{KC}}$ по температуре. Для этого осуществляется последовательный пересчет значений параметров: $T_{\Gamma}^* \to k_{\Gamma} \to C_{p,\Gamma,\text{KC}} \to T_{\Gamma}^*$ в результате чего достигается нужная точность расчета T_{Γ}^* .

Рассмотрим подробнее процесс последовательного пересчета.

В первом приближении по формуле (2.34) рассчитывается значение $C_{p.r.кc}$ при $k_{r.кc}=1,333$. Затем рассчитывается T_r^* по формуле (2.35). По найденному значению T_r^* пересчитывается значение $k_{r.kc}$ по формуле:

$$k_{\text{\tiny \Gamma.KC}} = 0.0364 \cdot \left(\frac{T_{\text{\tiny \Gamma}}^*}{1000}\right)^2 - 0.144 \cdot \frac{T_{\text{\tiny \Gamma}}^*}{1000} + 1.429 \quad (2.36)$$

По пересчитанному значению $k_{\text{г.кс}}$ пересчитываются значения $\mathcal{C}_{p.\text{г.кс}}$ и $T_{\text{г}}^*$. Описанный пересчет выполняется до тех пор, пока не выполнится условие:

$$\left| \frac{T_{\Gamma(i)}^* - T_{\Gamma(i-1)}^*}{T_{\Gamma(i)}^*} \right| \le 0.01 \%, \quad (2.37)$$

где $T_{\Gamma(i)}^*$ — температура торможения газа на выходе из КС, рассчитанная в текущей итерации, К;

 $T_{\Gamma(i-1)}^*$ — температура торможения газа на выходе из КС, рассчитанная в предыдущей итерации, К.

2.4.4 Термодинамический расчет турбины высокого давления

В ММ ТВД для упрощения используется характеристика ТВД, полученная для одной частоты вращения ротора ВД. Такое упрощение не оказывает

существенного влияния на точность расчета, т.к. характеристика ТВД практически не зависит от частоты вращения ротора ВД.

2.4.4.1 Расчет пропускной способности ТВД

Пропускная способность ТВД рассчитывается по формуле:

$$\bar{G}_{\Gamma,TB,IJ} = G_{\Gamma,TB,IJ} \cdot \frac{\sqrt{T_{\Gamma}^*}}{P_{\Gamma}^*} \cdot 98066,5, \quad (2.38)$$

где $\bar{G}_{\Gamma, TBД}$ — пропускная способность TBД, $\frac{\kappa \Gamma}{c} \cdot K^{0,5} \cdot \frac{cM^2}{\kappa \Gamma c}$; $G_{\Gamma, TBД}$ — массовый расход газа через TBД, $\frac{\kappa \Gamma}{c}$.

2.4.4.2 Расчет степени понижения давления торможения ТВД и КПД ТВД по параметрам торможения

Для расчета $\pi^*_{\text{твд}}$ используется характеристика ТВД [80], представленная в виде зависимости $\bar{G}_{\text{г.твд}} = f(\pi^*_{\text{твд}})$ на Рисунке 2.10, а также в Таблице А.3. По значению пропускной способности ТВД $\bar{G}_{\text{г.твд}}$ методом линейной интерполяции определяется значение $\pi^*_{\text{твл}}$.

Для расчета КПД ТВД по параметрам торможения $\eta_{\text{твд}}^*$ используется характеристика ТВД [80], представленная в виде зависимости $\eta_{\text{твд}}^* = f(\pi_{\text{твд}}^*)$ на Рисунке 2.11, а также в Таблице А.3. По найденному значению $\pi_{\text{твд}}^*$ методом линейной интерполяции определяется значение $\eta_{\text{твд}}^*$.

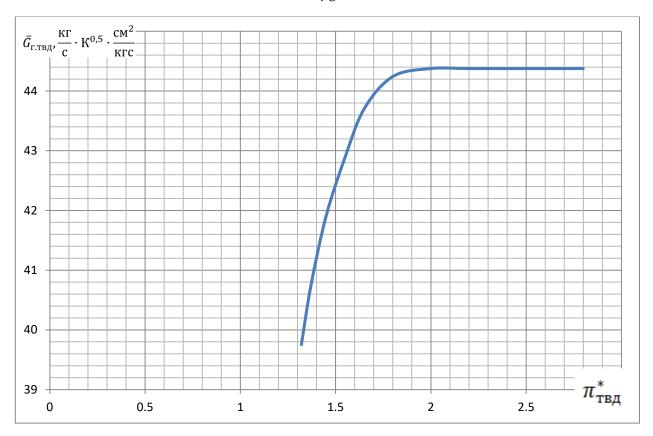


Рисунок 2.10 — Характеристика ТВД в виде зависимости $\bar{G}_{\text{г.твд}} = f(\pi_{\text{твд}}^*)$

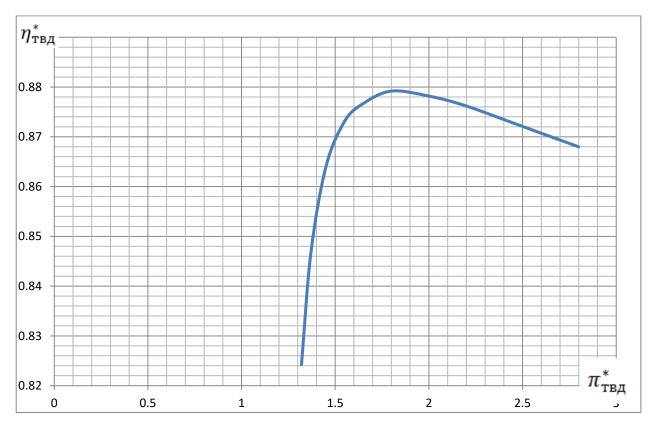


Рисунок 2.11 — Характеристика ТВД в виде зависимости $\eta_{{\scriptscriptstyle {\rm TBД}}}^* = f(\pi_{{\scriptscriptstyle {\rm TBД}}}^*)$

2.4.4.3 Расчет термогазодинамических параметров на выходе из ТВД

Давление торможения на выходе из ТВД рассчитывается по формуле:

$$P_{\text{\tiny TBД}}^* = \frac{P_{\Gamma}^*}{\pi_{\text{\tiny TBД}}^*}$$
 (2.39)

Температура торможения на выходе из ТВД рассчитывается по формуле:

$$T_{\text{\tiny TBД}}^* = T_{\Gamma}^* \cdot \left(1 - \left(1 - \frac{1}{\pi_{\text{\tiny TBД}}^*} \frac{k_{\text{\tiny \Gamma.KC}} - 1}{k_{\text{\tiny \Gamma.KC}}} \right) \cdot \eta_{\text{\tiny TBД}}^* \right) \quad (2.40)$$

Показатель адиабаты продуктов сгорания на выходе из ТВД рассчитывается по формуле:

$$k_{\text{г.твд}} = 0.0364 \cdot \left(\frac{T_{\text{твд}}^*}{1000}\right)^2 - 0.144 \cdot \frac{T_{\text{твд}}^*}{1000} + 1.429$$
 (2.41)

Удельная теплоемкость продуктов сгорания на выходе из ТВД рассчитывается по формуле:

$$C_{p.\Gamma.TBJ} = R_{\Gamma} \cdot \frac{k_{\Gamma.TBJ}}{k_{\Gamma.TBJ} - 1} \qquad (2.42)$$

2.4.4.4 Расчет удельной работы, совершаемой над ТВД

Удельная работа, совершаемая над ТВД, определяется изменением энтальпии торможения продуктов сгорания и рассчитывается для адиабатного процесса расширения газа по формуле:

$$l_{\text{твл}} = C_{p,\Gamma,\text{KC}} \cdot T_{\Gamma}^* - C_{p,\Gamma,\text{твл}} \cdot T_{\text{твл}}^* \qquad (2.43)$$

2.4.4.5 Расчет мощности, развиваемой ТВД

Мощность, развиваемая ТВД, определяется удельной работой, совершаемой над ТВД, и массовым расходом газа, проходящего через ТВД:

$$N_{\text{твд}} = l_{\text{твд}} \cdot G_{\text{г.твд}} \qquad (2.44)$$

2.4.4.6 Расчет массового расхода газа на выходе из ТВД (на входе в ТНД)

Массовый расход газа определяется исходя из условия неразрывности газового потока (сохранения массы):

$$G_{\Gamma, \text{TH} \Lambda} = G_{\Gamma, \text{TB} \Lambda} \qquad (2.45)$$

2.4.5 Термодинамический расчет турбины низкого давления

В ММ ТНД для упрощения используется характеристика ТНД, полученная для одной частоты вращения ротора НД (огибающая). Такое упрощение не оказывает существенного влияния на точность расчета, т.к. характеристика ТНД мало зависит от частоты вращения ротора НД.

2.4.5.1 Расчет пропускной способности ТНД

Пропускная способность ТНД рассчитывается по формуле:

$$\bar{G}_{\Gamma,THA} = G_{\Gamma,THA} \cdot \frac{\sqrt{T_{TBA}^*}}{P_{TBA}^*} \cdot 98066,5,$$
 (2.46)

где $\bar{G}_{\Gamma.\mathrm{TH}}$ — пропускная способность ТНД, $\frac{\mathrm{K}\Gamma}{\mathrm{c}} \cdot \mathrm{K}^{0,5} \cdot \frac{\mathrm{c}\mathrm{M}^2}{\mathrm{K}\Gamma\mathrm{c}};$ $G_{\Gamma.\mathrm{TH}}$ — массовый расход газа через ТНД, $\frac{\mathrm{K}\Gamma}{\mathrm{c}}$.

2.4.5.2 Расчет степени понижения давления торможения ТНД и КПД ТНД по параметрам торможения

Для расчета $\pi^*_{\text{тнд}}$ используется характеристика ТНД [80], представленная в виде зависимости $\bar{G}_{\text{г.тнд}} = f(\pi^*_{\text{тнд}})$ на Рисунке 2.12, а также в Таблице А.4. По значению пропускной способности ТНД $\bar{G}_{\text{г.тнд}}$ методом линейной интерполяции определяется значение $\pi^*_{\text{тнд}}$.

Для расчета КПД ТНД по параметрам торможения $\eta_{\text{тнд}}^*$ используется характеристика ТНД [80], представленная в виде зависимости $\eta_{\text{тнд}}^* = f(\pi_{\text{тнд}}^*)$ на Рисунке 2.13, а также в Таблице А.4. По найденному значению $\pi_{\text{тнд}}^*$ методом линейной интерполяции определяется значение $\eta_{\text{тнд}}^*$.

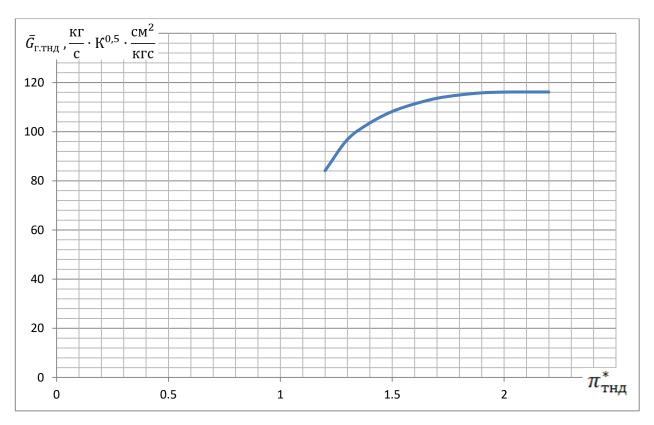


Рисунок 2.12 — Характеристика ТНД в виде зависимости $\bar{G}_{\Gamma, \text{тнд}} = f(\pi_{\text{тнд}}^*)$

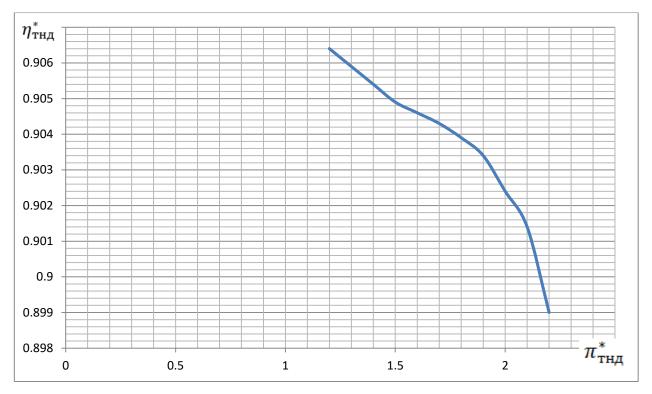


Рисунок 2.13 – Характеристика ТНД в виде зависимости $\eta_{\text{тнд}}^* = f(\pi_{\text{тнд}}^*)$

2.4.5.3 Расчет термогазодинамических параметров на выходе из ТНД

Давление торможения на выходе из ТНД рассчитывается по формуле:

$$P_{\text{\tiny THД}}^* = \frac{P_{\text{\tiny TBД}}^*}{\pi_{\text{\tiny THЛ}}^*} \qquad (2.47)$$

Температура торможения на выходе из ТНД рассчитывается по формуле:

$$T_{\text{\tiny THД}}^* = T_{\text{\tiny TBД}}^* \cdot \left(1 - \left(1 - \frac{1}{\pi_{\text{\tiny THД}}^* \frac{k_{\text{\tiny Г.ТВД}} - 1}{k_{\text{\tiny Г.ТВД}}}} \right) \cdot \eta_{\text{\tiny THД}}^* \right)$$
 (2.48)

Показатель адиабаты продуктов сгорания на выходе из ТНД рассчитывается по формуле:

$$k_{\text{г.тнд}} = 0.0364 \cdot \left(\frac{T_{\text{тнд}}^*}{1000}\right)^2 - 0.144 \cdot \frac{T_{\text{тнд}}^*}{1000} + 1.429$$
 (2.49)

Удельная теплоемкость продуктов сгорания на выходе из ТНД рассчитывается по формуле:

$$C_{p.\Gamma.\text{THA}} = R_{\Gamma} \cdot \frac{k_{\Gamma.\text{THA}}}{k_{\Gamma.\text{THA}} - 1} \qquad (2.50)$$

2.4.5.4 Расчет удельной работы, совершаемой над ТНД

Удельная работа, совершаемая над ТНД, определяется изменением энтальпии торможения продуктов сгорания и рассчитывается для адиабатного процесса расширения газа по формуле:

$$l_{\text{TH},n} = C_{n \, \Gamma \, \text{TB},n} \cdot T_{\text{TB},n}^* - C_{n \, \Gamma \, \text{TH},n} \cdot T_{\text{TH},n}^* \qquad (2.51)$$

2.4.5.5 Расчет мощности, развиваемой ТНД

Мощность, развиваемая ТНД, определяется удельной работой, совершаемой над ТНД, и массовым расходом газа, проходящего через ТНД:

$$N_{\text{тнд}} = l_{\text{тнд}} \cdot G_{\text{г.тнд}} \qquad (2.52)$$

2.4.5.6 Расчет массового расхода газа на выходе из ТНД (на входе в ТВВ)

Массовый расход газа определяется исходя из условия неразрывности газового потока (сохранения массы):

$$G_{\Gamma,\text{TBB}} = G_{\Gamma,\text{THJ}}$$
 (2.53)

2.4.6 Термодинамический расчет турбины винтовентилятора

2.4.6.1 Расчет приведенной частоты вращения ротора ТВВ

Приведенная частота вращения ротора ТВВ рассчитывается исходя из условий подобия физических процессов в двигателе:

$$n_{{}^{TBB.\Pi p}} = n_{{}^{TBB}} \cdot \sqrt{\frac{T_{{}^{*}HA}}{T_0}},$$
 (2.54)

где $n_{\text{твв}}$ — физическая частота вращения ротора ТВВ, рассчитываемая по формуле (2.69), $\frac{\text{o}6}{\text{c}}$.

2.4.6.2 Расчет пропускной способности ТВВ

Пропускная способность ТВВ рассчитывается по формуле:

$$\bar{G}_{\text{г.твв}} = G_{\text{г.твв}} \cdot \frac{\sqrt{T_{\text{тнд}}^*}}{P_{\text{тнл}}^*} \cdot 98066,5, \quad (2.55)$$

где $\bar{G}_{\Gamma,\text{твв}}$ – пропускная способность ТВВ, $\frac{\kappa\Gamma}{c} \cdot \text{K}^{0,5} \cdot \frac{\text{см}^2}{\kappa\Gamma c};$ $G_{\Gamma,\text{твв}}$ – массовый расход газа через ТВВ, $\frac{\kappa\Gamma}{c}$.

2.4.6.3 Расчет степени понижения давления торможения ТВВ и КПД ТВВ по параметрам торможения

Для нахождения степени понижения давления торможения ТВВ $\pi_{\text{твв}}^*$ и КПД ТВВ по параметрам торможения $\eta_{\text{твв}}^*$ используется характеристика ТВВ, представленная на Рисунках 2.14 и 2.15, а также в Таблице А.5 [80]. В начале методом линейной интерполяции между двумя соседними линиями на

характеристике рассчитывается линия $\bar{G}_{\text{г.твв}} = f(\pi_{\text{твв}}^*)$ и линия $\eta_{\text{твв}}^* = f(\pi_{\text{твв}}^*)$ для приведенной частоты вращения ротора ТВВ $n_{\text{твв.пр}}$. Затем по пропускной способности ТВВ $\bar{G}_{\text{г.твв}}$ методом линейной интерполяции между точками линии $\bar{G}_{\text{г.твв}} = f(\pi_{\text{твв}}^*)$ определяется $\pi_{\text{твв}}^*$. По полученному значению $\pi_{\text{твв}}^*$ методом линейной интерполяции между точками линии $\eta_{\text{твв}}^* = f(\pi_{\text{твв}}^*)$ определяется $\eta_{\text{твв}}^*$.

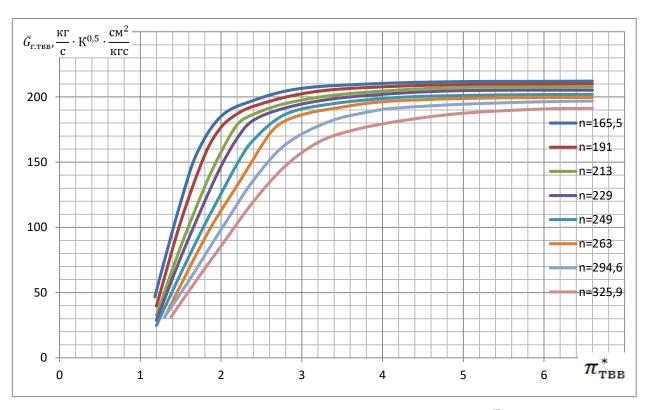


Рисунок 2.14 — Характеристика ТВВ в виде зависимости $\bar{G}_{\text{г.твв}} = f(\pi^*_{\text{твв}}).$ (размерность $n_{\text{твв}}$ представлена в $\frac{\text{об}}{\text{с}}$)

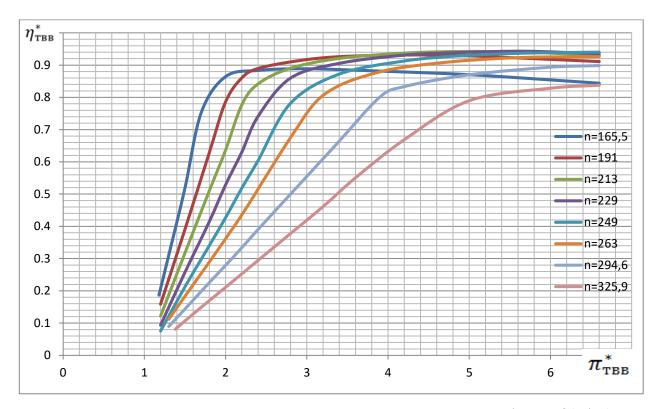


Рисунок 2.15 — Характеристика ТВВ в виде зависимости $\eta_{\text{твв}}^* = f(\pi_{\text{твв}}^*)$. (размерность $n_{\text{твв}}$ представлена в $\frac{\text{об}}{c}$)

2.4.6.4 Расчет термогазодинамических параметров на выходе из ТВВ

Давление торможения на выходе из ТВВ рассчитывается по формуле:

$$P_{\text{\tiny TBB}}^* = \frac{P_{\text{\tiny TH}}^*}{\pi_{\text{\tiny TBB}}^*} \qquad (2.56)$$

Температура торможения на выходе из ТВВ рассчитывается по формуле:

$$T_{\text{\tiny TBB}}^* = T_{\text{\tiny THД}}^* \cdot \left(1 - \left(1 - \frac{1}{\pi_{\text{\tiny TBB}}^* \frac{k_{\text{\tiny \Gamma,THД}} - 1}{k_{\text{\tiny \Gamma,THД}}}} \right) \cdot \eta_{\text{\tiny TBB}}^* \right) \quad (2.57)$$

Показатель адиабаты продуктов сгорания на выходе из ТВВ рассчитывается по формуле:

$$k_{\text{\tiny \Gamma.TBB}} = 0.0364 \cdot \left(\frac{T_{\text{\tiny TBB}}^*}{1000}\right)^2 - 0.144 \cdot \frac{T_{\text{\tiny TBB}}^*}{1000} + 1.429$$
 (2.58)

Удельная теплоемкость продуктов сгорания на выходе из ТВВ рассчитывается по формуле:

$$C_{p.r.\text{TBB}} = R_r \cdot \frac{k_{r.\text{TBB}}}{k_{r.\text{TBR}} - 1} \quad (2.59)$$

2.4.6.5 Расчет удельной работы, совершаемой над ТВВ

Удельная работа, совершаемая над ТВВ, определяется изменением энтальпии торможения продуктов сгорания и рассчитывается для адиабатного процесса расширения газа по формуле:

$$l_{\text{\tiny TBB}} = C_{p.\text{\tiny \Gamma.TH}} \cdot T_{\text{\tiny TH}}^* - C_{p.\text{\tiny \Gamma.TBB}} \cdot T_{\text{\tiny TBB}}^* \quad (2.60)$$

2.4.6.6 Расчет мощности, развиваемой ТВВ

Мощность, развиваемая ТВВ, определяется удельной работой, совершаемой над ТВВ, и массовым расходом газа, проходящего через ТВВ:

$$N_{\text{TBB}} = l_{\text{TBB}} \cdot G_{\text{f,TBB}} \qquad (2.61)$$

2.4.7 Термодинамический расчет выходного устройства

ММ ВУ представлена в упрощенном виде и содержит расчет давления торможения на выходе из ВУ. Тяга, создаваемая ВУ, не рассчитывается, поскольку она не оказывает влияния работу СВВ и его САУ.

Давление торможения на выходе из ВУ рассчитывается по формуле:

$$P_c^* = P_{\text{\tiny TBB}}^* \cdot \sigma_{\text{\tiny C}} \,, \quad (2.62)$$

где $\sigma_{\rm c} = 0.95$ – коэффициент потери полного давления в ВУ.

2.5 Динамический расчет частот вращения роторов ВД, НД и ТВВ

2.5.1 Динамический расчет ротора ВД

Расчет углового ускорения ротора ВД осуществляется по формуле:

$$\dot{n}_{\scriptscriptstyle \mathrm{B}\mathrm{\mathcal{I}}} = \frac{N_{\scriptscriptstyle \mathrm{TB}\mathrm{\mathcal{I}}} \cdot \eta_{\scriptscriptstyle \mathrm{M.B}\mathrm{\mathcal{I}}} - N_{\scriptscriptstyle \mathrm{KB}\mathrm{\mathcal{I}}}}{2\pi \cdot n_{\scriptscriptstyle \mathrm{B}\mathrm{\mathcal{I}}} \cdot I_{\scriptscriptstyle \mathrm{B}\mathrm{\mathcal{I}}}} \,, \quad (2.63)$$

где $\dot{n}_{\rm вд}$ — угловое ускорение ротора ВД, $\frac{{\rm рад}}{{\rm c}^2}$;

 $n_{\rm вд}$ – частота вращения ротора ВД, $\frac{\rm of}{\rm c}$;

 $\eta_{\scriptscriptstyle \mathrm{M.B}} = 0,98$ – механический КПД ротора ВД;

 $I_{\text{вд}} = 2,135637, \text{кг} \cdot \text{м}^2 - \text{момент инерции ротора ВД}.$

Расчет частоты вращения ротора ВД осуществляется путем численного интегрирования углового ускорения методом прямоугольников:

$$n_{_{\mathrm{B}\mathrm{J}}\,(i)} = n_{_{\mathrm{B}\mathrm{J}}\,(i-1)} + \frac{\dot{n}_{_{\mathrm{B}\mathrm{J}}}}{2\pi} \cdot \Delta t$$
 , (2.64)

где $n_{\rm BД}$ (i-1) — частота вращения ротора ВД на предыдущей итерации, $\frac{06}{c}$; $\dot{n}_{\rm BД}$ — ускорение ротора ВД, $\frac{\rm paд}{c^2}$; $\Delta t = 0{,}001~{\rm c}$ — шаг интегрирования.

При расчете частоты вращения ротора ВД шаг интегрирования выбирается из условия обеспечения устойчивого решения ММ ГГ ТВВД Д-27.

2.5.2 Динамический расчет ротора НД

Расчет углового ускорения ротора НД осуществляется по формуле:

$$\dot{n}_{\rm H, I} = \frac{N_{\rm TH, I} \cdot \eta_{\rm M.H, I} - N_{\rm KH, I}}{2\pi \cdot n_{\rm H, I} \cdot I_{\rm H, I}},$$
(2.65)

где $\dot{n}_{\rm HJ}$ – угловое ускорение ротора НД, $\frac{{\rm pag}}{{\rm c}^2}$;

 $n_{\rm HJ}$ – частота вращения ротора НД, $\frac{\rm of}{\rm c}$;

 $\eta_{\text{м.нд}} = 0,98$ – механический КПД ротора НД;

 $I_{\rm HД} = 2,33478$, кг · м² — момент инерции ротора НД.

Расчет частоты вращения ротора НД осуществляется путем численного интегрирования углового ускорения методом прямоугольников:

$$n_{\text{HД}(i)} = n_{\text{HД}(i-1)} + \frac{\dot{n}_{\text{HД}}}{2\pi} \cdot \Delta t$$
, (2.66)

где $n_{\rm HД}\,(i-1)$ — частота вращения ротора НД на предыдущей итерации, $\frac{\rm o6}{\rm c}$; $\dot{n}_{\rm HД}$ — угловое ускорение ротора НД, $\frac{\rm pag}{\rm c^2}$;

 $\Delta t = 0.001 \, \mathrm{c}$ – шаг интегрирования (выбирается по аналогии для ротора ВД).

2.5.3 Динамический расчет редуктора Д-27

Ускорения валов ПВ и 3B рассчитываются по формулам (1.1) и (1.2).

Расчет частоты вращения ПВ и 3В осуществляется путем численного интегрирования углового ускорения методом прямоугольников:

$$n_{\text{\tiny IIB}}(i) = n_{\text{\tiny IIB}}(i-1) + \dot{n}_{\text{\tiny IIB}} \cdot \Delta t$$
, (2.67)

где $n_{\text{пв }(i-1)}$ – частота вращения ПВ на предыдущей итерации, $\frac{\text{об}}{\text{c}}$;

 $\dot{n}_{\text{пв}}$ – ускорение вала ПВ, $\frac{\text{об}}{\text{c}^2}$;

 $\Delta t = 0.001 \, \mathrm{c}$ — шаг интегрирования (выбирается по аналогии для ротора ВД).

$$n_{_{3B}(i)} = n_{_{3B}(i-1)} + \dot{n}_{_{3B}} \cdot \Delta t$$
, (2.68)

где $n_{3B\ (i-1)}$ — частота вращения 3В на предыдущей итерации, $\frac{\text{об}}{\text{c}}$;

 $\dot{n}_{_{3B}}$ – ускорение вала 3B, $\frac{\text{об}}{\text{c}^2}$;

 $\Delta t = 0{,}001~{
m c}$ – шаг интегрирования (выбирается по аналогии для ротора ВД).

Расчет частоты вращения ротора ТВВ с учетом передаточных чисел дифференциального редуктора осуществляется по формуле:

$$n_{\text{\tiny TBB}} = i_{\text{\tiny IIB}} \cdot n_{\text{\tiny IIB}} + i_{\text{\tiny 3B}} \cdot n_{\text{\tiny 3B}}$$
 , (2.69)

где $i_{\text{пв}}=4,69$ — передаточное отношение между ТВВ и ПВ; $i_{\text{зв}}=3,69$ — передаточное отношение между ТВВ и ЗВ.

Глава 3 Разработка модуля реализации поузловой нелинейной термодинамической математической модели турбовинтовентиляторного двигателя Д-27 в среде программирования, применяемой на стенде полунатурного моделирования

3.1 LabView как программная среда стенда полунатурного моделирования

По причинам, рассмотренным ранее, в качестве среды для реализации поузловой нелинейной термодинамической ММ ТВВД Д-27 использовалась среда разработки NI LabView 7.1, находящая все большую популярность в инженерных кругах.

Данная среда интегрирована в стенды полунатурного моделирования ОАО «НПП «Аэросила», предназначенные для испытаний САУ ВВ, в том числе, в СПМ 311ПР, предназначенный для проведения ПСИ, ЭЦИ и исследовательских испытаний СВВ СВ-27 и регуляторов РСВ-27.

Необходимо отметить, что среда разработки LabView получила широкое применение на предприятии ОАО «НПП «Аэросила» для решения различного рода задач:

- снятие частотных характеристик лопастей в лаборатории прочности и специальных измерений (ЛПС);
 - вибрографирование ВГТД и проведение их ЭЦИ на испытательной станции;
- проведение износных испытаний BB и ЭЦИ регуляторов, а также различных исследовательских испытаний в лаборатории испытаний воздушных винтов и регуляторов (ЛИВР);
- создание современного устройства «УНКР-М» для настройки, контроля и диагностики ЭГП регуляторов РСВ-27 и РСВ-34(M,C);
 - обработка и анализ результатов летных и моторно-стендовых испытаний;
 - проведение расчетов и моделирование переходных процессов ВГТД и BB.

Среда разработки LabView получила также применение на предприятиипартнере АО УНПП «Молния» [63], занимающемся разработкой электронных САУ, для реализации ММ АДХ СВ-27, КЛДМ ТВВД Д-27, а также на СПМ для испытания электронных САУ.

Среда разработки LabView позволяет проводить расчеты ММ в режиме реального времени, что является необходимым условием при моделировании переходных процессов на СПМ с натурными объектами (регулятор и втулка ВВ).

3.2 Описание разработанного программного обеспечения для моделирования ТВВД Д-27

На основании расчетов, приведенных в Главе 2, было разработано ПО в среде LabView 7.1 для моделирования статических и динамических параметров ТВВД Д-27. Указанное ПО состоит из двух программ (см. Рисунок 3.1):

- программа «Д-27.vi» для термодинамического расчета основных элементов ГГ и динамического расчета частот вращения роторов НД, ВД, ТВВ;
 - программа «Условия полета.vi» Ри Ти для расчета условий полета.

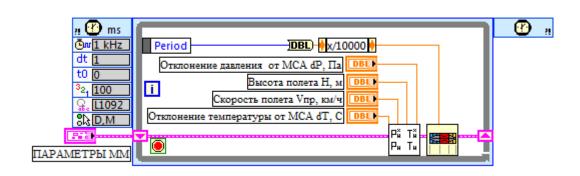


Рисунок 3.1 – Block Diagram программы для расчета ММ ТВВД Д-27

ММ ТВВД Д-27, являясь частью ММ силовой установки СУ-27, использует общий тип данных Туре Def «Параметры ММ», сохраненный в отдельный файл «Параметры ММ.ctl». Тип данных представляет собой кластер, состоящий из пяти массивов, относящихся к основным элементам ММ СУ-27: условия полета, двигатель Д-27, ЭСУ-27М, регулятор РСВ-27, СВВ СВ-27. Каждый массив хранит в себе параметры ММ соответствующего ему элемента. При необходимости в

массив каждого элемента можно оперативно добавлять дополнительные моделируемые параметры, например, термодинамические параметры в различных сечениях двигателя. Перечень и порядок параметров в массиве «Условия полета» приведен в Таблице 3.1, в массиве «Двигатель Д-27» – в Таблице 3.2.

Таблица 3.1 – Перечень и порядок параметров в массиве «Условия полета»

№	Обозна- чение	Название	Единицы измерения
0	$P_{\scriptscriptstyle \mathrm{BX}}^{*}$	Давление торможения на входе в двигатель	Па
1	$T_{\scriptscriptstyle m BX}^*$	Температура торможения на входе в двигатель	К
2	$P_{\scriptscriptstyle m H}$	Физическое давление на заданной высоте с учетом отклонения от MCA	Па
3	$T_{\scriptscriptstyle m H}$	Физическая температура на заданной высоте с учетом отклонения от МСА	К
4	$ ho_{\scriptscriptstyle ext{H}}$	Плотность воздуха на заданной высоте с учетом отклонения от MCA	$\frac{\mathrm{K}\Gamma}{\mathrm{M}^3}$
5	$V_{\mu m ct}$	Истинная скорость полета	<u>км</u> Ч
6	M	Число Маха	1

Таблица 3.2 – Перечень и порядок параметров в массиве «Двигатель Д-27»

№	Обозна- чение	Название	Единицы
0	$\pi^*_{ ext{ km}}$	Степень повышения давления торможения в в КНД	измерения 1
1	$\pi^*_{ ext{ iny KBJ}}$	Степень повышения давления торможения в КВД	1
2	$n_{\scriptscriptstyle \mathrm{BJ}}$	Частота вращения ротора ВД	<u>об</u> с
3	$n_{\scriptscriptstyle { m HJ}}$	Частота вращения ротора НД	<u>об</u> с
4	$n_{\scriptscriptstyle ext{TBB}}$	Частота вращения ротора ТВВ	<u>об</u> с
5	$n_{{\scriptscriptstyle \Pi}{\scriptscriptstyle \mathrm{B}}}$	Частота вращения ПВ	<u>об</u> мин
6	$n_{_{3\mathrm{B}}}$	Частота вращения ЗВ	<u>об</u> мин

3.2.1 Расчет условий полета

Расчет условий полета выполняется в программе «Условия полета.vi», обозначаемой пиктограммой $\frac{P_{\mu}^{*} T_{\mu}^{*}}{P_{\mu} T_{\mu}}$. Программный код представлен на Рисунке 3.2.

Для расчета физических температуры и давления по МСА используется программа «Международная стандартная атмосфера.vi», обозначаемая пиктограммой и позволяющая получить значения основных параметров атмосферы для заданной высоты путем линейной интерполяции значений параметров, приведенных в ГОСТ 4401-81. Программный код представлен на Рисунке 3.3.

Как отмечалось ранее в п. 2.3, для расчета физических температуры и давления можно использовать упрощенные формулы, что позволяет сэкономить машинные ресурсы, затрачиваемые на обработку двухмерного массива данных с параметрами МСА.

Из Рисунка 3.2 видно, что на расчет условий полета оказывают влияние следующие параметры:

- -высота полета H, м;
- -приборная скорость полета $V_{\rm пр}$, $\frac{\kappa_{\rm M}}{q}$;
- -отклонение температуры от MCA ΔT , К;
- -отклонение давления от MCA ΔP , Па.

Результат расчета условий полета записывается в массив, описанный в Таблипе 3.1.

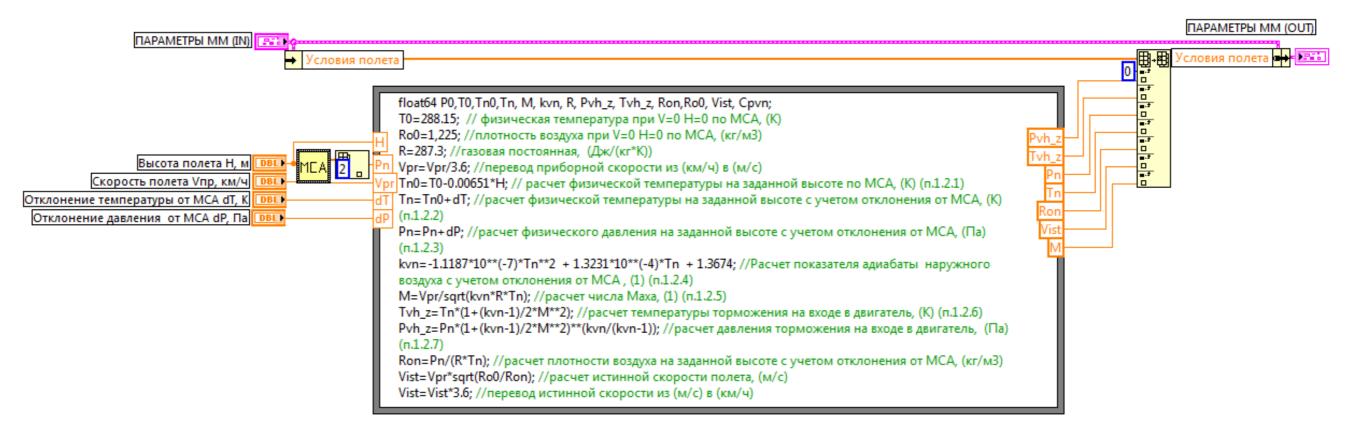


Рисунок 3.2 – Block Diagram «Условия полета.vi»

Рисунок 3.3 – Block Diagram «Международная стандартная атмосфера.vi»

3.2.2 Расчет двигателя Д-27

Расчет двигателя Д-27 выполняется программой «Д-27.vi», обозначаемой пиктограммой . Иерархия программы, представленная на Рисунке 3.4, наглядно показывает поэлементный состав ММ, соответствующий структурной схеме ММ ТВВД Д-27, представленной на Рисунке 2.2.

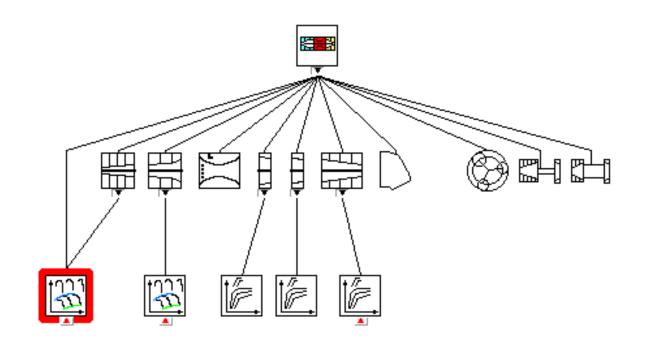


Рисунок 3.4 – Иерархия программы «Д-27.vi»

На Рисунке 3.5 представлен код основной программы. Входные и выходные параметры модулей соответствуют входным и выходным параметрам элементов согласно структурной схеме ММ ТВВД Д-27 (см. Рисунок 2.2). Внешние возмущения, оказывающие влияние на ММ, и выходные параметры описаны в п. 2.2 и представлены на структурной схеме (см. Рисунок 2.2). Результаты расчета ММ записываются в массив, описанный в Таблице 3.2.

На Рисунках 3.6 – 3.15 представлен программный код модулей, описывающих работу основных элементов ТВВД Д-27:

- КНД, обозначаемый пиктограммой ;
- КВД, обозначаемый пиктограммой
- КС, обозначаемый пиктограммой ;
- ТВД, обозначаемый пиктограммой Ц;
- ТНД, обозначаемый пиктограммой 🗒;
- TBB, обозначаемый пиктограммой
- ВУ, обозначаемый пиктограммой
- ротор ВД, обозначаемый пиктограммой 🔲;
- ротор НД, обозначаемый пиктограммой 📇;
- редуктор Д-27, обозначаемый пиктограммой .

На Рисунках 3.16 — 3.20 представлен программный код модулей, описывающих характеристики:

- КНД и КВД, обозначаемые пиктограммой
- ТВД, ТНД, ТВВ, обозначаемые пиктограммой

Характеристики компрессоров и турбин рассчитываются с применением линейной интерполяции. В программный код заложены массивы характеристик компрессоров и турбин, взятые из технического отчета №118/89-27 [80].

В программах, описывающих характеристики компрессоров и турбин есть два вспомогательных модуля (см Рисунки 3.21 – 3.22). Модуль «Поиск пограничных значений.vi», обозначаемый пиктограммой , запрограммирован на поиск порядковых номеров элементов массива, соответствующих двум соседним линиям характеристики, между которыми необходимо произвести линейную интерполяцию. Модуль «Линейная интерполяция.vi», обозначаемый пиктограммой , производит линейную интерполяцию двух соседних линий характеристики.

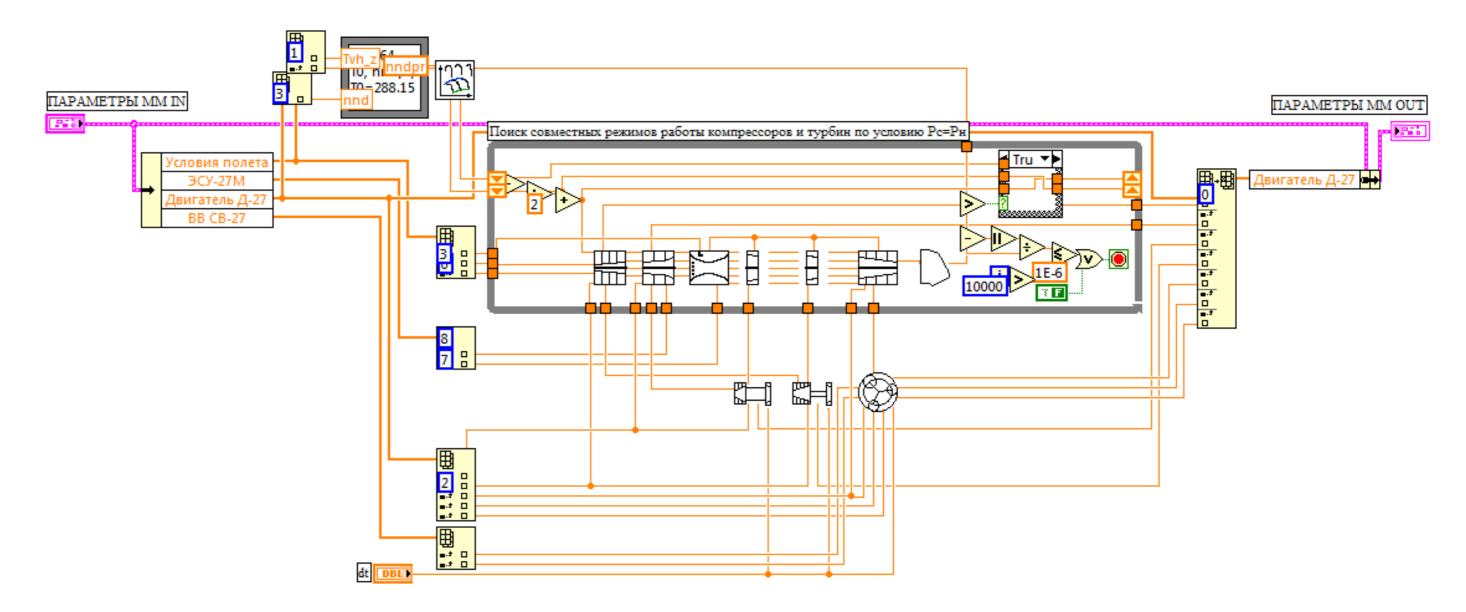


Рисунок 3.5 – Block Diagram «Д-27.vi»

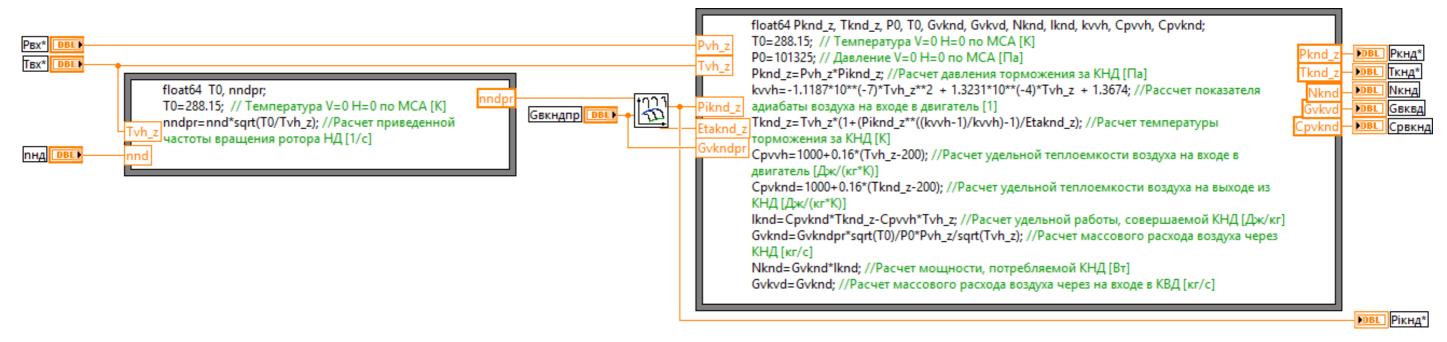


Рисунок 3.6 – Block Diagram «КНД.vi»

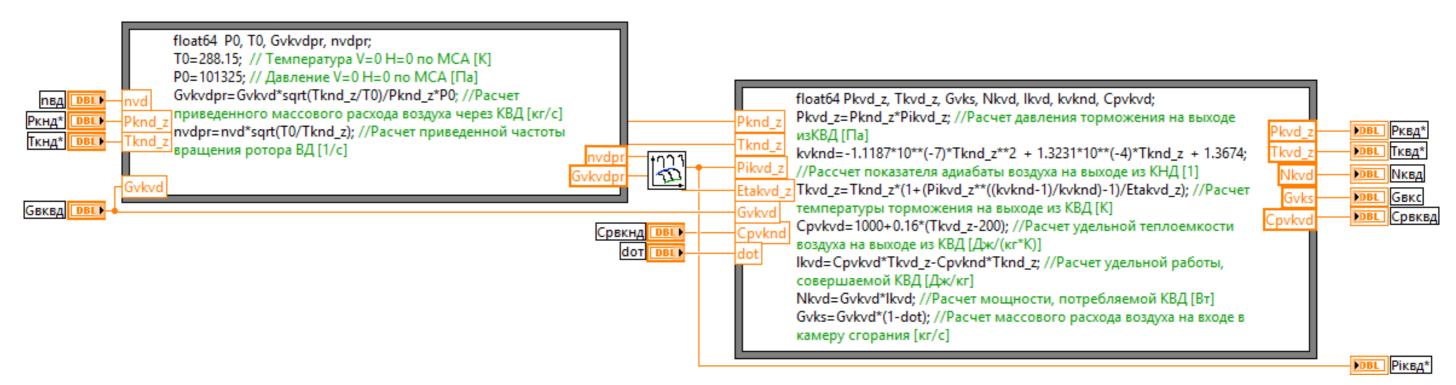


Рисунок 3.7 – Block Diagram «КВД.vi»

```
float64 Pg_z, Tg_z, Tg_zpred, Ggks, T0, P0, Tt, SigmaKS, Cpt, Cpgks, Rg, Hu, KsiKS, kgks;
                        Hu=42910000; //Низшая теплотворная способность для керосина [Дж/кг]
 Рквд* ОВС
                        KsiKS=0.999; //Полнота горения [1]
 Тквд* DBL №
                        SigmaKS=0.95; //Коэффициент потери полного давления в КС [1]
   Gt DBL
                        Gt=Gt/3600; //Перевод расхода топлива из кг/час в кг/с [кг/с]
 GBKC DBL
                        Pg_z=Pkvd_z*SigmaKS; //Расчет давления торможения на выходе из КС [Па]
                        Gg=Gvks+Gt; //Расчет массового расхода газа на выходе из КС [кг/с]
   TH DBL
                        Tt=Th+15; //Расчет температуры топлива, подаваемого в КС [K]
Срвквд ВВС
                        Cpt=-4.6063*Tt + 3424.7; //Расчет удельной теплоемкости топлива ТС-1 [Дж/(кг*К)]
                        kgks=1.333; //Задание начального значения показателя адиабаты продуктов сгорания [1]
                        Rg=287+24.5*Gt/Gvks; //Расчет газовой постоянной продуктов сгорания [Дж/(кг*К)]
                        Cpgks=Rg*kgks/(kgks-1); //Расчет удельной теплоемкости продуктов сгорания [Дж/(кг*К)]
                        Tq_z=(Cpvkvd*Tkvd_z*Gvks+Gt*(Cpt*Tt+Hu*KsiKS))/Cpgks/Gq; //Предварительный расчет температуры торможения на выходе из КС [K]
                        Tq_zpred=0; //Обнуление предыдущего значения температуры торможения на выходе из КС [K]
                        while ((Tg_z-Tg_zpred)/Tg_z>0.0000001)
                        Tg_zpred=Tg_z;
                        kgks=0.0364*(Tg_z/1000)**2-0.144*(Tg_z/1000)+1.429;//Расчет показателя адиабаты продуктов сгорания [1]
                        Cpgks=Rg*kgks/(kgks-1); //Расчет удельной теплоемкости продуктов сгорания [Дж/(кг*К)]
                        Tg_z=(Cpvkvd*Tkvd_z*Gvks+Gt*(Cpt*Tt+Hu*KsiKS))/Cpgks/Gg; //Расчет температуры торможения на выходе из КС [K]
```

Рисунок 3.8 – Block Diagram «КС.vi»

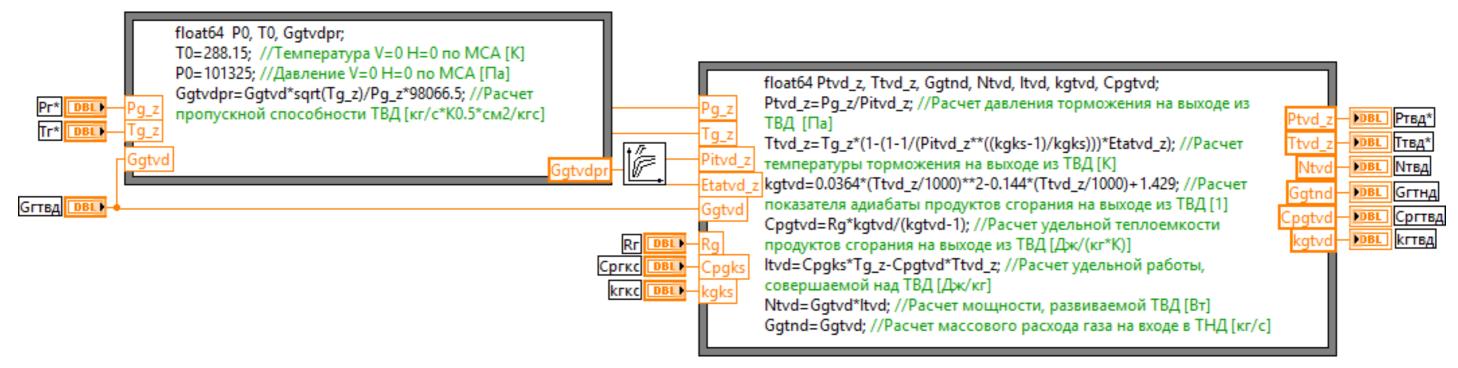


Рисунок 3.9 – Block Diagram «ТВД.vi»

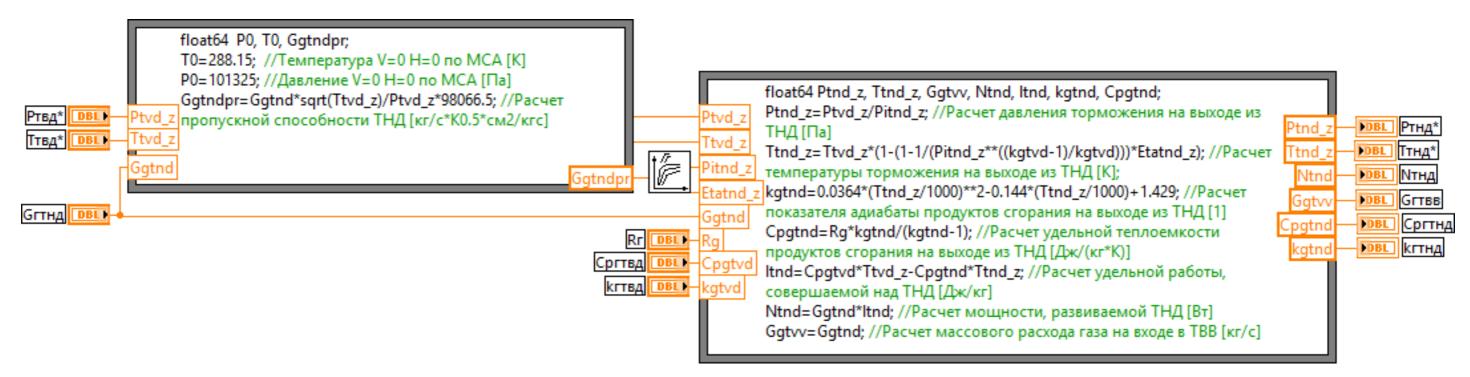


Рисунок 3.10 – Block Diagram «ТНД.vi»

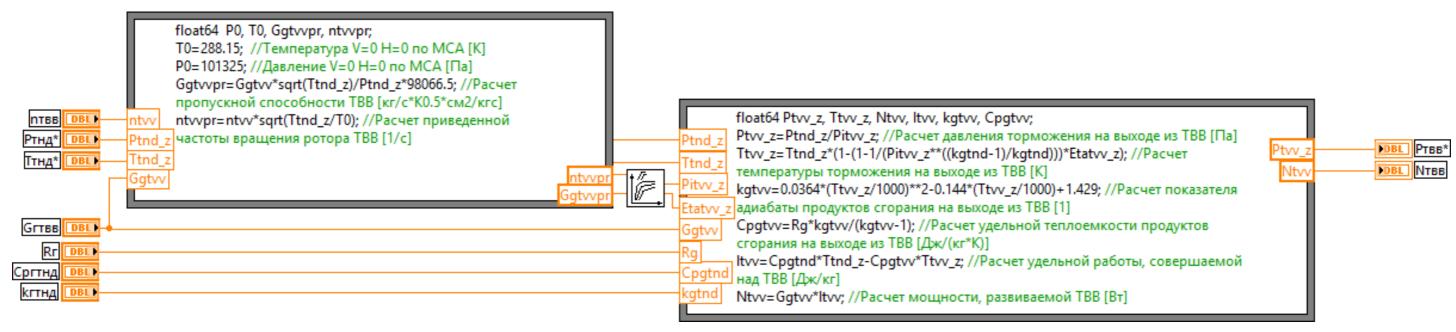


Рисунок 3.11 – Block Diagram «ТВВ.vi»

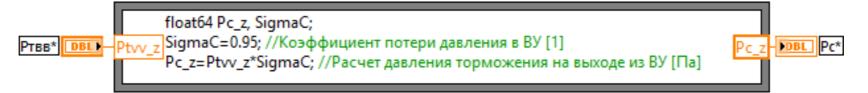


Рисунок 3.12 – Block Diagram «ВУ.vi»

```
float64 lvd, dn, Etamvd;

Nтвд DBL Ntvd Etamvd=0.98; //Механический кпд ротора ВД [1]

Nквд DBL Nkvd lvd=0.2177*9.81; //Момент инерции ротора ВД [кг*м2]

dn=(Ntvd*Etamvd-Nkvd)/nvd/(2*pi)/lvd; //Расчет углового ускорения ротора ВД [рад/с2]

nvd nvd nvd dt DBL nvd+dn/(2*pi)*dt; //Расчет частоты вращения ротора

ВД [1/c]
```

Рисунок 3.13 – Block Diagram «ВД.vi»

```
float64 Ind, dn, Etamnd;

Nтнд DBL Ntnd Etamnd=0.98; //Механический кпд ротора НД [1]

Nкнд DBL Nknd Ind=0.238*9.81; //Момент инерции ротора НД [кг*м2]

пнд DBL nnd vcopeния ротора НД [рад/с2]

dt DBL ond=nnd+dn/(2*pi)*dt; //Расчет частоты вращения ротора НД [1/с]
```

Рисунок 3.14 – Block Diagram «НД.vi»

```
float64 lpv, lzv, ltvv, dnpv, dnzv, dntvv, ipv, izv;
                 Ipv=30; //Момент инерции ПВ [кгс*м*c2]
                 Izv=23; //Момент инерции 3В [кгс*м*с2]
                 Itvv=0,727; //Момент инерции ТВВ [кгс*м*c2]
                 ipv=4.69; //Передаточное отношение на ПВ [1]
Итвв
                 izv=3.69; //Передаточное отношение на ЗВ [1]
                                                                                                                    ппв 2
Νпв
                 Ntvv=Ntvv/735.49875; //Перевод мощности, развиваемой ТВВ, из Вт в л.с. [л.с.]
                                                                                                               DBL n3B
Изв
                 Npv=Npv/735.49875; //Перевод мощности, потребляемой ПВ, из Вт в л.с. [л.с.]
                                                                                                                DBL NTBB
птвв 2
                 Nzv=Nzv/735.49875; //Перевод мощности, потребляемой 3В, из Вт в л.с. [л.с.]
nπв DBL I
                 ntvv=ntvv*60; //Перевод частоты вращения ротора ТВВ из 1/с в 1/мин [1/мин]
nзв 2 DBL )
                 dnpv=6839/(lpv+ltvv*(ipv**2+izv**2*lpv/lzv))*(ipv*Ntvv/ntvv+ipv*izv*ltvv/lzv*Nzv/nzv-(1+
                 ltvv/lzv*izv**2)*Npv/npv); //Расчет ускорения вала ПВ [1/с2]
                 dnzv=6839/(lzv+ltvv*(izv**2+ipv**2*lzv/lpv))*(izv*Ntvv/ntvv+ipv*izv*ltvv/lpv*Npv/npv-(1+
 dt DBL dt
                 ltvv/lpv*ipv**2)*Nzv/nzv); //Расчет ускорения вала 3В [1/с2]
                 npv=npv+dnpv*dt; //Расчет частоты вращения вала ПВ [1/мин]
                 nzv=nzv+dnzv*dt; //Расчет частоты вращения вала 3В [1/мин]
                 ntvv=ipv*npv+izv*nzv; //Расчет частоты вращения ротора ТВВ [1/мин]
                 ntvv=ntvv/60; //Перевод частоты вращения ротора ТВВ из1/мин в 1/с [1/с]
```

Рисунок 3.15 – Block Diagram «РЕДУКТОР.vi»

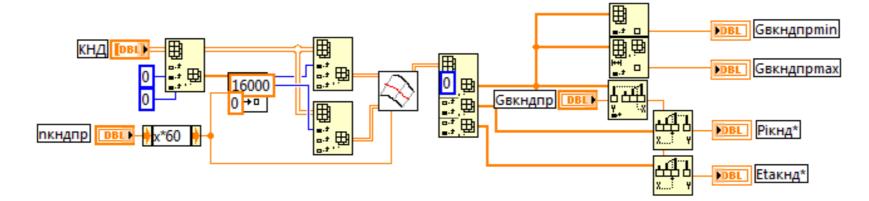


Рисунок 3.16 – Block Diagram «Характеристика КНД.vi»

Рисунок 3.17 – Block Diagram «Характеристика КВД.vi»

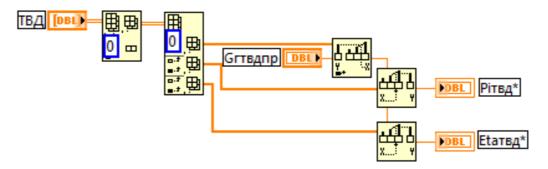


Рисунок 3.18 – Block Diagram «Характеристика ТВД.vi»

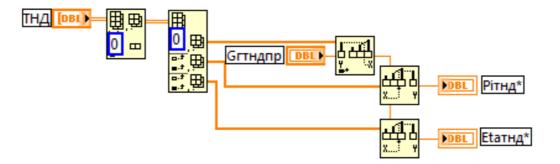


Рисунок 3.19 – Block Diagram «Характеристика ТНД.vi»

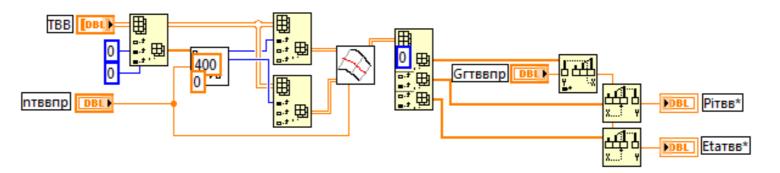


Рисунок 3.20 – Block Diagram «Характеристика ТВВ.vi»

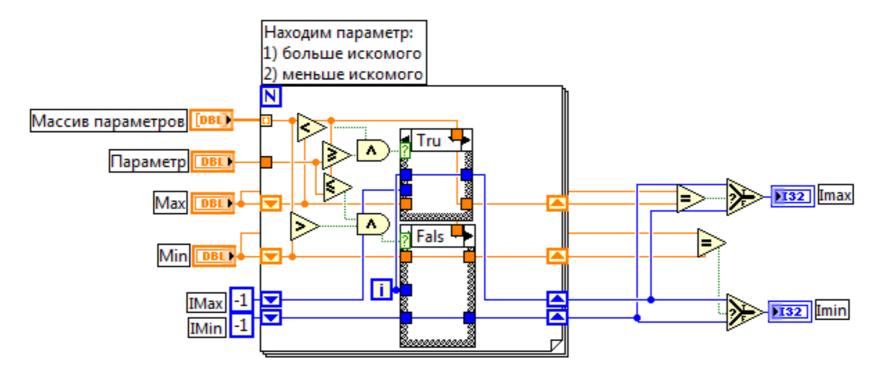


Рисунок 3.21 – Block Diagram «Поиск пограничных значений.vi»

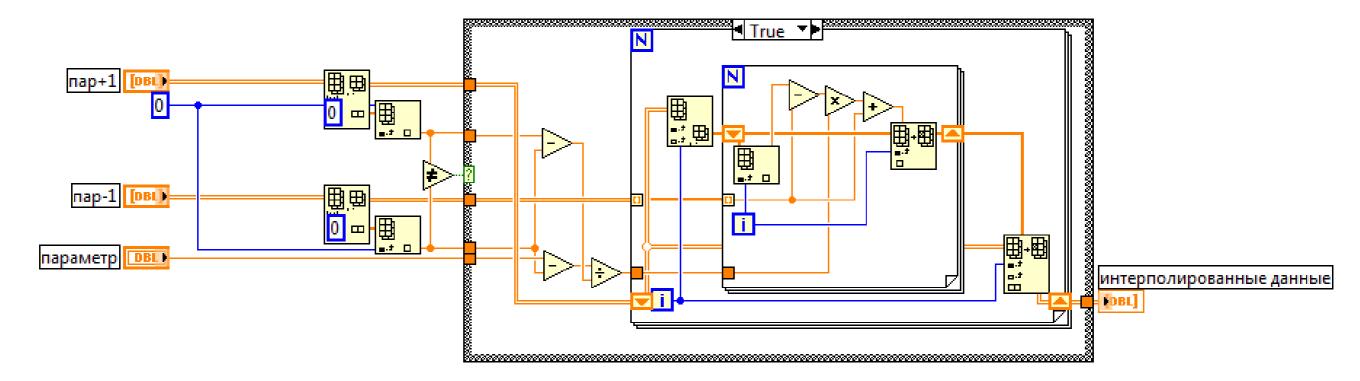


Рисунок 3.22 – Block Diagram «Линейная интерполяция.vi»

Глава 4 Исследование адекватности поузловой нелинейной математической модели ТВВД Д-27

Для исследования адекватности ММ ТВВД Д-27 (верификации) использовались следующие материалы:

- результаты летных испытаний (ЛИ) самолета АН-70 (полет №640 от 31.10.12, полет №657 от 27.01.13);
- дроссельные характеристики ТВВД Д-27, полученные расчетным путем по ММ ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко [81];
- высотно-скоростные экспериментально-расчетные характеристики ТВВД Д-27, представленные в техническом отчете (ТО) ЗМКБ «Прогресс» им. А.Г. Ивченко №199/2001-27 от 28.02.02 [82].

САУиК ЭСУ-27М для управления ТВВД Д-27 использует закон поддержания постоянного числа суммарной степени повышения давления КНД и КВД в зависимости от положения рычага управления двигателем и внешних условий [13]. Поэтому при верификации ММ ТВВД Д-27 в качестве опорного параметра во всех случаях использовался параметр $\pi_{\rm K\Sigma}^* = \pi_{\rm KHД}^* \cdot \pi_{\rm KBД}^*$, значение которого у верифицируемой модели задавалось равным измеренному экспериментально в процессе ЛИ (или полученному экспериментально-расчетным методом) значению $\pi_{\rm K\Sigma}^*$ при одинаковых внешних условиях. При этом внимание уделялось расхождению в наиболее важных параметрах, используемых при моделировании на СПМ 311ПР ОАО «НПП «Аэросила», таких как мощность, развиваемая ТВВ $N_{\rm TBB}$, и расход топлива в КС $G_{\rm T}$.

4.1 Сравнение результатов отработки ММ ТВВД Д-27 с результатами летных испытаний самолета АН-70

Для оценки адекватности ММ в части параметра $G_{\rm T}$ были подобраны имеющиеся материалы ЛИ: полет №640 от 31.10.12, полет №657 от 27.01.13.

Значения расходов топлива в КС, полученные по результатам расчета ММ ТВВД Д-27, сравнивались с измеренными значениями расходов топлива каждого двигателя (СУ №1, СУ №2, СУ №3, СУ №4).

Для верификации статических параметров ММ ТВВД Д-27 выбирались только установившиеся режимы работы СУ-27. Результаты сравнения сортировались по режимам работы двигателя, высотам полета H, числам Маха полета M и представлялись в виде зависимостей $G_{\rm T} = f(\pi_{\rm K\Sigma}^*)$ при квазипостоянных H и M. Такой вид характеристик удобен для визуального выявления разницы между реальным и моделируемым расходами топлива в КС.

При сравнении результатов отработки ММ ТВВД Д-27 с результатами ЛИ соблюдался следующий порядок действий:

- на вход ММ подавались измеренные в процессе испытаний значения параметров: наружной физической температуры $T_{\rm H}$, давления на входе в двигатель по параметрам торможения $P_{\rm BX}^*$, числа Маха M, частоты вращения ротора ТВВ $n_{\rm TBB}$;
- расход топлива в КС определялся из условия равенства суммарных степеней повышения давления ММ ТВВД Д-27 и реального двигателя Д-27.

Графики сравнения результатов отработки ММ ТВВД Д-27 с результатами ЛИ представлены в Приложении Б (Рисунки Б.1 – Б.8), таблицы – в Приложении В (Таблицы В.1 – В.8).

Анализ представленных графиков показал, что расход топлива в КС, полученный по результатам расчета ММ ТВВД Д-27, на всех режимах меньше реально измеренного. Данная невязка может быть вызвана несоответствием заложенных характеристик основных узлов реальным, а также дополнительными неучтенными потерями. Отбор воздуха за КВД не может оказать настолько сильного влияния на расход топлива, чтобы им можно было скомпенсировать разницу. Поэтому данный фактор целесообразно рассматривать лишь в совокупности с другими.

Для более детальной оценки результатов расчета ММ ТВВД Д-27 были построены графики (см. Рисунки Б.9 – Б.12, полет №640 от 31.10.12), на которых показано сравнение расходов топлива четырех двигателей между собой и с

расчетным при квазипостоянных *М* и *H*. Сводные результаты оценки погрешностей приведены в Таблице 4.1.

Таблица 4.1 – Погрешности моделирования расхода топлива в КС по данным ЛИ					
Н, м	M, 1	$arepsilon_{min},\%$	ε_{max} , %	$arepsilon_{ m haryph}$, %	

Н, м	M, 1	ε_{min} , %	ε_{max} , %	$arepsilon_{ m haryph}$, %
650	0,24	≈ 24		6
4150	0,38	18	19,5	16
7150	0,47	13,6	16	15
8150	0,53	7	14	13

Необходимо отметить, что погрешность расчета расхода топлива указана относительно СУ №1, являющейся наиболее экономичной по данным системы регистрации.

Различия между расходами топлива натурных двигателей вызваны в какойто мере неточностью выборки точек для анализа (число M, наружная физическая температура $T_{\rm H}$, частота вращения ротора ТВВ $n_{\rm TBB}$ могут несколько отличаться у различных точек выборки). Однако значительное влияние на расходы топлива натурных двигателей оказывает характеристика КС, которая может существенно отличаться от двигателя к двигателю вследствие технологических сложностей при изготовлении и доводке КС.

В целом прослеживается явное влияние высоты H и числа M на погрешность расчета расхода топлива: с увеличением H и M погрешность уменьшается. Велика вероятность, что для уменьшения погрешности расчета можно воспользоваться алгебраическим уточнением параметра $G_{\rm T}$ в зависимости от комплекса $\frac{P_0}{P_{\rm BX}^*} \cdot \sqrt{\frac{T_0}{T_{\rm BX}^*}}$, характеризующего изменение высоты H и числа M, не прибегая к изменению характеристик основных узлов.

По характеру поведения ММ ТВВД Д-27 можно сказать, что качественно ММ описывает поведение реального двигателя в части расхода топлива в КС, однако, для количественного сходства необходимо провести уточнение данного параметра ММ до получения приемлемой погрешности.

4.2 Сравнение результатов отработки ММ ТВВД Д-27 с дроссельными характеристиками от 2012г., представленными ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко

Для оценки адекватности ММ ТВВД Д-27 в части параметров $N_{\text{твв}}$, $n_{\text{нд}}$, $n_{\text{вд}}$ использовались экспериментально-расчетные дроссельные характеристики ТВВД Д-27, полученные по результатам работы ММ ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко. Данные характеристики были отправлены в адрес ОАО «НПП «Аэросила» факсом ОАО «УНПП «Молния» №330/3485 от 26.06.2013 [81]. На ОАО «УНПП «Молния» характеристики направлялись ранее факсом ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко №1144/НИО от 03.12.2012.

Необходимо отметить, что дроссельные характеристики, представленные в факсе [81], были получены для следующих условий:

- внешние условия согласно МСА;
- без учета характеристик СВВ;
- без учета потери давления по параметрам торможения P_{Bx}^* во входном устройстве;
- без учета отборов мощности и воздуха на самолетные нужды и противообледенительную систему (ПОС);
 - без учета потерь в выходной системе двигателя;
 - без учета отклонения вектора тяги от оси двигателя.

При сравнении результатов отработки ММ ТВВД Д-27 с дроссельными характеристиками соблюдался следующий порядок действий:

- на вход ММ подавались заданные значения параметров: высоты полета H, числа M, частоты вращения ротора ТВВ $n_{\scriptscriptstyle {\rm TBB}}$;
- основные параметры ММ ТВВД Д-27 определялись из условия равенства суммарных степеней повышения давления ММ ТВВД Д-27 и ММ ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко.

Результаты сравнения отработки ММ ТВВД Д-27 с дроссельными характеристиками представлены на Рисунках Б.13 – Б.15 и в Таблицах В.9 – В.15.

Анализ представленных графиков показал, что качественно ММ ТВВД Д-27 описывает поведение реального двигателя в части параметра $N_{\rm TBB}$ практически во всем диапазоне работы: до точки H=11000 м, $M=0.7, \pi_{\rm K\Sigma}^*=28.7,$ после которой наблюдается небольшое качественное расхождение, связанное, очевидно, с неточностью характеристики КВД или ТВВ.

В целом можно сказать, что значения расчетных параметров $N_{\rm TBB}$, $n_{\rm BД}$ и $n_{\rm HД}$ на всех режимах меньше значений, представленных в дроссельных характеристиках.

Количественную оценку погрешности моделирования целесообразно проводить только для параметра мощности, развиваемой ТВВ, поскольку он используется при расчете совместной работы двигателя и СВВ на СПМ (нахождение частот вращения ПВ, ЗВ, ротора ТВВ). Частоты вращения роторов ВД и НД в описываемой ММ являются внутренними параметрами, однако, в случае необходимости допускается алгебраическое уточнение ММ в части данных параметров.

Сводные результаты оценки погрешности моделирования мощности, развиваемой ТВВ, приведены в Таблице 4.2.

Таблица 4.2 — Погрешность моделирования мощности, развиваемой ТВВ, по расчетным данным, предоставленным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко [81]

Н, м	<i>M</i> , 1	$arepsilon_{min},\%$	ε_{max} , %
0	0	2	10
	0,5	6	10
6000	0,6	5	10,5
	0,7	5	10,5
11000	0,5	8	12,5
	0,6	7	13
	0,7	8	13

Большая погрешность расчета $N_{\text{твв}}$, вызванная несоответствием характеристик основных узлов реальным характеристикам, позволяет только

качественно моделировать совместную работу двигателя и СВВ на СПМ. Для уменьшения погрешности необходимо произвести уточнение ММ в части параметра $N_{\rm TBB}$.

4.3 Сравнение результатов отработки ММ ТВВД Д-27 с высотноскоростными экспериментально-расчетными характеристиками от 2002г., представленными ЗМКБ «Прогресс» им. А.Г. Ивченко

Для дополнительной оценки адекватности ММ ТВВД Д-27 в части параметров $G_{\rm T}$, $T_{\rm \Gamma}^*$, $N_{\rm TBB}$ использовались дроссельные характеристики и ВСХ Д-27, полученные экспериментально-расчетным путем с помощью ММ ТВВД Д-27 ЗМКБ «Прогресс» им. А.Г. Ивченко и представленные в ТО №199/2001-27 [82] от 28.02.2002.

ВСХ, приведенные в отчете, являются усредненными характеристиками двигателей Д-27, установленных на самолете АН-70 №01 — 02, и полученными после второго этапа восстановительного ремонта двигателей во II квартале 2001г.

Дроссельные характеристики и BCX были получены для следующих условий:

- без учета характеристик СВВ;
- без учета потери давления по параметрам торможения P_{BX}^* во входном устройстве;
 - без учета отборов мощности и воздуха на самолетные нужды и ПОС;
 - без учета потерь в выходной системе двигателя;
 - без учета отклонения вектора тяги от оси двигателя.

При сравнении результатов отработки ММ ТВВД Д-27 с ВСХ соблюдался следующий порядок действий:

- на вход ММ подавались заданные значения параметров: высоты полета H, наружной физической температуры $T_{\rm H}$, числа M, частоты вращения ротора ТВВ $n_{\rm TBB}$;

- основные параметры ММ ТВВД Д-27 определялись из условия равенства суммарных степеней повышения давления ММ ТВВД Д-27 и ММ ЗМКБ «Прогресс» им. А.Г. Ивченко.

Результаты сравнения отработки ММ ТВВД Д-27 с ВСХ представлены на Рисунках Б.16 – Б.39 и в Таблицах В.16 – В.21.

Анализ представленных графиков показал, что качественно ММ ТВВД Д-27 описывает поведение реального двигателя в части параметров $G_{\rm T}$, $T_{\rm r}^*$, $N_{\rm твв}$ во всем диапазоне работы.

В целом можно сказать, что значения расчетных параметров $G_{\rm T}$, $T_{\rm r}^*$, $N_{\rm TBB}$ на всех режимах меньше значений, представленных в BCX.

Количественная оценка проводилась только для параметров $N_{\text{твв}}$ и $G_{\text{т}}$, поскольку они являются необходимыми для моделирования совместной работы СВВ, двигателя и ЭСУ на СПМ.

Сводные результаты оценки погрешности моделирования параметров $N_{\rm TBB}$ и $G_{\rm T}$ приведены в Таблице 4.3.

Таблица 4.3 — Погрешность моделирования параметров $N_{\rm TBB}$ и $G_{\rm T}$ по экспериментально-расчетным BCX, предоставленным ЗМКБ «Прогресс» им. А.Г. Ивченко [82]

Н, м	M,1	$N_{\scriptscriptstyle ext{TBB}}$		$G_{\scriptscriptstyle m T}$	
		$arepsilon_{min}$, %	ε_{max} , %	ε_{min} , %	ε_{max} , %
0	0	8	14	21	30
	0,2	7,5	12,5	21	30
	0,4	7,5	12	21	30
1000	0	10,5	14	22	29
	0,2	11	14	22	29
	0,4	10,5	12,5	21	28
2500	0	10,5	13	23	29
	0,2	10,5	13	23	29
	0,4	10	12,5	23	29

Как было сказано ранее, большая погрешность расчета параметров $N_{\text{твв}}$ и $G_{\text{т}}$ позволяет только качественно моделировать совместную работу двигателя и СВВ на СПМ. Для уменьшения погрешности необходимо произвести уточнение ММ.

При сравнении результатов отработки ММ ТВВД Д-27 с дроссельными характеристиками соблюдался следующий порядок действий:

- на вход ММ подавались заданные значения параметров: высоты полета H, числа M, частоты вращения ротора ТВВ $n_{\scriptscriptstyle \text{ТВВ}}$;
- расход топлива $G_{\rm T}$ ММ ТВВД Д-27 определялся из условия равенства мощностей $N_{\rm TBB}$ ММ ТВВД Д-27 и ММ ЗМКБ «Прогресс» им. А.Г. Ивченко.

При сравнении расхода топлива $G_{\rm T}$ ММ ТВВД Д-27 с расходом топлива, представленным в дроссельных характеристиках, в качестве опорного параметра был выбран $N_{\rm TBB}$, поскольку значения $\pi_{\rm K\Sigma}^*$ в дроссельных характеристиках не приводятся. В связи с этим дроссельные характеристики были использованы только для качественного сравнения.

Результаты сравнения отработки ММ ТВВД Д-27 с дроссельными характеристиками представлены на Рисунках Б.40 – Б.47 и в Таблицах В.22 – В.25.

Анализ представленных графиков показал, что качественно ММ ТВВД Д-27 описывает поведение реального двигателя в части параметра $G_{\rm T}$ во всем диапазоне режимов работы.

Глава 5 Корректировка поузловой нелинейной ММ ТВВД Д-27 по результатам верификации

Анализ, проведенный в Главе 4, показал, что качественно ММ ТВВД Д-27 описывает поведение реального двигателя, что позволяет применить алгебраическую корректировку ММ. Кроме того, во всех случаях наблюдается занижение значений моделируемых параметров, что упрощает задачу корректировки ММ.

В данной главе изложена методика алгебраической корректировки ММ в части параметров $G_{\rm T}$ и $N_{\rm TBB}$ относительно внешних условий (H,M) и суммарной степени повышения давления $\pi_{\rm K\Sigma}^*$. Данные параметры были выбраны для корректировки, т.к. они являются необходимыми при моделировании совместной работы СВВ, двигателя и ЭСУ на СПМ 311ПР. Остальные параметры являются внутренними, однако, в случае необходимости их также можно уточнить алгебраически.

Алгебраическая коррекция ММ не требует изменения характеристик основных узлов двигателя и позволяет уточнять параметры по отдельности.

5.1 Уточнение ММ ТВВД Д-27 в части расхода топлива в КС

ММ ТВВД Д-27 в части расхода топлива в КС уточнялась по результатам ЛИ самолета АН-70 (полет №640 от 31.10.12), т.к. данные материалы охватывают широкий диапазон изменения внешних условий.

Для уточнения расхода топлива в КС введен коэффициент идентификации $k_{\rm u}$, показывающий отношение расхода топлива в КС, полученного по результатам расчета ММ, к расходу топлива в КС, полученному по результатам летных испытаний:

$$k_{\rm H} = \frac{G_{\rm T.MOД}}{G_{\rm T}} \,, \quad (5.1)$$

где $G_{\text{т.мод}}$ – расход топлива в КС по результатам расчета ММ, $\frac{\text{кг}}{\text{ч}}$; $G_{\text{т}}$ – расход топлива в КС по результатам летных испытаний, $\frac{\text{кг}}{\text{ч}}$.

Анализ, проведенный в Главе 4, показал влияние высоты H и числа M на погрешность расчета расхода топлива: с увеличением H и M погрешность уменьшается. Следовательно, на величину коэффициента идентификации $k_{\rm u}$ должен оказывать влияние комплекс $\frac{P_0}{P_{\rm BX}^*} \cdot \sqrt{\frac{T_0}{T_{\rm BX}^*}}$.

Для выявления зависимости $k_{\rm H}=f\left(\frac{P_0}{P_{\rm BX}^*}\cdot\sqrt{\frac{T_0}{T_{\rm BX}^*}}\right)$ было выбрано несколько экспериментальных точек. Значения точек приведены в Таблице Г.1 (Приложение Г). График, построенный по указанным точкам, представлен на Рисунке 5.1.

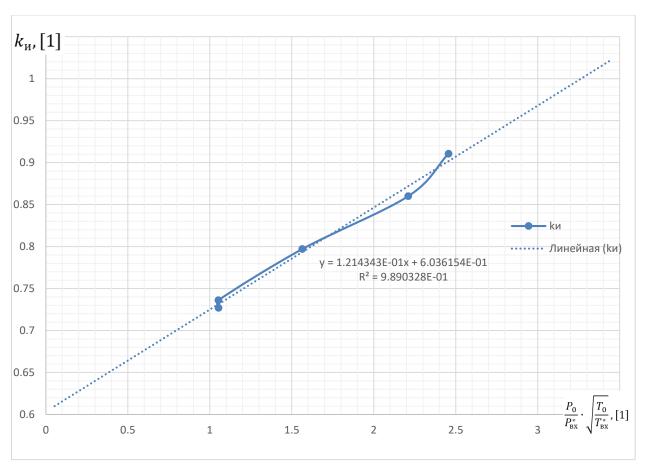


Рисунок 5.1 — Зависимость коэффициента идентификации $k_{\rm u}$

от комплекса
$$\frac{P_0}{P_{\text{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{BX}}^*}}$$

Из Рисунка 5.1 видно, что зависимость между $k_{\rm H}$ и комплексом $\frac{P_0}{P_{\rm BX}^*} \cdot \sqrt{\frac{T_0}{T_{\rm BX}^*}}$ практически линейная.

По выбранным точкам была построена линейная аппроксимирующая линия (см. Рисунок 5.1), описываемая уравнением:

$$k_{\text{\tiny H}} = 1,214343 \cdot 10^{-1} \cdot \frac{P_0}{P_{\text{\tiny BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{\tiny BX}}^*}} + 6,036154 \cdot 10^{-1}$$
 (5.2)

Таким образом, для уточнения ММ в части расхода топлива в КС необходимо перед термодинамическим расчетом КС выполнить следующие действия:

- рассчитать значение комплекса $\frac{P_0}{P_{\rm BX}^*} \cdot \sqrt{\frac{T_0}{T_{\rm BX}^*}}$
- рассчитать значение коэффициента идентификации $k_{\rm u}$ по формуле (5.2);
- уточнить значение расхода топлива в КС по формуле:

$$G_{\text{\tiny T.YT}} = G_{\text{\tiny T}} \cdot k_{\text{\tiny M}}$$
 , (5.3)

где $G_{\text{т.ут}}$ – уточненный расход топлива в КС, $\frac{\kappa \Gamma}{4}$.

Уточненный программный код модуля, описывающего работу КС, представлен на Рисунке 5.2.

```
float64 Pg_z, Tg_z, Tg_zpred, Ggks, T0, P0, Tt, SigmaKS, Cpt, Cpgks, Rg, Hu, KsiKS, kgks, Ki;
                         Ki=101325/Pvh_z*sqrt(288.15/Tvh_z)*0.1214343+0.6036154; //Расчет коэффициента идентификации по комплексу КОР(288.15/Твх*)*101325/Рвх* [1]
 Рквд* ВВ В
                         Hu=42910000; //Низшая теплотворная способность для керосина [Дж/кг]
  Тквд* ВВ В
                         KsiKS=0.999; //Полнота горения [1]
    Gt DBL
                         SigmaKS=0.95; //Коэффициент потери полного давления в КС [1]
  GBKC DBL
                         Gt=Ki*Gt/3600; //Идентификационная поправка и перевод расхода топлива из кг/час в кг/с [кг/с]
                         Pg_z=Pkvd_z*SigmaKS; //Расчет давления торможения на выходе из КС [Па]
    TH DBL
                         |Gg=Gvks+Gt; //Расчет массового расхода газа на выходе из КС [кг/с]
Срвквд ВВ №
                         Tt=Th+15; //Расчет температуры топлива, подаваемого в КС [K]
  Рвх*
                         Cpt=-4.6063*Tt + 3424.7; //Расчет удельной теплоемкости топлива TC-1 [Дж/(кг*K)]
                         kgks=1.333; //Задание начального значения показателя адиабаты продуктов сгорания [1]
                         Rg=287+24.5*Gt/Gvks; //Расчет газовой постоянной продуктов сгорания [Дж/(кг*K)]
                         Cpgks=Rg*kgks/(kgks-1); //Расчет удельной теплоемкости продуктов сгорания [Дж/(кг*К)]
                         Tg_z=(Cpvkvd*Tkvd_z*Gvks+Gt*(Cpt*Tt+Hu*KsiKS))/Cpgks/Gg; //Предварительный расчет температуры торможения на выходе из КС [K]
                         Tg_zpred=0; //Обнуление предыдущего значения температуры торможения на выходе из КС [K]
                         while ((Tg_z-Tg_zpred)/Tg_z>0.0000001)
                         Tg_zpred=Tg_z;
                         kgks=0.0364*(Tg_z/1000)**2-0.144*(Tg_z/1000)+1.429;//Расчет показателя адиабаты продуктов сгорания [1]
                         Cpgks=Rg*kgks/(kgks-1); //Расчет удельной теплоемкости продуктов сгорания [Дж/(кг*К)]
                         Tg_z=(Cpvkvd*Tkvd_z*Gvks+Gt*(Cpt*Tt+Hu*KsiKS))/Cpgks/Gg; //Расчет температуры торможения на выходе из КС [K]
```

Рисунок 5.2 – Уточненная Block Diagram «КС.vi»

5.2 Уточнение ММ в части мощности, развиваемой ТВВ

Основными материалами, которые можно использовать для уточнения ММ в части мощности, развиваемой ТВВ, являются дроссельные характеристики Д-27, представленные в факсе №330/3485 от 26.06.2013 [81] и ВСХ, представленные в ТО №199/2001-27 от 28.02.02 «ЗМКБ «Прогресс» им. А.Г. Ивченко [82]. Так как дроссельные характеристики [81] являются наиболее актуальными на данный момент, они приняты в качестве основных для уточнения ММ ТВВ.

Для уточнения параметра $N_{\text{твв}}$ введен угол идентификации $\varphi_{\text{и}}$, показывающий разность между угловым положением точки, соответствующей $N_{\text{твв}}$ (полученной по дроссельным характеристикам [81]), и угловым положением точки, соответствующей $N_{\text{твв.мод}}$ (полученной по результатам расчета ММ), при одинаковых значениях $\pi_{\text{к}\Sigma}^*$ (см. Рисунок 5.3). Угловые положения точек вычисляются относительно центра, соответствующего минимальным значениям параметров: $\pi_{\text{к}\Sigma}^* = 6,2$, $N_{\text{твв}} = 203300$ Вт.

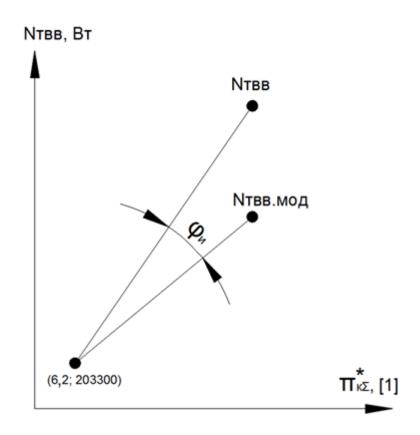


Рисунок 5.3 – Геометрическое представление угла идентификации $\phi_{\rm u}$

Угол $\varphi_{\rm u}$ находится по формуле:

$$\varphi_{\text{\tiny M}} = \operatorname{atan}\left(\frac{N_{\text{\tiny TBB}} - 203300}{\pi_{\text{\tiny K}\Sigma}^* - 6.2}\right) \cdot \frac{180}{\pi} - \left(\frac{N_{\text{\tiny TBB.MOД}} - 203300}{\pi_{\text{\tiny K}\Sigma}^* - 6.2}\right) \cdot \frac{180}{\pi}, \quad (5.4)$$

Применение угла идентификации в данном случае дает улучшенные результаты, чем применение коэффициента идентификации (по аналогии с п.5.1).

Анализ, проведенный в Главе 4, показал влияние высоты H и числа M на погрешность расчета мощности, развиваемой ТВВ. Следовательно, на величину $\varphi_{\rm H}$ должен оказывать влияние комплекс $\frac{P_0}{P_{\rm BX}^*} \cdot \sqrt{\frac{T_0}{T_{\rm BX}^*}}$.

Для различных значений $\pi_{\text{K}\Sigma}^*$ и $\frac{P_0}{P_{\text{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{BX}}^*}}$ построена многомерная характеристика $\varphi_{\text{и}}$, представленная на Рисунке 5.4. Численные значения $\varphi_{\text{и}}$ приведены в Таблице Γ .2).

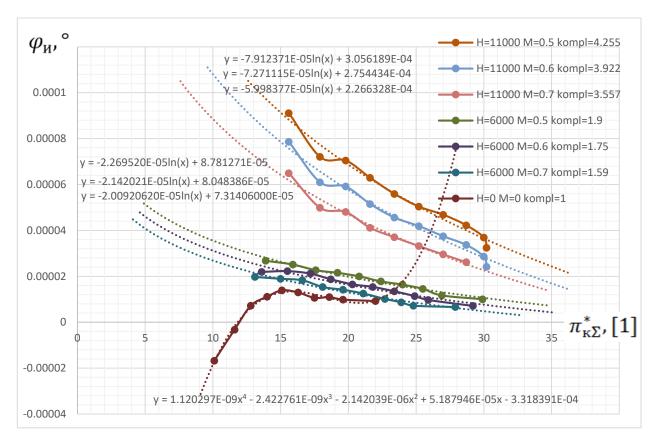


Рисунок 5.4 — Зависимость угла идентификации $\varphi_{\text{и}}$ от суммарной степени повышения давления $\pi_{\text{к}\Sigma}^*$ и комплекса $\frac{P_0}{P_{\text{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{BX}}^*}}$

На Рисунке 5.4 прослеживается влияние комплекса $\frac{P_0}{P_{\rm BX}^*} \cdot \sqrt{\frac{T_0}{T_{\rm BX}^*}}$ на угол идентификации: с увеличением комплекса $\frac{P_0}{P_{\rm BX}^*} \cdot \sqrt{\frac{T_0}{T_{\rm BX}^*}}$ характеристика угла идентификации смещается вверх.

По линиям $\varphi_{\rm H} = f\left(\frac{P_0}{P_{\rm BX}^*}\cdot\sqrt{\frac{T_0}{T_{\rm BX}^*}},\pi_{\rm K\Sigma}^*\right)$ были построены аппроксимирующие кривые (см. Рисунок 5.4):

$$\varphi_{\text{H}} = \begin{cases} 1,120297 \cdot 10^{-9} \cdot \pi_{\text{K}\Sigma}^{*4} - 2,422761 \cdot 10^{-9} \cdot \pi_{\text{K}\Sigma}^{*3} - 2,142039 \cdot 10^{-6} \cdot \\ \cdot \pi_{\text{K}\Sigma}^{*2} + 5,187946 \cdot 10^{-5} \cdot \pi_{\text{K}\Sigma}^{*} - 3,318391 \cdot 10^{-4}, \text{при } \frac{P_{0}}{P_{\text{BX}}^{*}} \cdot \sqrt{\frac{T_{0}}{T_{\text{BX}}^{*}}} = 1; \\ -2,0092062 \cdot 10^{-5} \cdot \ln(\pi_{\text{K}\Sigma}^{*}) + 7,31406 \cdot 10^{-5}, \text{при } \frac{P_{0}}{P_{\text{BX}}^{*}} \cdot \sqrt{\frac{T_{0}}{T_{\text{BX}}^{*}}} = 1,59; \\ -2,142021 \cdot 10^{-5} \cdot \ln(\pi_{\text{K}\Sigma}^{*}) + 8,048386 \cdot 10^{-5}, \text{при } \frac{P_{0}}{P_{\text{BX}}^{*}} \cdot \sqrt{\frac{T_{0}}{T_{\text{BX}}^{*}}} = 1,75; \\ -2,269520 \cdot 10^{-5} \cdot \ln(\pi_{\text{K}\Sigma}^{*}) + 8,781271 \cdot 10^{-5}, \text{при } \frac{P_{0}}{P_{\text{BX}}^{*}} \cdot \sqrt{\frac{T_{0}}{T_{\text{BX}}^{*}}} = 1,9; \end{cases}$$

$$-5,998377 \cdot 10^{-5} \cdot \ln(\pi_{\text{K}\Sigma}^{*}) + 2,266328 \cdot 10^{-4}, \text{при } \frac{P_{0}}{P_{\text{BX}}^{*}} \cdot \sqrt{\frac{T_{0}}{T_{\text{BX}}^{*}}} = 3,557; \\ -7,271115 \cdot 10^{-5} \cdot \ln(\pi_{\text{K}\Sigma}^{*}) + 2,754434 \cdot 10^{-4}, \text{при } \frac{P_{0}}{P_{\text{BX}}^{*}} \cdot \sqrt{\frac{T_{0}}{T_{\text{BX}}^{*}}} = 3,922; \\ -7,912371 \cdot 10^{-5} \cdot \ln(\pi_{\text{K}\Sigma}^{*}) + 3,056189 \cdot 10^{-4}, \text{при } \frac{P_{0}}{P_{\text{BX}}^{*}} \cdot \sqrt{\frac{T_{0}}{T_{\text{BX}}^{*}}} = 4,255. \end{cases}$$

Полином для $\frac{P_0}{P_{\text{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{BX}}^*}} = 1$ принудительно ограничивается справа линией $\varphi_{\text{и}} = 9,23648 \cdot 10^{-6}$ при $\pi_{\text{K}\Sigma}^* > 22$ из-за резко возрастающей функции.

Таким образом, для уточнения ММ необходимо после расчета мощности, развиваемой ТВВ, выполнить следующие действия:

- рассчитать значение комплекса
$$\frac{P_0}{P_{\mathtt{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\mathtt{BX}}^*}};$$

-рассчитать значение угла идентификации $\varphi_{\rm u}$: если значение комплекса $\frac{P_0}{P_{\rm BX}^*} \cdot \sqrt{\frac{T_0}{T_{\rm BX}^*}}$ лежит в диапазоне известных значений необходимо произвести линейную интерполяцию между двумя соседними линиями многомерной характеристики (Рисунок 5.4), за диапазоном — линейную экстраполяцию по двум ближайшим крайним линиям;

-уточнить значение мощности, развиваемой ТВВ, в соответствии с формулой:

$$N_{\text{\tiny TBB.YT}} = (\pi_{\text{\tiny K}\Sigma}^* - 6.2) \cdot \tan\left(\left(\arctan\left(\frac{N_{\text{\tiny TBB}} - 203300}{\pi_{\text{\tiny K}\Sigma}^* - 6.2}\right) \cdot \frac{180}{\pi} + \varphi_{\text{\tiny M}}\right) \cdot \frac{\pi}{180}\right) + 203300 \quad (5.6)$$

Уточненный код модуля, описывающего работу ТВВ, представлен на Рисунке 5.5, модуля идентификации ТВВ – на Рисунке 5.6.

Уточненный код основной программы, описывающей ММ ТВВД Д-27 представлен на Рисунке 5.7.

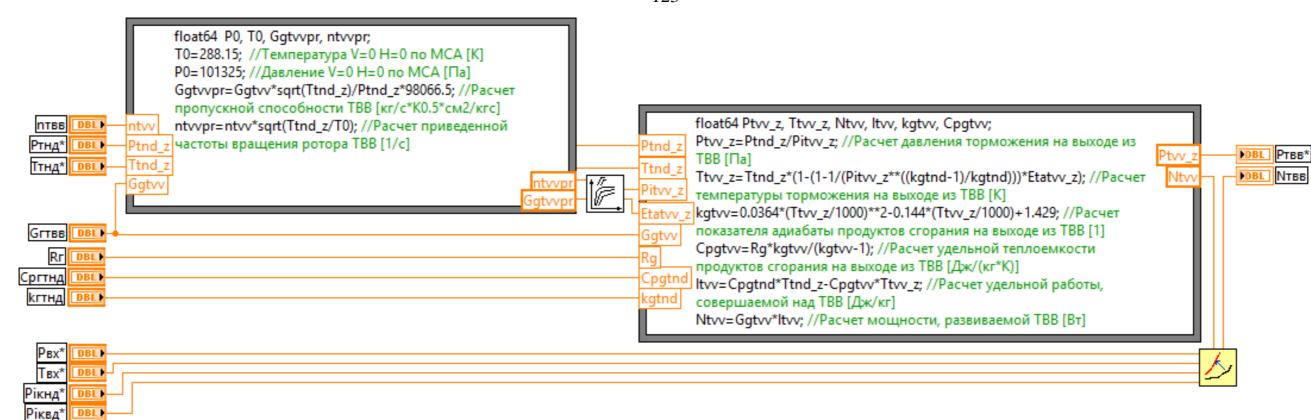


Рисунок 5.5 – Уточненная Block Diagram «ТВВ.vi»

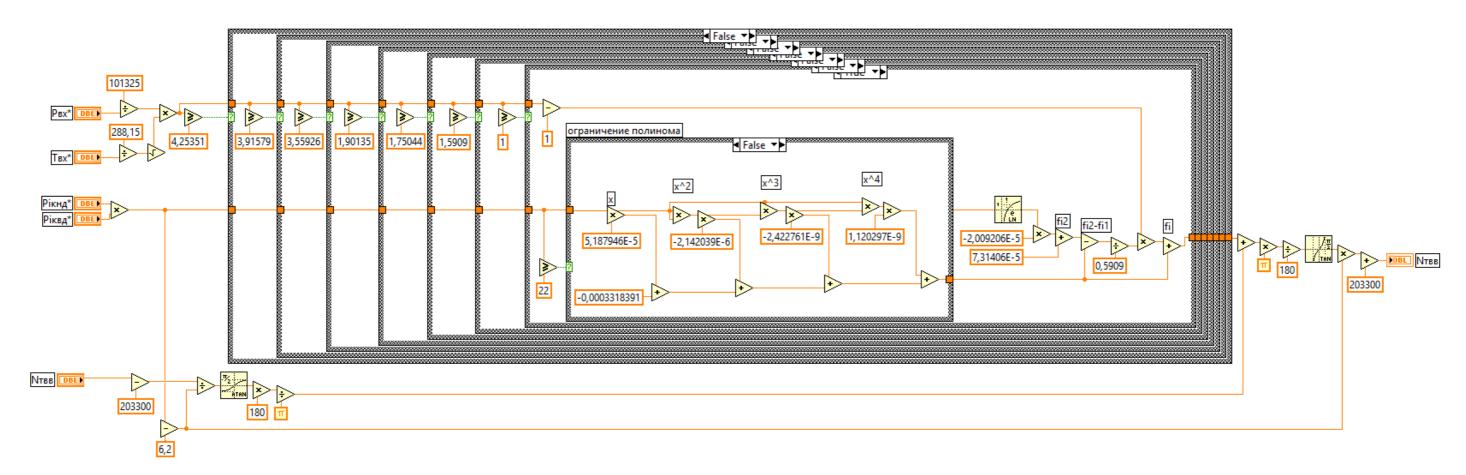


Рисунок 5.6 – Block Diagram «ТВВ - Идентификация.vi»

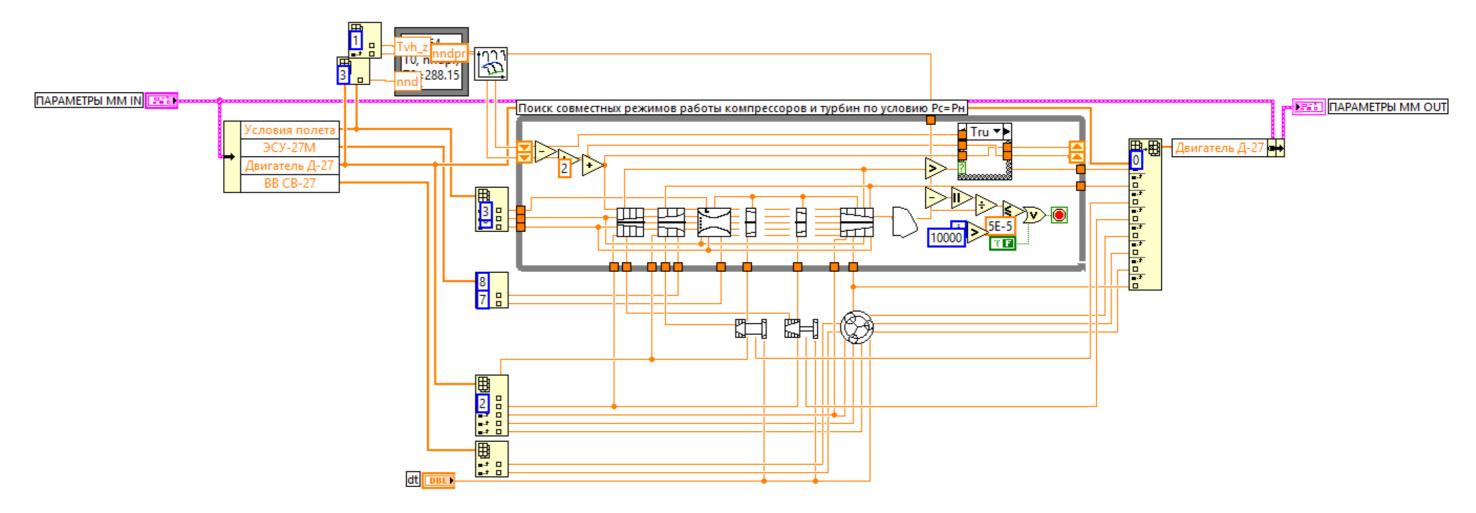


Рисунок 5.7 – Уточненный Block Diagram «Д-27.vi

Глава 6 Идентификация уточненной поузловой нелинейной ММ ТВВД Д-27

6.1 Идентификация уточненной ММ ТВВД Д-27 в части статических параметров

Качественная оценка ММ, проведенная в Главе 4, показала соответствие поведения ММ ТВВД Д-27 реальному двигателю. Количественная оценка выявила погрешность в расчете основных параметров работы двигателя ($G_{\rm T}$ и $N_{\rm TBB}$), в результате чего ММ ТВВД Д-27 была уточнена (Глава 5). В данной главе результаты отработки уточненной ММ ТВВД Д-27 повторно подвергались сравнению с экспериментальными материалами с целью окончательной идентификации ММ.

По расчетным данным уточненной ММ (см. Таблицу Д.1, Приложение Д) были построены графики в виде зависимостей $G_{\text{т.мод.ут}} = f(\pi_{\kappa\Sigma}^*)$ для различных условий полета (см. Рисунки 6.1 – 6.4). На указанные графики были наложены значения расходов топлива в КС СУ №1, №2, №3, №4, измеренных в процессе ЛИ для аналогичных условий полета (полет №640 от 31.10.12).

Анализ графиков показал, что расчетный расход топлива в КС отличается от реального расхода топлива не более среднестатистического отклонения расходов топлива в КС у реальных двигателей.

Анализ сравнения мощностей Рисунок 6.5 (Таблица Д.2), развиваемых ТВВ, по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко [81] с мощностями, развиваемыми ТВВ, полученными по результатам расчета уточненной ММ ТВВД Д-27, показал следующее:

- на высоте полета H=0 м и при числе Маха M=0 погрешность расчета параметра $N_{\text{твв}}$ не превышает $\varepsilon<0.9$ %, за исключением режима «0,8МП», где погрешность составляет $\varepsilon\approx1.3\%$;

- на высоте полета $H=6000\,\mathrm{m}$ и при числе Маха M=0.5 погрешность расчета параметра $N_{\mathrm{твв}}$ не превышает $\varepsilon<0.63\,\%$, за исключением режима «МП», где погрешность составляет $\varepsilon\approx0.95\,\%$;
- на высоте полета H=6000 м и при числе Маха M=0.6 погрешность расчета параметра $N_{\text{твв}}$ не превышает $\varepsilon<0.93$ %, за исключением режима «0,2МП», где погрешность составляет $\varepsilon\approx1.3$ %;
- на высоте полета H=6000 м и при числе Маха M=0.7 погрешность расчета параметра $N_{\text{твв}}$ не превышает $\varepsilon<0.65\,\%$, за исключением режимов «0,4МП» и «МП», где погрешность составляет $\varepsilon\approx1.1\,\%$;
- на высоте полета H=11000 м и при числе Маха M=0.5 погрешность расчета параметра $N_{\text{твв}}$ не превышает $\varepsilon < 0.8$ %;
- на высоте полета H=11000 м и при числе Маха M=0.6 погрешность расчета параметра $N_{\text{твв}}$ не превышает $\varepsilon < 0.91$ %;
- на высоте полета H=11000 м и при числе Маха M=0.7 погрешность расчета параметра $N_{\text{твв}}$ не превышает $\varepsilon<1$ %, за исключением режимов «МП» и «ВЗЛЕТ», где погрешность достигает $\varepsilon\approx5.9$ %.

Учитывая вышеизложенное, можно сказать, что погрешность расчета уточненной ММ в части параметров $G_{\rm T}$ и $N_{\rm TBB}$ является допустимой для моделирования совместной работы СВВ, двигателя и САУ на СПМ.

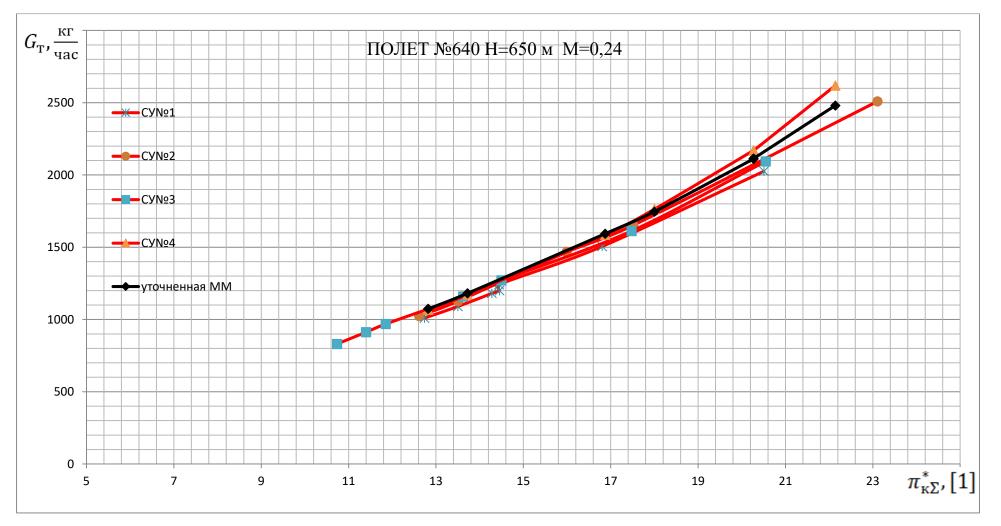


Рисунок 6.1 – Сравнение расходов топлива в КС СУ №1,2,3,4, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета уточненной ММ ТВВД Д-27, на высоте H=650 м и при числе Маха M=0,24

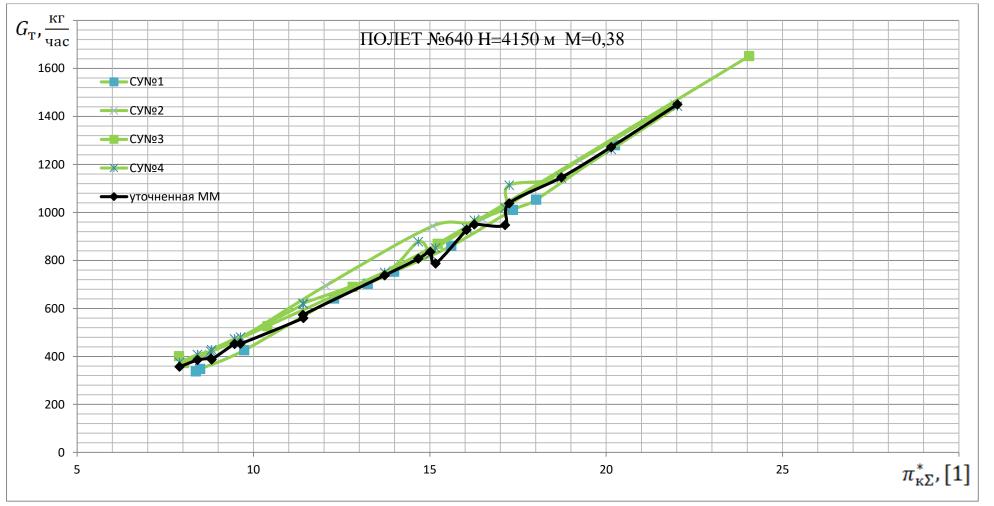


Рисунок 6.2 – Сравнение расходов топлива в КС СУ №1,2,3,4, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета уточненной ММ ТВВД Д-27, на высоте H=4150 м и при числе Маха M=0,38

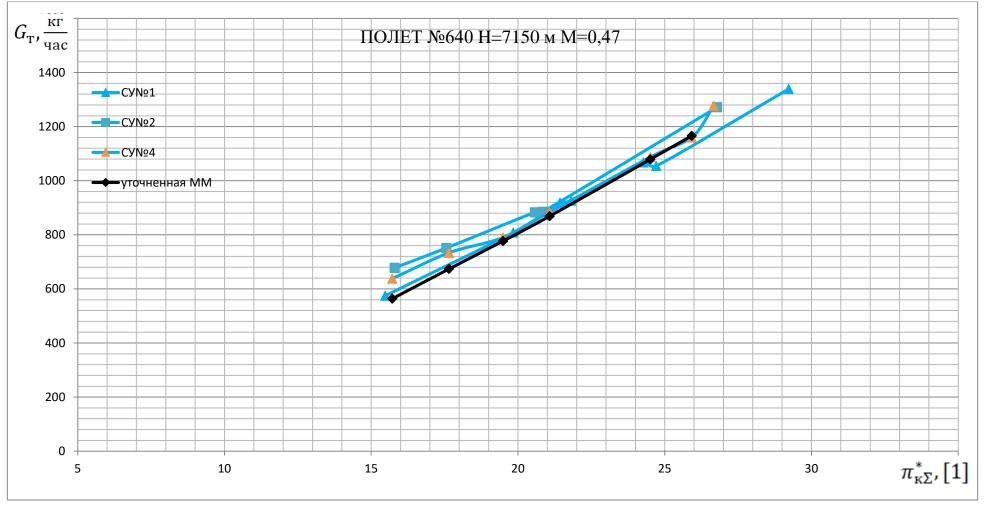


Рисунок 6.3 – Сравнение расходов топлива в КС СУ №1,2,4, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета уточненной ММ ТВВД Д-27, на высоте H=7150 м и при числе Маха M=0,47

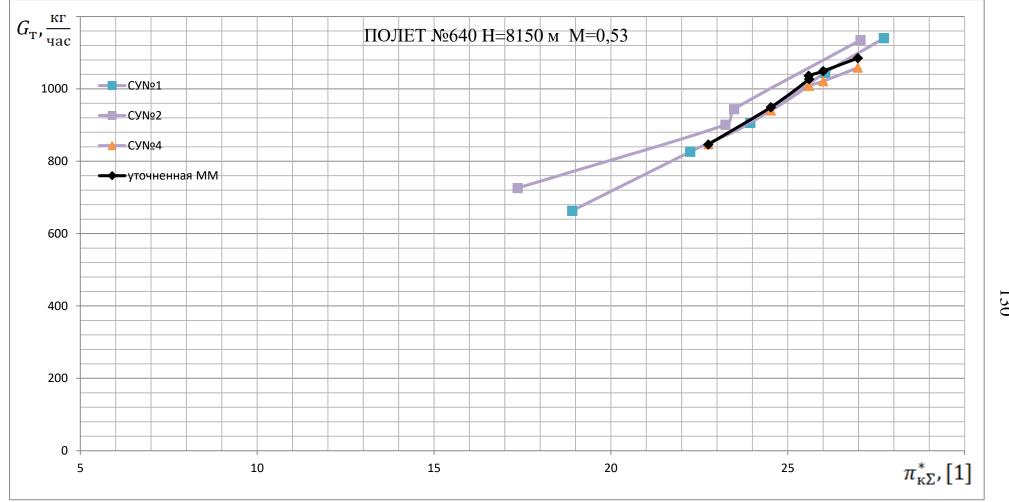


Рисунок 6.4 – Сравнение расходов топлива в КС СУ №1,2,4, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета уточненной ММ ТВВД Д-27, на высоте H=8150 м и при числе Maxa M=0.53

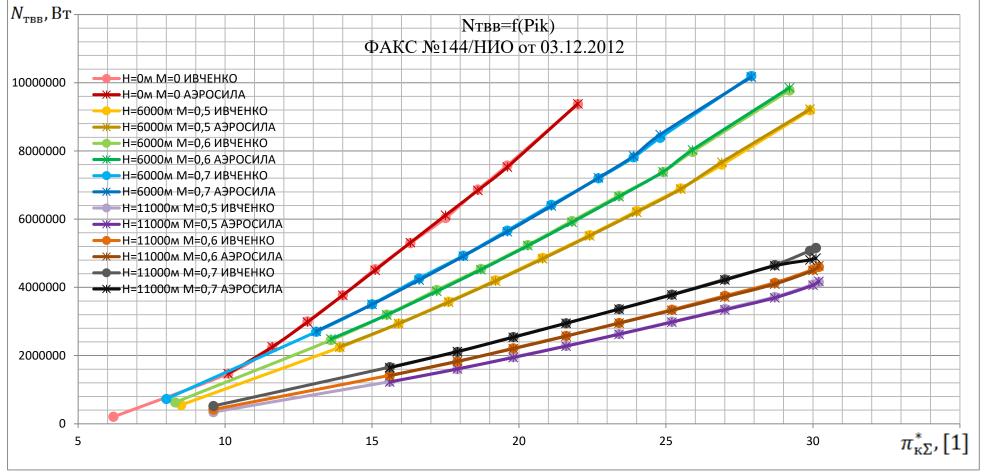


Рисунок 6.5 — Сравнение мощностей, развиваемых ТВВ, по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко с мощностями, развиваемыми ТВВ, полученными по результатам расчета уточненной ММ ТВВД Д-27, в различных условиях полета (параметры атмосферы соответствуют МСА, Факс №330/3485 от 26.06.2013 ОАО «УНПП «Молния» [81])

6.2 Идентификация ММ ТВВД Д-27 в части динамических параметров на стенде полунатурного моделирования в замкнутых каналах управления

После проведения идентификации поузловой нелинейной ММ ТВВД Д-27 в части статических параметров, необходимых для работы на СПМ, была проведена идентификация динамических параметров указанной ММ в замкнутых каналах управления в составе СПМ.

Ввиду отсутствия необходимых экспериментальных данных идентификация проводилась на СПМ путем сравнения динамических характеристик поузловой нелинейной ММ ТВВД Д-27 с динамическими характеристиками КЛДМ Д-27. Для этого КЛДМ Д-27 была реализована в среде LabView в соответствии с Приложением Д к ТЗ на ЭСУ-27М [18]. При проведении моделирования на различных высотах и скоростях полета параметры КЛДМ Д-27 приводились к заданным условиям при помощи формул приведения [83, 84].

Для идентификации динамических характеристик на вход нелинейной поузловой ММ ТВВД Д-27 и КЛДМ Д-27 в замкнутых каналах управления подавались одинаковые ступенчатые возмущения по расходу топлива в КС. Частота вращения ТВВ поддерживалась постоянной путем уравновешивания мощности, развиваемой ТВВ, мощностью, потребляемой СВВ. При этом внимание уделялось изменению значений параметров $n_{\rm HZ}$ и $n_{\rm BZ}$, характеризующих динамические свойства двигателя. Моделирование производилось на различных высотах и скоростях полета (см. Рисунки 6.6-6.7).

Результаты моделирования динамических характеристик выявили незначительный астатизм (в пределах 5 %) по параметрам $n_{\rm HJ}$ и $n_{\rm BJ}$, который не оказывает существенного влияния на динамические свойства двигателя. Динамическая погрешность при сравнении результатов отработки двух ММ находится в пределах 15 %, что является хорошим результатом, учитывая динамическую погрешность КЛДМ на режимах резкого сброса газа, резкой дачи газа, встречной приемистости, а также учитывая наличие заложенного в КЛДМ

влияния динамических свойств системы CBB - TBB (в настоящем процессе моделирования динамические свойства системы CBB - TBB не учитывались, поскольку влияние указанной системы на динамические свойства газогенератора должно рассматриваться в рамках задачи идентификации ММ системы CBB-CAУ-TBBД).

Учитывая вышеизложенное, можно сказать, что погрешность динамического расчета поузловой нелинейной ММ ТВВД Д-27 в замкнутых каналах управления в части параметров $n_{\rm HZ}$ и $n_{\rm BZ}$ является допустимой для моделирования совместной работы СВВ, двигателя и САУ на СПМ.

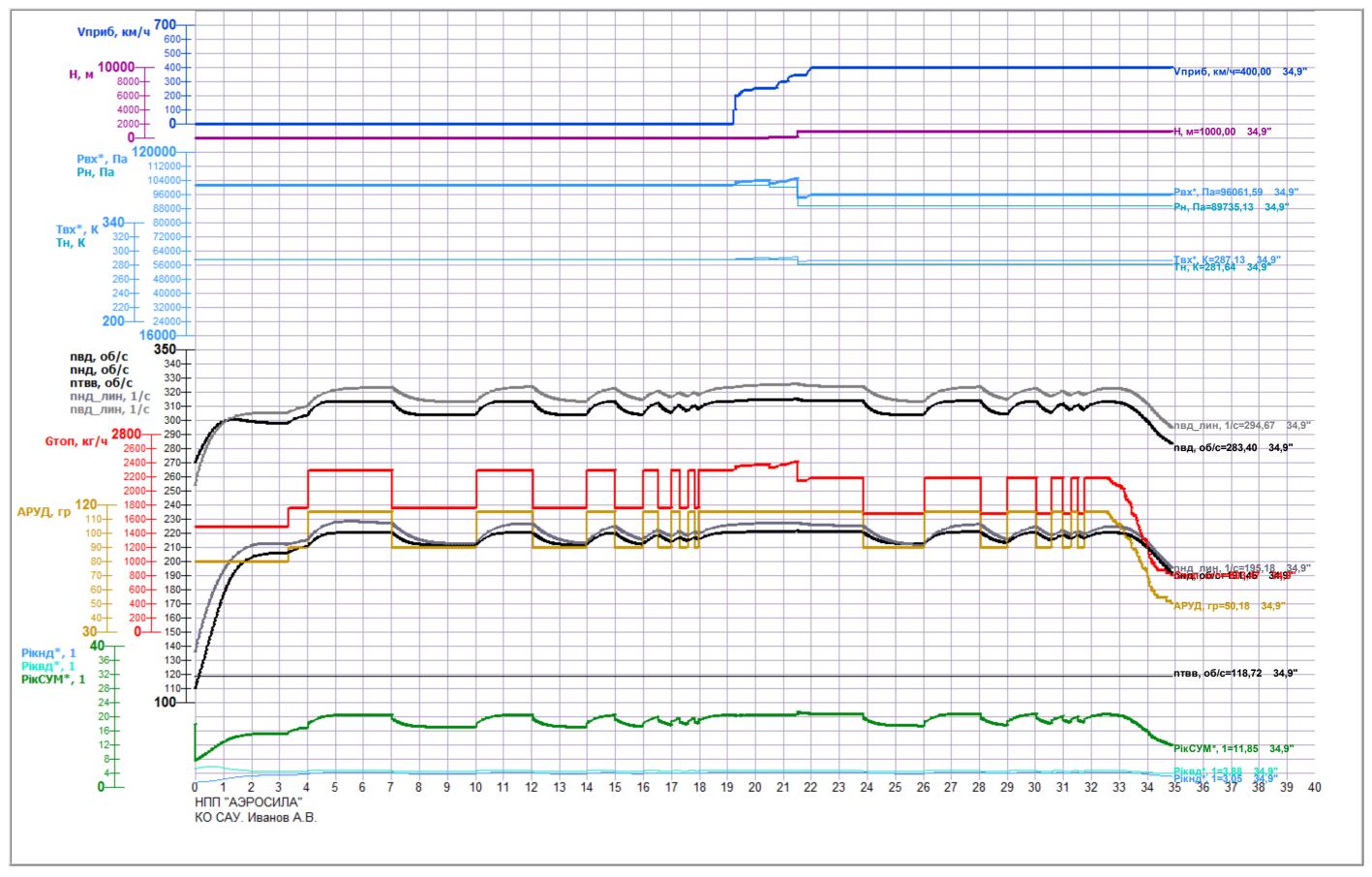


Рисунок 6.6 — Сравнение динамических характеристик нелинейной поузловой ММ ТВВД Д-27 с динамическими характеристиками КЛДМ Д-27 на высоте H=0 м при скорости полета $V_{\rm приб}=0$ $\frac{\rm км}{\rm ч}$ и на высоте H=1000 м при скорости полета $V_{\rm приб}=400$ $\frac{\rm км}{\rm ч}$ (параметры атмосферы соответствуют МСА)

Рисунок 6.7 — Сравнение динамических характеристик нелинейной поузловой ММ ТВВД Д-27 с динамическими характеристиками КЛДМ Д-27 на высоте H=6000 м и на высоте H=10000 м при скорости полета $V_{\rm приб}=600\frac{\rm км}{\rm ч}$ (параметры атмосферы соответствуют МСА)

Глава 7 Исследование применения нечеткой логики и генетического алгоритма для нахождения совместной точки работы компрессоров и турбин в поузловой нелинейной ММ ТВВД Д-27

7.1 Актуальность применения генетического алгоритма для нахождения совместной точки работы компрессоров и турбин в поузловой нелинейной ММ ТВВД Д-27

В погоне за углублением детализации свойств моделируемых объектов разработчики постоянно совершенствуют ММ, что неизбежно влечет к усложнению ММ и к увеличению необходимой вычислительной мощности применяемой техники [85]. Переход на поузловую нелинейную ММ ТВВД Д-27 является ярким примером совершенствования ММ двигателя, применяемой на СПМ для испытания СВВ и его САУ.

При проведении испытаний на СПМ необходимо обеспечивать работу всех ММ в режиме реального времени, поскольку параметры ММ оказывают воздействие непосредственно на натурные объекты испытаний. В связи с этим большое внимание уделяется оптимизации расчета ММ и повышению скорости вычислений.

Наиболее значимым в плане оптимизации местом в ММ ТВВД Д-27 является процесс нахождения совместной точки работы компрессоров и турбин, требующий многократного последовательного пересчета термодинамической модели газогенератора (см. Рисунок 2.2). Как отмечалось ранее, в настоящее время используется метод последовательного приближения путем половинного деления. Так как целью последовательного приближения является нахождение минимума разности $|P_{\rm c}-P_{\rm h}|$, то для решения указанной задачи могут быть применены различные оптимизационные методы.

Сегодня при разработках ПО в системах искусственного интеллекта, искусственных нейронных сетях и для решения задач оптимизации в различных областях науки и техники широкое применение находят генетические алгоритмы

(ГА). Применение ГА для решения задач в области авиационных ГТД рассмотрено в [86, 87, 88, 89, 90, 91].

ГА возникли в результате наблюдения и попыток воспроизведения естественных процессов, происходящих в мире живых организмов, в частности, эволюции и связанной с ней селекции (естественного отбора) популяций живых существ [92]. В основе ГА лежит принцип поиска наиболее приспособленной особи с помощью механизмов естественного отбора и генетического наследования, применяемых к исходной популяции особей.

Блок-схема типового ГА приведена на Рисунке 7.1 [92].

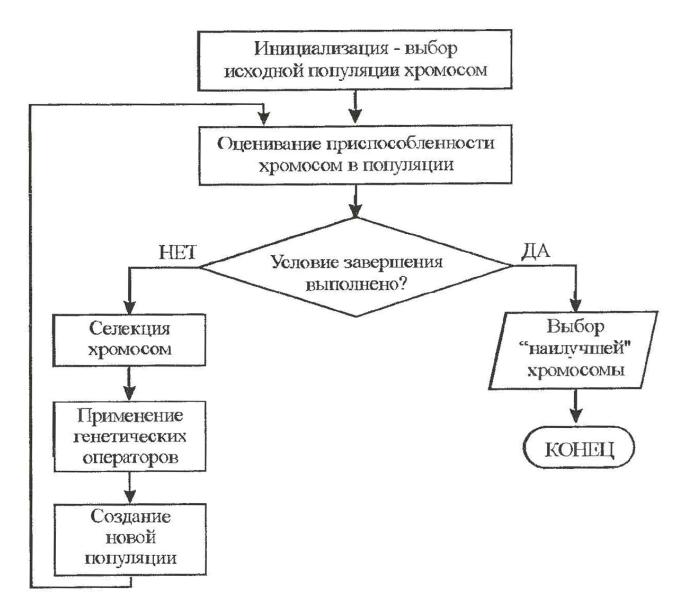


Рисунок 7.1 – Блок-схема типового генетического алгоритма

Так как ГА является современным методом решения задач оптимизации, он может быть применен в ММ ТВВД Д-27 для нахождения совместной точки работы компрессоров и турбин. Оценка эффективности ГА для решения обозначенной задачи может быть дана только его после апробации.

7.2 Реализация генетического алгоритма в среде LabView совместно с поузловой нелинейной ММ ТВВД Д-27 для нахождения совместной точки работы компрессоров и турбин

Для нахождения совместной точки работы компрессоров и турбин при помощи ГА последний был реализован в среде LabView совместно с поузловой нелинейной ММ ТВВД Д-27 (см. Рисунок 7.2).

Реализованный ГА работает в соответствии с блок-схемой, представленной на Рисунке 7.1.

На Рисунках 7.3 – 7.8 представлен программный код основных модулей (подпрограмм), составляющих ГА:

- «Создание исходной популяции.vi», обозначаемый пиктограммой

- «Вычисление фенотипа.vi», обозначаемый пиктограммой

- «Максимальная разность Pc – Ph.vi», обозначаемый пиктограммой

- «Функция приспособленности.vi», обозначаемый пиктограммой function

- «Отбор особей.vi», обозначаемый пиктограммой

- «Скрещивание особей.vi», обозначаемый пиктограммой

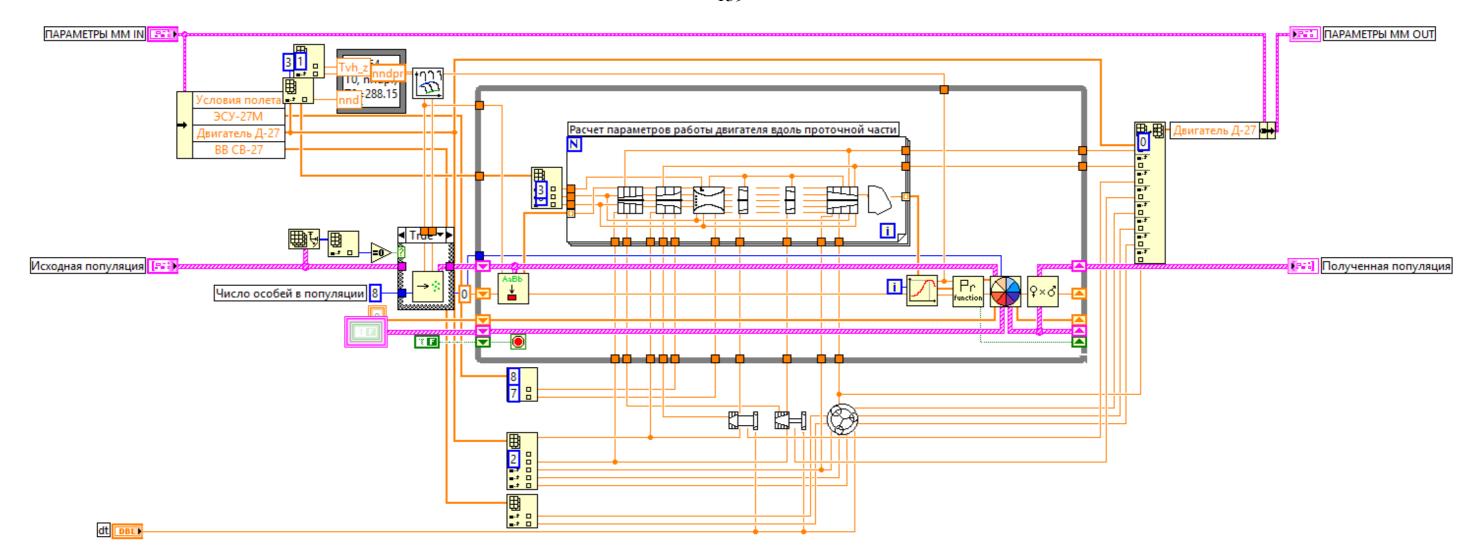


Рисунок 7.2 – Block Diagram «Д-27.vi» с применением генетического алгоритма для нахождения совместной точки работы компрессоров и турбин

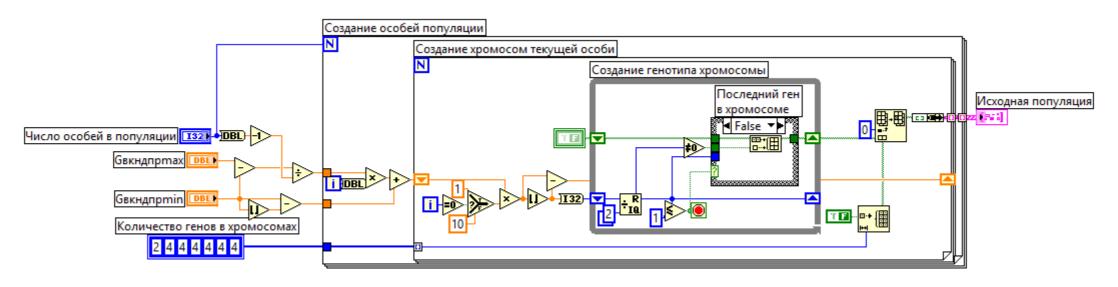


Рисунок 7.3 – Block Diagram «Создание исходной популяции.vi»

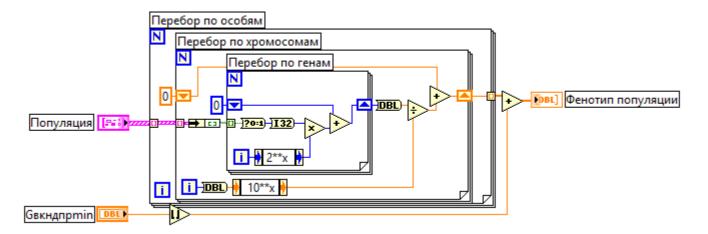


Рисунок 7.4 – Block Diagram «Вычисление фенотипа.vi»

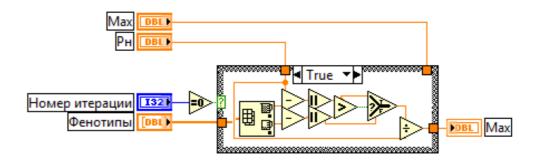


Рисунок 7.5 – Block Diagram «Максимальный фенотип.vi»

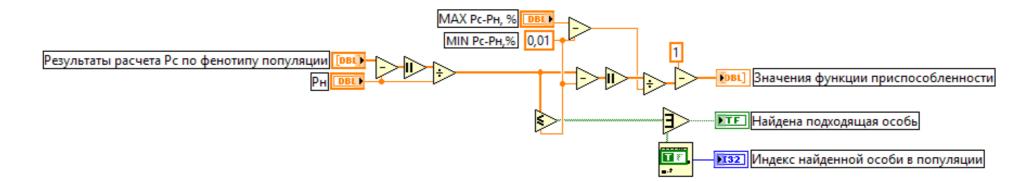


Рисунок 7.6 – Block Diagram «Функция приспособленности.vi»

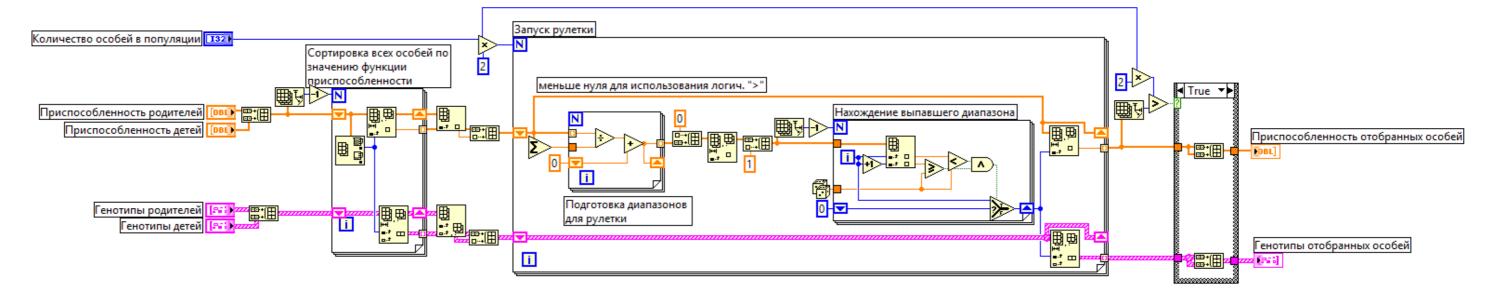


Рисунок 7.7 – Block Diagram «Отбор особей.vi»

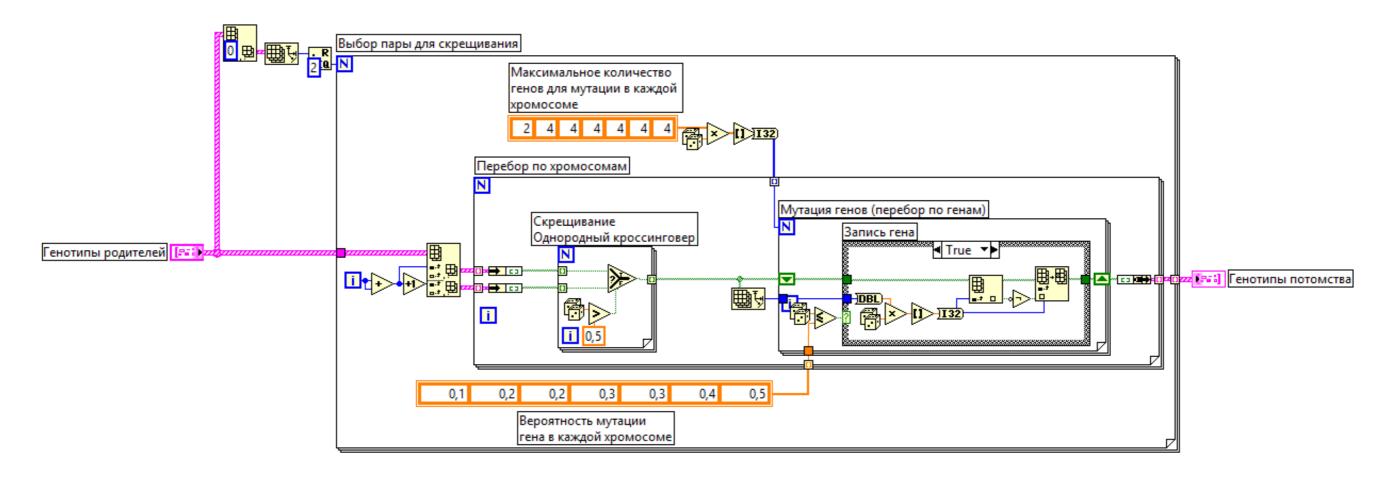


Рисунок 7.8 – Block Diagram «Скрещивание особей.vi»

Подпрограмма «Создание исходной популяции.vi» создает заданное количество особей исходной популяции. Каждая особь популяции несет в себе закодированное значение (фенотип) приведенного массового расхода воздуха через КНД $G_{\rm B, KHZ, np}$.

Кодирование значения указанного параметра происходит при помощи хромосом. Информация в хромосоме представлена в виде генов. Каждый ген кодируется логической переменной и может иметь два значения: «True» или «False». Количество генов в хромосоме выбирается исходя из требуемого количества вариантов представления хромосомы.

Так как при кодировании информации в хромосоме происходит ее дискретизация, то точность ГА зависит от количества генов в хромосоме. В виду неудобства обработки информации, представленной в виде большого количества генов (около 24) в одной хромосоме целесообразным является разбиение генов по нескольким хромосомам.

В данной работе принято следующее хромосомное представление особи. Каждая хромосома особи кодирует определенный разряд дробного числа (см. Рисунок 7.9). Так как используется десятичная система исчисления, то каждая хромосома, кодирующая дробные разряды числа, должна иметь десять вариантов возможного представления. Поэтому указанные хромосомы содержат четыре гена (шестнадцать вариантов кодирования для требуемых десяти вариантов).

Рисунок 7.9 – Кодирование дробного числа в хромосомах

Однако первая хромосома, кодирующая целую часть дробного числа, представлена только двумя генами. Это вызвано тем, что целая часть дробного числа является относительной и показывает насколько кодируемый приведенный массовый расход воздуха через КНД выше минимально возможного на текущей частоте вращения ротора НД. Так как разность между максимальным и минимальным возможными приведенными расходами воздуха через КНД для текущей частоты вращения ротора НД не превышает $2\frac{\kappa \Gamma}{c}$, то для кодирования целой части дробного числа необходимо иметь всего три варианта представления. Поэтому указанная хромосома кодируется двумя генами (четыре варианта кодирования для требуемых трех). Дробная же часть числа является абсолютной.

Для достижения необходимой точности расчета необходимо находить значение параметра $G_{\text{в.кнд.пр}}$ с точностью в шестом разряде дробной части. Следовательно общее количество хромосом одной особи долно быть не менее семи.

Рассмотренный вариант хромосомного представления особи является оптимальным, так как операции скрещивания и мутации, применяемые к отдельным хромосомам, воздействуют фактически на определенный разряд дробного числа, что дает возможность сохранить старшие разряды в виде хромосом доминантных особей, участвующих в последующих операциях скрещивания. При представлении дробного числа в виде меньшего количества хромосом применение операций скрещивания и мутации приводило бы к изменению нескольких разрядов дробного числа и к ухудшаемости выявления доминантных хромосом.

При создании особей исходной популяция последние получают фенотипы — значения $G_{\text{в.кнд.пр}}$, равнораспределенные между минимальным и максимальным возможными значениями $G_{\text{в.кнд.пр}}$ при текущей частоте вращения ротора НД (см. Рисунок 7.10). Равнораспределенные значения фенотипов исходной популяции помагают уменьшить эволюционный путь развития благодаря широкому разнообразию приспособляемости исходных особей: в результате

скрещивания наиболее приспособленных особей улучшается приспособляемость их потомства.

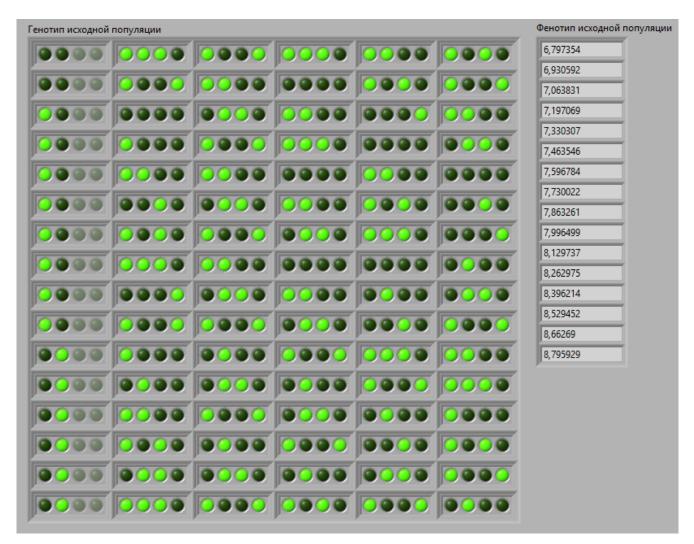


Рисунок 7.10 – Генотип и фенотип исходной популяции

Подпрограмма «Создание исходной популяции.vi» выполняется только при первом обращении к программе «Д-27.vi». Для сокращения эволюционного процесса и увеличения скорости поиска наиболее приспособленной особи при втором и последующих вызовах программы «Д-27.vi» в ГА участвуют особи последней полученной популяции (потомки).

Подпрограмма «**Вычисление фенотипа.vi**» производит преобразование генотипа каждой особи в соответствующий ему фенотип — значение $G_{\text{в.кнд.пp}}$, по которому происходит расчет термодинамической модели газогенератора.

Подпрограмма «**Максимальная разность Рс** – **Рн.vi**» находит максимально возможное значение выражения $\frac{|P_{\rm c}-P_{\rm H}|}{P_{\rm H}}$, используемое в дальнейшем подпрограммой «Функция приспособленности.vi» для расчета значений приспособленности для каждой особи.

Подпрограмма «Функция приспособленности.vi», используя значения P_c^* , рассчитанные по фенотипу каждой особи, определяет приспособленность каждой особи к выживанию (размножению). Значение функции приспособленности может находиться в диапазоне чисел от нуля до единицы. Наиболее приспособленной считается особь, соответствующая минимальному значению выражения $\frac{|P_c - P_H|}{P_H}$ (максимальному значению функции приспособленности), наименее приспособленной — максимальному значению выражения $\frac{|P_c - P_H|}{P_H}$ (минимальному значению функции приспособленности). Для вычисления функции приспособленности и перехода от задачи минимизации к задаче максимизации используется следующая формула:

$$Pr = \frac{\left(\frac{|P_{c} - P_{H}|}{P_{H}}\right)_{\text{тек.особи}} - \left(\frac{|P_{c} - P_{H}|}{P_{H}}\right)_{min}}{\left(\frac{|P_{c} - P_{H}|}{P_{H}}\right)_{max} - \left(\frac{|P_{c} - P_{H}|}{P_{H}}\right)_{min}}, \quad (7.1)$$

где Pr – значение функции приспособленности,1;

 $\left(\frac{|P_{\rm c} - P_{\rm H}|}{P_{\rm H}}\right)_{\rm тек.особи}$ — значение выражения для текущей особи, 1;

 $\left(\frac{|P_{\rm c}-P_{\rm H}|}{P_{\rm H}}\right)_{min}$ — минимально возможное значение выражения для текущей частоты вращения ротора НД, 1;

 $\left(\frac{|P_{\rm c}-P_{\rm H}|}{P_{\rm H}}\right)_{max}$ — максимально возможное значение выражения для текущей частоты вращения ротора НД, 1.

Подпрограмма «Отбор особей.vi» производит разбиение особей на пары для скрещивания (селекция особей), используя метод «рулетки» использовании метода «рулетки» особь с максимальным значением функции приспособленности обладает максимальной вероятностью скрещивания и может участвовать в скрещивании многократно. Особь с минимальным значением функции приспособленности обладает минимальной вероятностью скрещивания и может не участвовать в процессе скрещивания вовсе. Однако метод «рулетки» не исключает возможности скрещивания особей, обладающих максимальным и минимальным значениями функции приспособленности. Таким образом, метод «рулетки», с одной стороны, обеспечивает быструю сходимость популяции (поиск локального максимума функции приспособленности) путем отбора особей для скрещивания, обладающих наилучшим генофондом, а с другой – предотвращает преждевременную сходимость благодаря возможности скрещивания с особями, обладающими наихудшим генофондом. Благодаря этому метод «рулетки» является наиболее оптимальным для решения поставленной задачи по сравнению с другими методами селекции (панмиксия, инбридинг, аутбридинг, турнирный метод, ранговая селекция), описание которых приводится в [92, 93].

Для предотвращения потерь особей с наилучшим генофондом селекция производится из общего количества особей, включающих в себя детей и родителей. Таким образом производится постепенное удаление из популяции особей потомства, имеющих генотип хуже, чем у родителей.

Подпрограмма «Скрещивание особей.vi» производит скрещивание двух отобранных родителей для получения генотипа потомка. У двух родителей в результате размножения получается один ребенок. Так как количество скрещиваний в два раза больше исходного числа особей в популяции, то число детей (потомства) равно числу особей в исходной популяции. Таким образом обеспечивается постоянство числа особей в популяции.

Создание генотипа ребенка, получающегося при размножении родителей, осуществляется при помощи однородного кроссинговера [93]: на позицию текущего гена ребенка равновероятно выбирается ген отца или ген матери,

находящиеся на той же позиции в той же хромосоме. Такой метод скрещивания показал себя как наиболее эффективный для решения обозначенной задачи.

После применения операции скрещивания к генотипу полученного ребенка применяется операция мутации, в ходе которой выбранное число генов в хромосоме мутирует с заданной вероятностью. Общее количество возможных мутаций генов и вероятность мутации гена задаются индивидуально для каждой хромосомы исходя из условия сохранения доминантного генофонда: чем выше значимость хромосомы (разряд двоичного числа), тем меньше вероятность мутации генов в ней.

7.3 Результаты работы генетического алгоритма в поузловой нелинейной ММ ТВВД Д-27 для нахождения совместной точки работы компрессоров и турбин

Работа ГА была проверена при различных значениях выражения $\left(\frac{|P_{c}-P_{H}|}{P_{H}}\right)_{min}$, различном числе особей в популяции и различных вероятностях мутации генов в каждой хромосоме. В процессе моделирования фиксировалось количество произведенных итераций — последовательных пересчетов термодинамической модели газогенератора. Результаты отработки наиболее оптимальной конфигурации ГА представлены на Рисунках 7.11-7.15.

По результатам моделирования видно, что при точности расчета $\frac{|P_{\rm c}-P_{\rm H}|}{P_{\rm H}} \leq 0,01$ ГА производит недопустимо большое количество итераций для каждой расчетной точки переходного процесса. При указанной точности расчета метод дихотомии производит от 10 до 16 итераций. Кроме того, ГА является относительно нестабильным методом расчета — количество итераций, необходимое для нахождения однотипных расчетных точек может отличаться на несколько порядков.

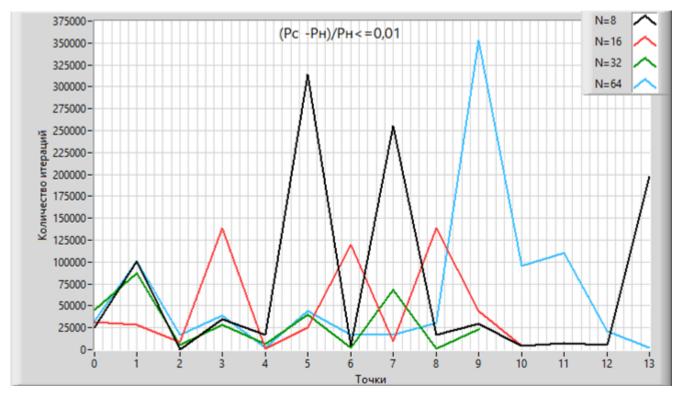


Рисунок 7.11 — Результат отработки ГА при значении выражения $\frac{|P_{\rm c}-P_{\rm H}|}{P_{\rm H}} \le 0.01$ и различном числе особей в популяции

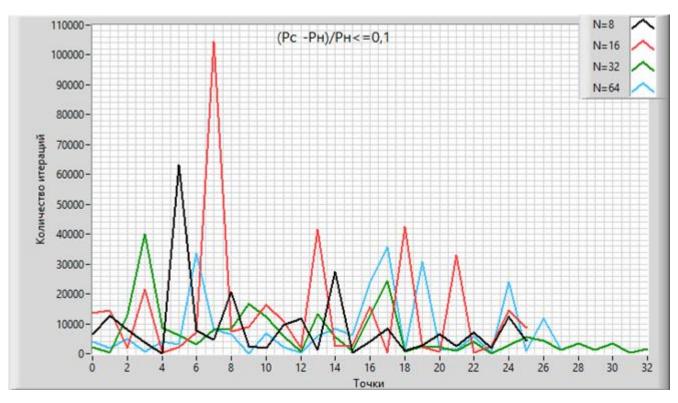


Рисунок 7.12 — Результат отработки ГА при значении выражения $\frac{|P_{\rm c}-P_{\rm H}|}{P_{\rm H}} \le 0,1$ и различном числе особей в популяции

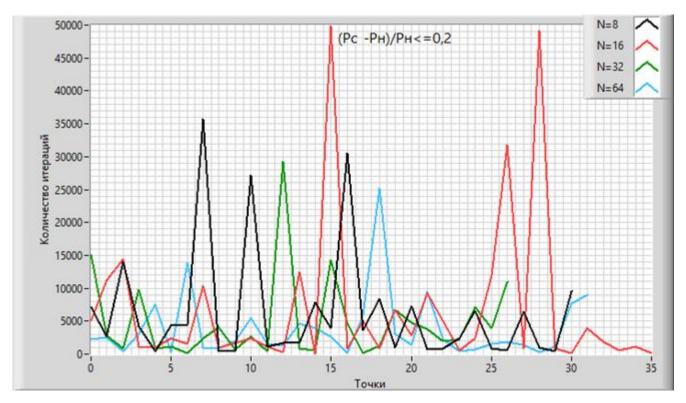


Рисунок 7.13 — Результат отработки ГА при значении выражения $\frac{|P_{\rm c}-P_{\rm H}|}{P_{\rm H}} \le 0,2$ и различном числе особей в популяции

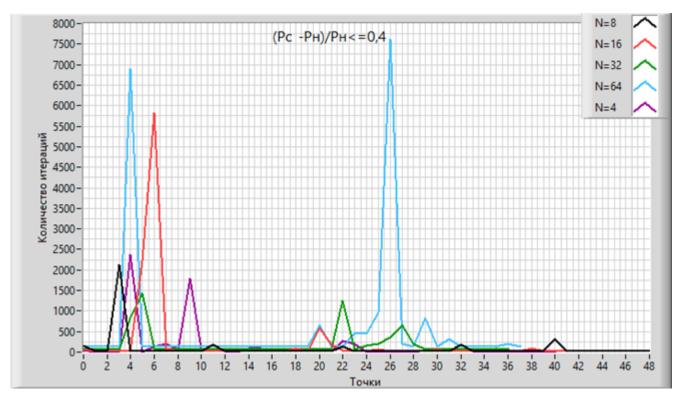


Рисунок 7.14 — Результат отработки ГА при значении выражения $\frac{|P_{\rm c}-P_{\rm H}|}{P_{\rm H}} \le 0,4$ и различном числе особей в популяции

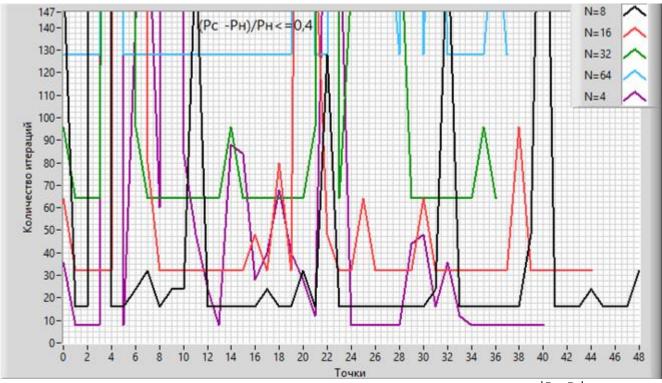


Рисунок 7.15 — Результат отработки ГА при значении выражения $\frac{|P_c - P_H|}{P_H} \le 0,4$ и различном числе особей в популяции (укрупненный масштаб)

Значительное увеличение скорости расчета наблюдается только при уменьшении точности расчета до значения выражения $\frac{|P_c - P_H|}{P_H} \le 0.4$. В этом случае максимальной скорости расчета удается достигнуть при минимальном числе особей в популяции: четыре особи в популяции позволяют найти искомое решение совершении восьми итераций пересчета термодинамической газогенератора. Данное обстоятельство объясняется тем, что для нахождения искомой точки расчета необходимо совершать минимально один эволюционный процесс (одно размножение особей популяции), поэтому минимальное количество итераций будет в два раза превышать число особей в популяции, что делает нецелесообразным дальнейшее увеличение особей числа популяции (см. Рисунок 7.15).

При точности расчета, соответствующей значению выражения $\frac{|P_c - P_H|}{P_H} \le 0,4$, ГА оказывается сравним по эффективности с методом дихотомии, производящим в этом случае от 5 до 11 итераций. Однако нестабильность ГА приводит к

увеличенному количеству итераций при расчете некоторых «выпадающих» точек (см. Рисунок 7.14).

На основании вышеизложенного можно сказать, что применение ГА для нахождения совместной точки работы компрессоров и турбин в поузловой нелинейной ММ ТВВД Д-27 является неэффективным решением [94].

Глава 8 Апробация поузловой ММ ТВВД на стенде полунатурного моделирования при испытаниях агрегатов САУ СВВ в замкнутых каналах управления

8.1 Результаты апробации поузловой ММ ТВВД Д-27 в замкнутых каналах управления на стенде полунатурного моделирования

Для апробации поузловой ММ ТВВД Д-27 на стенде полунатурного моделирования 311ПР ОАО «НПП «Аэросила» были проведены функциональные испытания винтовентилятора СВ-27 на основной САУ (см. Рисунки 8.1 – 8.3) и резервной (гидромеханической) САУ (см. Рисунки 8.4 – 8.5) в замкнутых каналах управления. При этом имитировались различные переходные процессы силовой установки с дачей и сбросом газа в диапазоне режимов ЗМГ-ВЗЛЕТ.

Кроме того, поузловая ММ ТВВД Д-27 в замкнутых каналах управления прошла апробацию в ходе испытаний гидромеханического регулятора РСВ-27 на СПМ 311ПР по программе эквивалентно-циклических испытаний (см. Рисунок 8.6).

8.2 Результаты апробации поузловой ММ ТВД ТВ7-117СТ на стенде имитационного моделирования

На базе разработанной универсальной математической модели ТВВД была построена поузловая ММ ТВД ТВ7-117СТ [95], которая была идентифицирована АО «Климов» [96] и также прошла апробацию в системе имитационного моделирования, являющейся составной частью стенда полунатурного моделирования. В результате апробации проведен ряд испытаний для формирования и отработки алгоритмов САУ воздушного винта АВ112 [97, 98]. Примеры результатов испытаний представлены на Рисунках 8.7 – 8.8.

В заключении главы можно отметить, что технология полунатурных испытаний агрегатов САУ СВВ в замкнутых каналах управления с применением поузловой ММ ТВВД дает высокую сходимость результатов полунатурных испытаний с результатами реальных испытаний СВВ в составе ТВВД, обеспечивает полноценное взаимодействие математической модели ТВВД с электронной системой управления. Реализация испытаний САУ СВВ в замкнутых каналах управления на стендах полунатурного моделирования с применением поузловых ММ ТВВД раскрывает огромный спектр возможностей для выбора и отработки алгоритмов и законов управления СВВ на режимах реверса, прямой тяги, в условиях отказных ситуаций, во всех ожидаемых условиях эксплуатации по скорости и высоте полета.

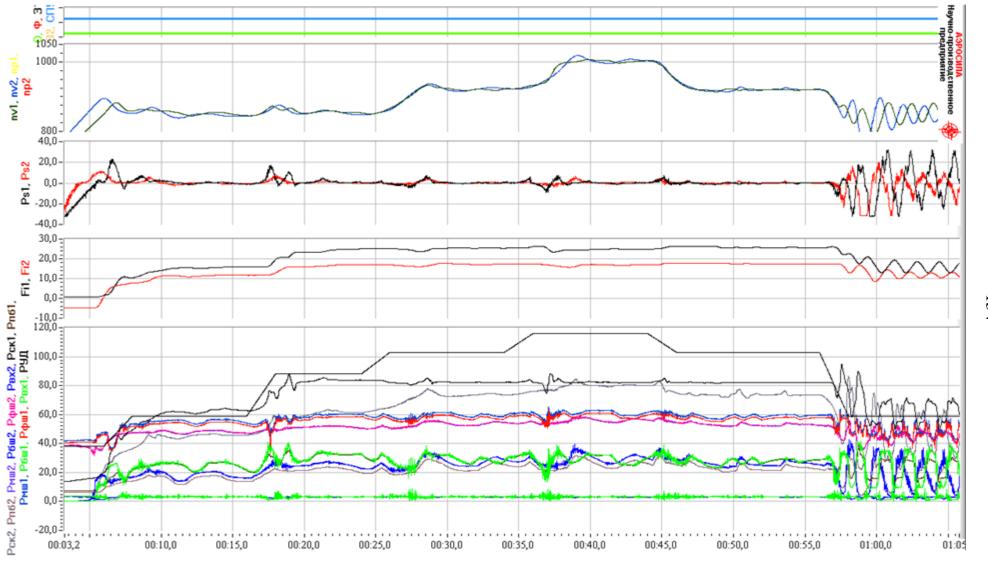


Рисунок 8.1 – Испытания на СПМ 311ПР соосного винтовентилятора СВ-27 под управлением основной САУ с применением поузловой ММ ТВВД Д-27

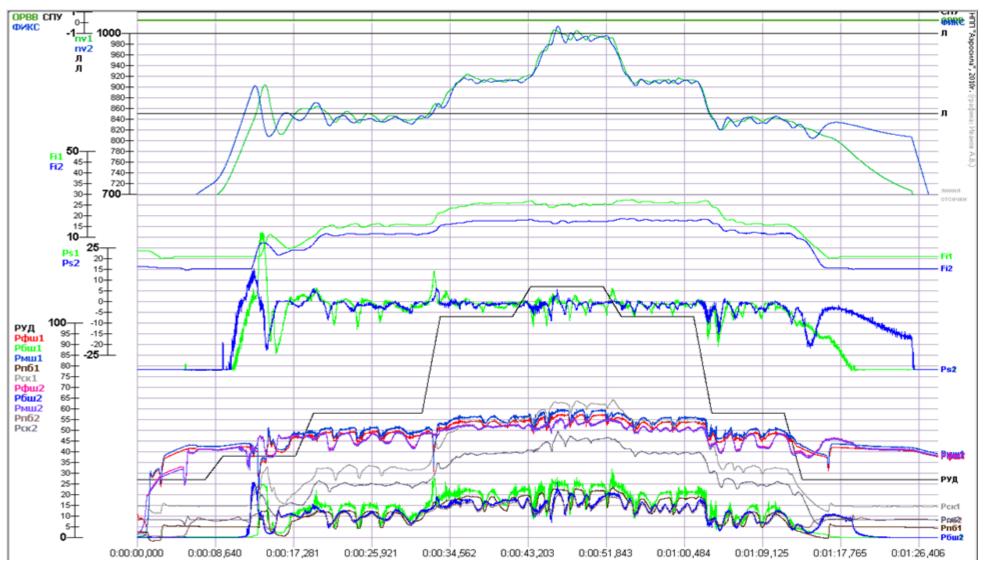


Рисунок 8.2 – Испытания на СПМ 311ПР соосного винтовентилятора СВ-27 под управлением основной САУ с применением поузловой ММ ТВВД Д-27

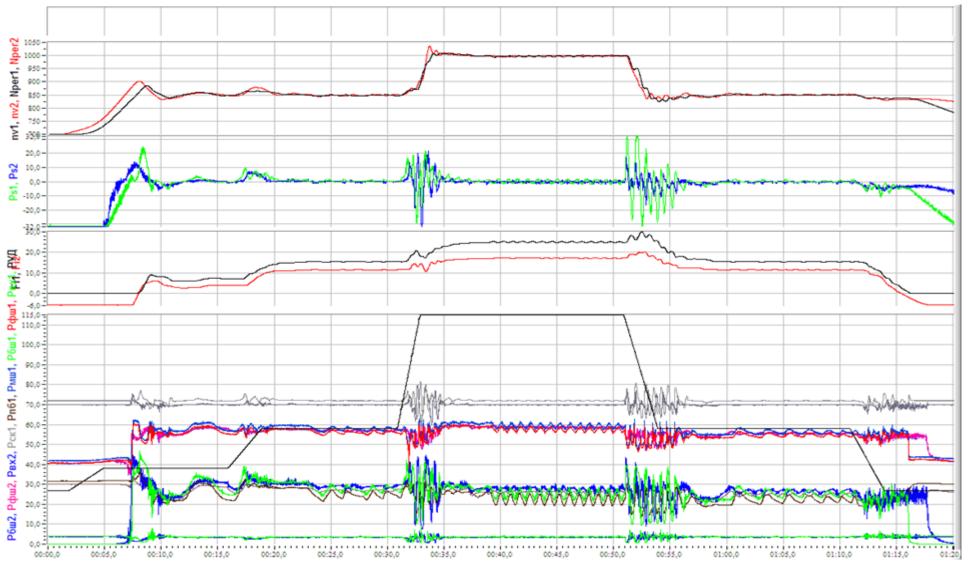


Рисунок 8.3 – Испытания на СПМ 311ПР соосного винтовентилятора СВ-27 под управлением основной САУ с применением поузловой ММ ТВВД Д-27

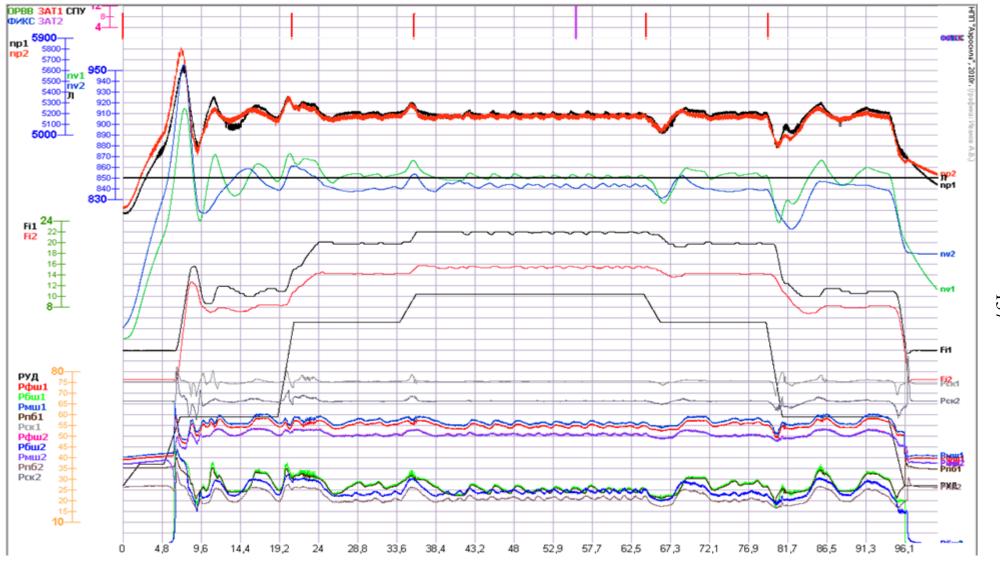


Рисунок 8.4 – Испытания на СПМ 311ПР соосного винтовентилятора CB-27 под управлением резервной САУ с применением поузловой ММ ТВВД Д-27

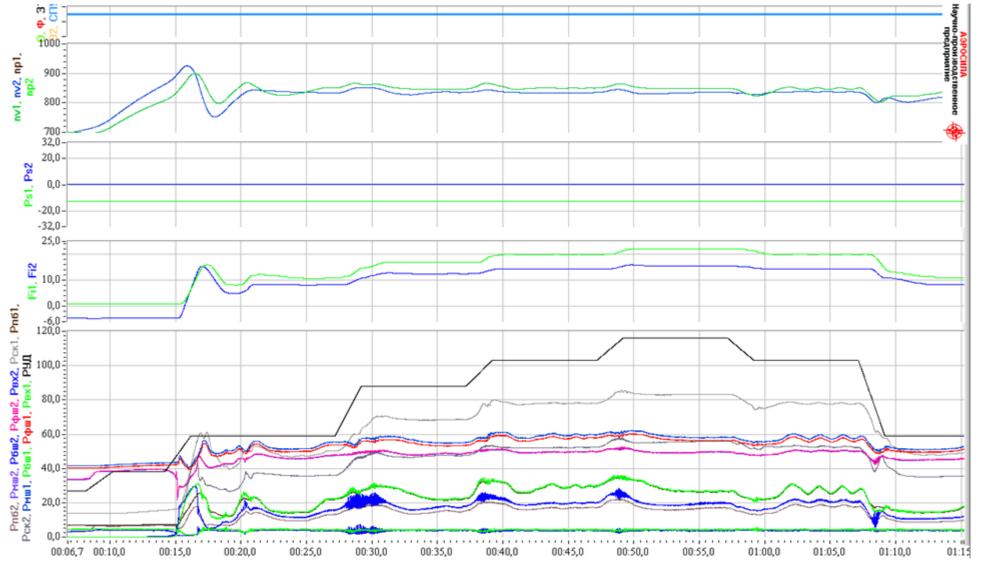


Рисунок 8.5 – Испытания на СПМ 311ПР соосного винтовентилятора CB-27 под управлением резервной САУ с применением поузловой ММ ТВВД Д-27



Рисунок 8.6 – Эквивалентно-циклические испытания РСВ-27 на СПМ 311ПР с применением поузловой ММ ТВВД Д-27

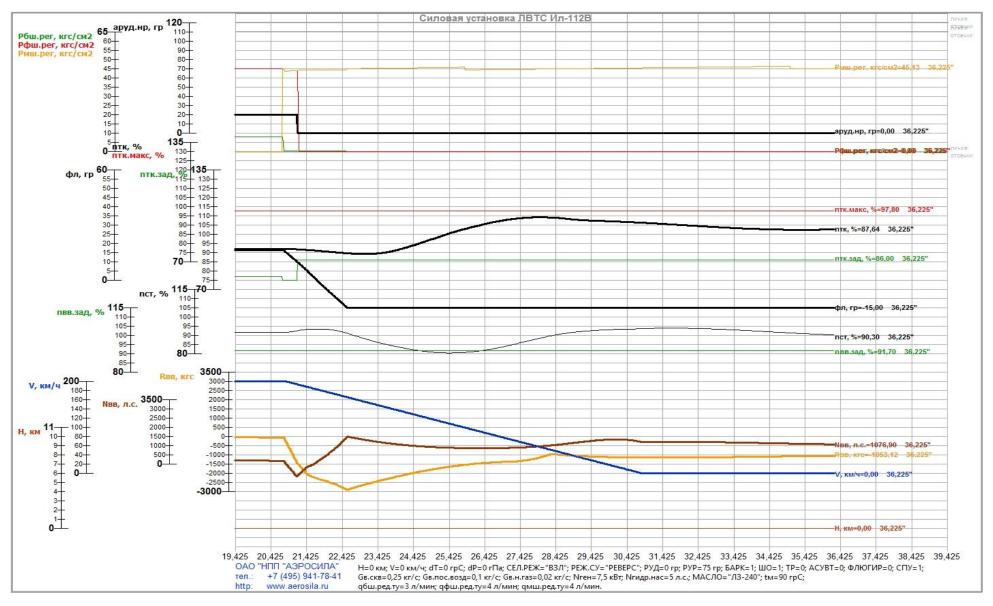


Рисунок 8.7 – Имитация посадки самолета, применение активного неуправляемого реверса ВВ АВ112

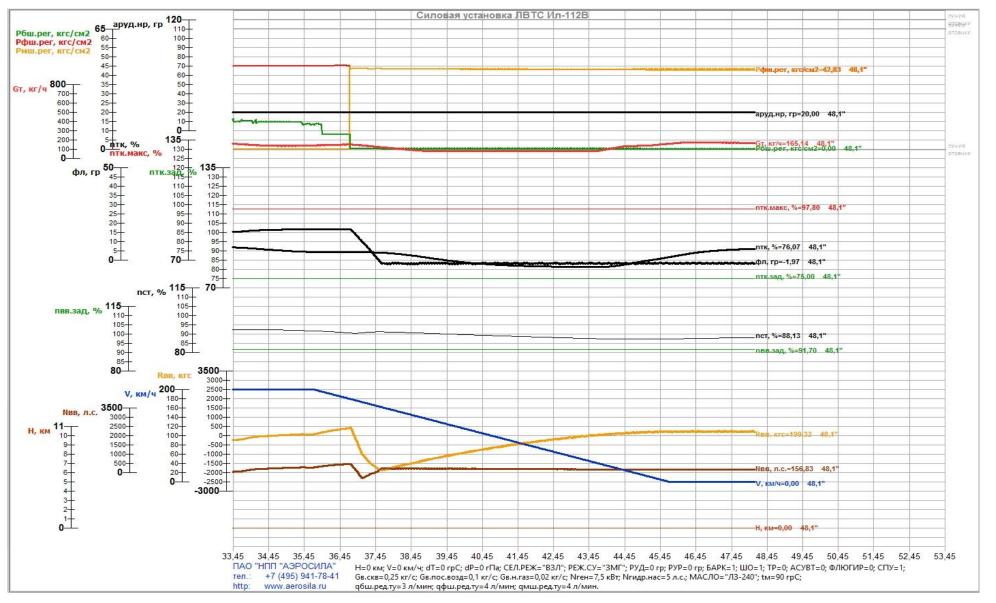


Рисунок 8.8 – Имитация посадки самолета, применение пассивного реверса ВВ АВ112

ЗАКЛЮЧЕНИЕ

- 1 Разработана технология проведения полунатурных испытаний САУ соосных винтовентиляторов в замкнутых на поузловую ММ двигателя каналах управления.
- 2 Разработана, реализована и идентифицирована поузловая нелинейная термодинамическая ММ ТВВД Д-27, позволяющая моделировать работу двигателя в широком диапазоне внешних условий.
- 3 Выполнена апробация разработанной поузловой нелинейной ММ ТВВД Д-27 на стенде полунатурного моделирования 311ПР разработки ОАО «НПП «Аэросила».
- 4 Концепция поузлового (поэлементного) представления разработанной нелинейной ММ ТВВД Д-27 стала прототипом при создании поузловой нелинейной ММ двигателя ТВ7-117СТ, примененной в составе ММ силовой установки самолета Ил-112В, в составе стенда полунатурного моделирования для испытаний ВВ АВ112 и его САУ, в составе комплексных тренажеров самолета КТС-112В и ПТС-112В совместно с ММ АВ112 и ММ САУ для подготовки летного состава и отработки им сложных ситуаций.
- 5 Технология полунатурных испытаний САУ винтовентиляторов (воздушных винтов) в замкнутых на поузловую ММ ТВВД каналах управления позволяет до начала проведения натурных испытаний на моторном стенде и самолете синтезировать оптимальные законы и алгоритмы управления силовой установки на различных режимах работы, оценить запасы устойчивости САУ, построить статические и динамические характеристики винтовентилятора и агрегатов САУ, отработать алгоритмы функционирования агрегатов САУ при отказах элементов конструкции ТВВД и его систем, своевременно выявить системные ошибки при проектировании САУ, выявить скрытые дефекты в опытных и серийных изделиях.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

Основные сокращения

API – application programming interface (интерфейс программирования

приложений);

GSP — Gas turbine Simulation Program (программа симуляции ГТД);

TUD — Delft Technical University (технический университет Делфта);

АДХ – аэродинамические характеристики;

APM – автоматизированное рабочее место оператора;

АСТРА – автоматизированная система термогазодинамического расчета

и анализа;

ВАК – высшая аттестационная комиссия при Министерстве

образования и науки Российской Федерации;

ВВ – воздушный винт, винтовентилятор;

ВГТД – вспомогательный газотурбинный двигатель;

ВД – высокого давления;

ВЗЛЕТ – взлетный;

ВНА – входной направляющий аппарат;

ВРД – воздушно-реактивный двигатель;

ВСХ – высотно-скоростные характеристики;

ВУ – выходное устройство;

ГА – генетический алгоритм;

 $\Gamma\Gamma$ — газогенератор;

ГМР – гидромеханический регулятор;

ГТД – газотурбинный двигатель;

ДВШ – двигатель волновой шаговый;

3B – задний винт;

3MГ — земной малый газ;

ИВК – измерительно-вычислительный комплекс;

КВД – компрессор высокого давления;

КЛДМ – кусочно-линейная динамическая математическая модель;

КНД – компрессор низкого давления;

КНИТУ-КАИ – Казанский национальный исследовательский технический

университет;

КПД – коэффициент полезного действия;

КС – камера сгорания;

КТС-112В – комплексный тренажер самолета Ил-112В;

ЛИ – летные испытания;

ЛИВР – лаборатория испытаний винтов и регуляторов;

ЛПС – лаборатория прочности и специальных измерений;

ЛРР – линия рабочих режимов;

МАКС. КР – максимальный крейсерский;

МАКС. ПРОД – максимальный продолжительный;

ММ – математическая модель;

МП – максимальный продолжительный;

МСА – международная стандартная атмосфера;

НД – низкого давления;

НПП – научно-производственное предприятие;

ОИ – объект испытаний;

ПВ – передний винт;

ПИ – предъявительские испытания;

ПО – программное обеспечение;

ПОС – противообледенительная система;

ПСИ – приемо-сдаточные испытания;

ПТС-112В – процедурный тренажер самолета Ил-112В;

РУД – рычаг управления двигателем;

САУ – система автоматического управления;

САУиК — система автоматического управления и контроля;

СВВ – соосный винтовентилятор;

СПМ – стенд полунатурного моделирования;

СУ – силовая установка;

СЧ ОКР — составная часть опытно-конструкторской работы;

ТВВ – турбина винтовентилятора;

ТВВД – турбовинтовентиляторный двигатель;

ТВД – турбина высокого давления;

ТЗ – техническое задание;

ТНД – турбина низкого давления;

ТО – технический отчет;

ТТЛ – транзисторно-транзисторная логика;

ЭГП – электрогидропреобразователь;

ЭМК – электромагнитный клапан;

ЭСУ – электронная система управления;

ЭЦИ – эквивалентно-циклические испытания.

Основные обозначения параметров

```
коэффициент тяги BB, [1];
α
                    – угол установки рычага управления двигателем, [°];
\alpha_{
m pyg}
β

    коэффициент мощности BB, [1];

Δφ
                    – деградация углового положения лопастей ВВ, [°];
\Delta P
                    – отклонение физического давления от МСА, [Па];
\Delta T
                    – отклонение физической температуры от МСА, [К];
\Delta N
                    – разность мощностей источника и потребителя, [Вт];
\delta_{
m orf}
                    – отбор воздуха за компрессором высокого давления, [%];
                    – погрешность, [%];
ε
                    - коэффициент полезного действия, [1];
η
\eta^*
                    - коэффициент полезного действия по параметрам
                      торможения, [1];
                    – относительная поступь ВВ, [1];
λ
                    – полнота горения, [1];
\xi_{\rm KC}
                    – число 3.1415926535, [1];
π
\pi^*
                    – степень повышения (понижения) давления торможения, [1];
                    – плотность, \left[\frac{\kappa \Gamma}{M^3}\right];
ρ
                    - коэффициент потери полного давления, [1];
σ
                    – угол установки лопастей ВВ, [°];
φ
                    – угол идентификации, [°];
\varphi_{\mathsf{u}}
                    - угловая скорость, \left[\frac{\text{рад}}{c}\right];
ω
b
                    – ширина сечения лопасти (хорда), [м];
                    - коэффициент крутящего момента от аэродинамических сил [1];
                    – удельная теплоемкость при постоянном давлении, \left[\frac{\Delta x}{x_0 V}\right];
C_{y}
                    - коэффициент силы тяги сечения лопасти [1];
                    – скорость течения газового потока, \begin{bmatrix} \frac{M}{c} \end{bmatrix};
С
```

```
d
                          – диаметр, [м];
                          – коэффициент трения, [1];
f
                          – массовый расход рабочего тела, \left\lceil \frac{\kappa \Gamma}{c} \right\rceil;
G
                          – пропускная способность турбины, \left[\frac{\kappa\Gamma}{c} \cdot K^{0,5} \cdot \frac{cM^2}{\kappa\Gamma c}\right];
Ā
                          – ускорение свободного падения, \left|\frac{M}{c^2}\right|;
g
                          – высота полета, [м];
Н
                          — низшая удельная теплотворная способность, \left| \frac{\mathcal{A}_{m}}{\mathcal{L}_{r}} \right|;
H_{\nu}
                          - момент инерции, [кг · м<sup>2</sup>];
Ι
i
                          – передаточное отношение, [1];
                          — удельная физическая энтальпия, \left[\frac{\mathcal{I}_{\kappa r}}{\kappa r}\right];
i
k
                          – показатель адиабаты, [1];
k_{\mu}
                          коэффициент идентификации, [1];
                          - линейное расстояние, [мм];
L
                          – удельная работа, \left[\frac{\mathcal{L}_{\kappa \Gamma}}{\kappa \Gamma}\right];
l
                          – число маха, [1];
Μ
                          – молярная масса, \left[\frac{\kappa \Gamma}{MOJIb}\right];
M_r
                          - крутящий момент, [кгс · м];
M_{\rm KD}
                          – масса, [кг];
m
N
                          – мощность, [Вт];
                          – скорость изменения частоты вращения, \left| \frac{paд}{c^2} \right|;
'n
                          - частота вращения, \left\lceil \frac{\text{об}}{\text{миц}} \right\rceil;
n
P

    физическое давление, [Па];

P^*
                          – давление торможения, [Па];
P_f
                          – сосредоточенная сила тяги лопасти, [кгс];
Pr
                          – значение функции приспособленности, [1];
P_{\text{цб}}
                          центробежная сила, [кгс];
```

```
– распределенная сила тяги лопасти, \left[\frac{\mathrm{Krc}}{\mathrm{cm}^2}\right];
p_f
                         - сосредоточенная сила сопротивления лопасти, [кгс];
Q_f
                        – удельное количество теплоты, \left[\frac{\mathcal{J}_{x}}{v_{r}}\right];
q
                        – распределенная сила сопротивления лопасти, \left[\frac{\kappa r c}{c m^2}\right];
q_f
                        – газовая постоянная, \left[\frac{\mathcal{L} \times}{\kappa_{\Gamma} \cdot \mathcal{K}}\right];
R
                        – универсальная газовая постоянная, \left[\frac{\mathcal{L}^{\mathsf{ж}}}{\mathsf{K}_{\mathsf{MOTE}}}\right];
R_0
                        – расстояние до центра тяжести, [м];
R_{\text{IIT}}
                        – число Рейнольдса, [1];
Re
                        – радиус, [м];
r
\bar{r}
                         – относительный радиус, [1];
                        – физическая температура, [К];
T
T^*
                         - температура торможения, [К];
T_{\rm R}
                         – тяга BB, [H];
                        − физическая температура, [°С];
t
                        – скорость полета, \left[\frac{M}{c}\right];
V
                        - линейное расстояние на оси X, [мм];
\chi
                        – линейное расстояние на оси Y, [мм];
y
Z
                         – количество лопастей воздушного винта, [1];
                        - линейное расстояние на оси Z, [мм].
Z
```

Индексы

0 – значение параметра по МСА; 1 - условный индекс начального состояния (сечения); 2 - условный индекс конечного состояния (сечения); Σ – суммарный; i – номер итерации; – максимальный; max min – минимальный; аэродинамический; аэр В - воздух; – ротор высокого давления; ВД BX– на входе в двигатель; Γ – газ; - задний винт; 3B ИСТ - истинная; кΣ - суммарная степень повышения давления компрессоров; - компрессор высокого давления; КВД - компрессор низкого давления; кнд КС - камера сгорания; лоп – лопасти; - механический; M – моделируемый (модельный); МОД – наружный; Η - между натурными двигателями; натурн – ротор низкого давления; ΗД - между осью комля лопасти и центром тяжести; ОКТ – отбор; отб – передний винт; ΠВ

– приведенный параметр;

пр

приб – приборная;

с – срез сопла или выходного устройства;

сеч – сечение лопасти;

стак – стакана;

т — топливо;

твв - турбина винтовентилятора;

твд - турбина высокого давления;

тд — между центром тяжести и центром давления;

тек.особи – текущей особи;

тж – между центром тяжести и центром жесткости;

тнд – турбина низкого давления;

тр – трения;

ут – уточненный;

– по центрам шаров в заделке;

цб – центробежный;

цд – центр давления;

цт – центр тяжести.

СПИСОК ЛИТЕРАТУРЫ

- 1 Кривошеев И.А. Стенды полунатурного моделирования ГТД и их САУ / И.А. Кривошеев, Д.А. Ахмедзянов, А.Г. Годованюк // Молодой ученый. 2011. Т.1. №3 (26). С. 39-41.
- 2 Блюмин К.В. Моделирование динамических процессов в системе управления авиационного двигателя / К.В. Блюмин // Вестник Самарского государственного аэрокосмического университета. 2012. № 3 (34). С. 75-80.
- 3 Куликов Г.Г. Методология полунатурного комплексного функционального моделирования ГТД и его систем / Г.Г. Куликов, В.Ю. Арьков, В.С. Фатиков, Г.И. Погорелов // Вестник Уфимского государственного авиационного технического университета. -2009. -T.13. -№2 (35). -C. 88-95.
- 4 Куликов Г.Г. Технология полунатурных испытаний интегрированных систем управления и контроля авиационных ГТД на основе иерархических распределенных марковских моделей // Авиационно-космическая техника и технология. -2007. -№9 (45). С. 153-157.
- 5 Куликов Г.Г. Методология комплексного полунатурного функционального моделирования ГТД и его систем / Г.Г. Куликов, В.Ю. Арьков, В.С. Фатиков, А.И. Абдулнагимов, Г.И. Погорелов // Вестник Самарского государственного аэрокосмического университета. 2009. № 3 (19). С. 392-400.
- 6 Ахмедзянов Д.А. Совместная работа авиационных газотурбинных двигателей и топливной автоматики на режимах разгона и торможения / Д.А. Ахмедзянов, И.А. Кривошеев, Р.А. Сунарчин. // Вестник Самарского государственного аэрокосмического университета. 2006. № 1. С. 24-25.
- 7 Кривошеев И.А. Метод формирования и использования моделей ГТД на различных этапах проектирования, доводки и эксплуатации / И.А. Кривошеев, О.Н. Иванова // Вестник Уфимского государственного авиационного технического университета. 2007. Т.9. №1 (19). С. 8-21.
- 8 Кривошеев И.А. Методы получения и использования характеристик узлов ГТД при имитационном моделировании / И.А. Кривошеев, О.Н. Иванова,

И.М. Горюнов // Вестник Уфимского государственного авиационного технического университета. -2006. - Т.7. - №3 (16). - С. 127-135.

9 Иванов А.В., Баранов В.В., Хилько В.И. Испытания воздушных винтов и их систем автоматического управления на стендах полунатурного моделирования // Вторые Колачёвские чтения: материалы Межвузовской молодежной научнопрактической конференции (Ступино, 8 апреля 2016 г.). — Ступино, 2016. — С. 54-56.

10 Баранов В.В., Хилько В.И., Данилихин А.М., Иванов А.В. Испытания воздушных винтов и их САУ на стендах полунатурного моделирования // Международный форум двигателестроения: сборник тезисов научно-технического конгресса по двигателестроению (НТКД-2016) (Москва, 19-21 апреля 2016 г.). — Москва, 2016. — С. 328-333.

11 Гуревич О.С. Управление авиационными газотурбинными двигателями: Учебное пособие / О.С. Гуревич. – М.: Изд-во МАИ, 2001. – 100 с.

12 Васильев С.Н. Интеллектуальные системы управления и контроля газотурбинных двигателей / под ред. академика С.Н. Васильева. – М. : Машиностроение, 2008. – 550 с.

13 Приложение Б к ТЗ №7541318.35.0045 на разработку блока управления и контроля модернизированной системы автоматического управления двигательной установкой ДУ-27 (Редакция 2) — ГП «Ивченко — Прогресс», ОАО «НПП «Аэросила», 2012.

14 Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок. Книга третья. Основные проблемы: начальный уровень проектирования, газодинамическая доводка, специальные характеристики и конверсия авиационных ГТД / Под общей редакцией В.В. Кулагина. – М.: Машиностроение, 2005. – С. 145-146.

15 Ахмедзянов Д.А. Неустановившиеся режимы работы авиационных ГТД / Д.А. Ахмедзянов // Вестник Уфимского государственного авиационного технического университета. – 2006. – Т.7. – №1 (14). – С. 36-46.

16 Ахмедзянов Д.А. Методология имитационного моделирования неустановившихся режимов работы авиационных ГТД / Д.А. Ахмедзянов, Е.С. Власова, А.Е. Кишалов // Вестник Самарского государственного аэрокосмического университета. – 2006. – № 2 (10). – С. 41-44.

17 Ахмедзянов Д.А. Расчетное исследование динамической характеристики одновального турбореактивного двигателя / Д.А. Ахмедзянов, Ю.М. Ахметов, А.Б. Козловская, А.Е. Михайлов // Вестник Уфимского государственного авиационного технического университета. — 2011. — Т.15. — №1 (41). — С. 15-25.

18 Приложение Д к ТЗ №7541318.35.0045 на разработку блока управления и контроля модернизированной системы автоматического управления двигательной установкой ДУ-27. Математическая модель двигательной установки Д-27. (Редакция 1) – ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко, ХАИ, 2003.

19 Погорелов Г.И. Моделирование работы ТВВД и построение подсистемы оптимизации эквивалентного удельного расхода топлива на стенде полунатурного моделирования / Г.И. Погорелов, И.А. Кривошеев, А.Г. Годованюк, О.Е. Данилин, Б.И. Бадамшин // Вестник Самарского государственного аэрокосмического университета. – 2011. – № 3 (27). – С. 217-226.

20 Кривошеев И.А. Развитие методов моделирования и автоматизированного проектирования газотурбинных двигателей / И.А. Кривошеев, Д.Г. Кожинов // Вестник Самарского государственного аэрокосмического университета. – 2014. – № 5 (47). – С. 9-18.

- 21 Добрянский Г.В. Динамика авиационных ГТД / Г.В. Добрянский, Т.С. Мартьянова. М. : Машиностроение, 1989. 240 с.
- 22 Гуревич О.С. Системы автоматического управления авиационными ГТД: Энциклопедический справочник / Под ред. д.т.н., проф. О.С. Гуревича. М. : ТОРУС ПРЕСС, 2011. С. 153-160.
- 23 Агульник А.Б. Термогазодинамические расчеты и расчет характеристик авиационных ГТД: Учебное пособие / А.Б. Агульник, В.И. Бакулев, В.А. Голубев, И.В. Кравченко, Б.А. Крылов; под ред. В.И. Бакулева. М.: Изд-во МАИ, 2002. 256 с.

- 24 Гольберг Ф.Д. Математическая модель двигателя в САУ ГТД для повышения надежности и качества управления / Ф.Д. Гольберг, О.С. Гуревич, А.А. Петухов // Электронный журнал «Труды МАИ». 2012. № 58. С. 1-13.
- 25 Новиков А.М. Методология научного исследования / А.М. Новиков, Д.А. Новиков. М. : Либроком, 2010. 280 с.

26 Научно-технический отчет № 271.100.050.2014 «Разработка поэлементной нелинейной термодинамической математической модели турбовинтовентиляторного двигателя Д-27. Реализация поэлементной нелинейной термодинамической модели турбовинтовентиляторного двигателя Д-27 в среде NI LabVIEW 7.1». – ОАО «НПП «Аэросила», 2014.

27 Баранов В.В., Хилько В.И., Данилихин А.М., Иванов А.В. Математическое моделирование турбовинтового двигателя при испытаниях воздушных винтов и регуляторов на стенде полунатурного моделирования // Академические жуковские чтения: тезисы докл. II Всероссийской научно-практической конференции (Воронеж, 25-27 ноября 2014 г.). – Воронеж, 2014.

28 Баранов В.В., Хилько В.И., Данилихин А.М., Иванов А.В. Математическое моделирование турбовинтового двигателя при испытаниях воздушных винтов на стенде полунатурного моделирования // Первые Колачёвские чтения: материалы Межвузовской молодежной научно-практической конференции (Ступино, 3 апреля 2015 г.). – Ступино, 2015. – С. 46-48.

29 Баранов В.В., Бабин С.В., Хилько В.И., Данилихин А.М., Иванов А.В. Математическое моделирование при испытаниях воздушных винтов и регуляторов на стенде полунатурного моделирования // XLI Гагаринские чтения: научные труды Международной молодежной научной конференции (Москва, 7-9 апреля 2015 г.). – Москва, 2015. – Т.2. – С. 117-119.

30 Иванов А.В., Баранов В.В., Хилько В.И., Данилихин А.М. Математическое моделирование турбовинтовентиляторного двигателя при испытаниях воздушных винтов и регуляторов на стенде полунатурного моделирования // Авиация и космонавтика — 2015: тезисы 14-ой Международной конференции (Москва, 16-20 ноября 2015 г.). — Москва, 2015. — С. 110-112.

- 31 Иванов А.В., Баранов В.В., Хилько В.И., Данилихин А.М. Математическое моделирование турбовинтового двигателя при испытаниях воздушных винтов и регуляторов на стенде полунатурного моделирования // Авиадвигатели XXI века: сборник тезисов докладов Всероссийской научно-технической конференции (Москва, 24-27 ноября 2015 г.). Москва, 2015. С. 867-870.
- 32 Иванов А.В. Математическое моделирование ТВВД при испытаниях соосного винтовентилятора совместно с САУ на стенде полунатурного моделирования / А.В. Иванов, А.М. Данилихин, В.В. Баранов, В.И. Хилько // Вестник Уфимского государственного авиационного технического университета. 2016. Т.20. №3 (73). С. 89-94.
- 33 Иванов А.В. Применение нелинейной математической модели двигателя на стенде полунатурного моделирования при испытаниях воздушных винтов совместно с системой автоматического управления / А.В. Иванов, А.М. Данилихин, В.В. Баранов // Известия высших учебных заведений. Авиационная техника. − 2018. − №1. − С. 4-9.
- 34 Иванов А.В. Имитационное моделирование турбовинтовой силовой установки в практике разработки САУ НПП «Аэросила» // Международный форум двигателестроения: сборник тезисов научно-технического конгресса по двигателестроению (НТКД-2018) (Москва, 4-6 апреля 2018 г.). Москва, 2018. Т.2. С. 88-90.
- 35 LabVIEW System Design Software [электронный ресурс] / Официальный сайт компании National Instruments. Режим доступа: http://www.ni.com/labview/свободный.
- 36 Что такое LabView? [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/products/articles/310/1703/ свободный.
- 37 Автоматизированный стенд для статических, усталостных, ресурсных испытаний [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item2294/ свободный.

- 38 Информационно-измерительная система экспериментального стенда с турбинным приводом для исследования активных комбинированных опор роторов [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item3383/ свободный.
- 39 Автоматизированная информационно-измерительная система испытания элементов авиационной техники на удар посторонними предметами на базе продуктов компании National Instruments [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item3259/ свободный.
- 40 Система измерений при испытаниях частей заправки ракетного топлива [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item3140/ свободный.
- 41 Автоматизация отработки рулевых приводов летательных аппаратов [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item3139/ свободный.
- 42 К-5101. Виброизмерительный комплекс [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item3228/ свободный.
- 43 Статическое запоминающее устройство для жестких условий эксплуатации при отработке летательных аппаратов [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item3135/ свободный.
- 44 Автоматизированный комплекс управления аэродинамической трубой аппаратов [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item2298/ свободный.
- 45 Автоматизированный комплекс для теплопрочностных испытаний [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item2295/свободный.

- 46 Автоматизация стендовых испытаний электрооборудования самолета [электронный ресурс] / Официальный компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item2100/свободный.
- 47 Самолет лаборатория АН-30 «ОПТИК Э» [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item1594/ свободный.
- 48 Система контроля сил для испытаний авиационных конструкций [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item1435/ свободный.
- 49 Автоматизированный комплекс для измерения аэродинамических характеристик в трубе Т-1К КГТУ им. А.Н.Туполева [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item1427/ свободный.
- 50 Кривошеев И.А. Методика представления и использования многомерной характеристики винтовентилятора при автоматизированном проектировании ГТД и его САУ / И.А. Кривошеев, Г.И. Погорелов, В.С. Фатиков, А.Г. Годованюк // Вестник Уфимского государственного авиационного технического университета. 2009. Т.13. №1 (34). С. 3-8.
- 51 Ахмедзянов Д.А. Автоматизация процесса испытания авиационных ГТД на базе SCADA-системы LabView / Д.А. Ахмедзянов, Р.Р. Ямалиев, А.Е. Кишалов, А.В. Суханов // Вестник Уфимского государственного авиационного технического университета. 2009. Т.13. №2 (35). С. 61-68.
- 52 Головина Н.Я. Автоматизация стендовых испытаний ГТД / Н.Я. Головина // Новые информационные технологии в нефтегазовой отрасли и образовании. 2012. 01-02 ноября. С. 93-96.
- 53 Кривошеев И.А. Использование моделей ГТД в составе адаптивных отказоустойчивых систем управления и контроля / И.А. Кривошеев, А.Г. Годованюк // Вестник Уфимского государственного авиационного технического университета. 2010. Т.14. №5 (40). С. 10-14.

- 54 Медяков О.Е. Контроль кондиционности измерений при стендовых испытаниях опытных авиационных двигателей с применением информационно-измерительной системы / О.Е. Медяков // Вестник Московского авиационного института. 2012. Т.19. №4. С. 86-93.
- 55 Ившин И.В. Диагностический комплекс и метод вынужденных колебаний для определения технического состояния рабочих лопаток турбин газотурбинных двигателей энергетических установок / И.В. Ившин, А.Р. Сабиров, В.А. Гаврилов, Ю.В. Ваньков // Известия высших учебных заведений. Проблемы энергетики. − 2007. №11-12. –С. 133-136.
- 56 АСУТП стенда испытания вертолетных двигателей [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item2291/ свободный.
- 57 Автоматизированный стенд для исследования параметров турбореактивного двигателя ТЈ-100 [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item1417/ свободный.
- 58 Применение аппаратуры NATIONAL INSTRUMENTS для достоверной оценки теплового состояния рабочих лопаток ГТД [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item2289/ свободный.
- 59 Разработка имитатора паровой турбины для отладки системы управления [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/174/item1613/ свободный.
- 60 Модальный анализ лопаток и дисков паровых турбин [электронный ресурс] / Официальный сайт компании National Instruments в России. Режим доступа: http://www.labview.ru/solutions/172/item3244/ свободный.
- 61 Александров В.Л. Воздушные винты: Учеб. пособие для авиационных вузов. М. : Оборонгиз, 1951. 475 с.

- 62 Годованюк А.Г. Методика представления и использования характеристик соосного винтовентилятора при полунатурном моделировании ТВВД: дис. канд. техн. наук: 05.07.05 / Годованюк Алексей Геннадьевич. Уфа, 2011. 175 с.
- 63 Кривошеев И.А. Методика представления и использования многомерной характеристики винтовентилятора при полунатурном моделировании ГТД и его САУ / И.А. Кривошеев, А.Г. Годованюк, В.С. Фатиков, Г.И. Погорелов // Известия высших учебных заведений. Авиационная техника. 2010. №1. С. 37-40.
- 64 Приложение Е к ТЗ на ЭСУ-27М. Математическая модель модернизированных винтовентилятора СВ27.02 и регулятора РСВ-27.01. ОАО «НПП «Аэросила», 2011 г.
- 65 Майкапар Г.И. Сборник работ по теории воздушных винтов / Отв. редактор Г.И. Майкапар. Жуковский: Бюро Научной Информации ЦАГИ, $1958.-453~\mathrm{c}.$
- 66 Технический отчет № 171.021.91 «Метод и программа поверочного аэродинамического расчета» ОАО «НПП «Аэросила», 1991.
- 67 GasTurb [электронный ресурс] / Официальный сайт. Режим доступа: http://www.gasturb.de свободный.
- 68 Gas turbine Simulation Program [электронный ресурс] / Официальный сайт. Режим доступа: http://www.gspteam.com/about.html свободный.
- 69 Голланд А.Б. Программный комплекс ГРАД для расчета газотурбинных двигателей / А.Б. Голланд, С.А. Морозов, А.П. Тунаков и др. // Известия высших учебных заведений. Авиационная техника. 1985. №1. С. 83-85.
- 70 Автоматизированная система газодинамического расчета энергетических турбомашин АС ГРЭТ [электронный ресурс] / Официальный сайт. Режим доступа: http://www.asgret.ru/ru/history свободный.
- 71 Кузьмичев В.С. Формирование виртуальных моделей рабочего процесса ГТД различных типов и схем в САЕ-системе АСТРА: электронные методические указания / В.С. Кузьмичев, В.В. Кулагин, А.Ю. Ткаченко, В.Н. Рыбаков,

И.Н. Крупенич. – Самара : Самарский государственный аэрокосмический университет, 2011. – 18 с.

72 Крупенич И.Н. Автоматизированная система термогазодинамического расчета и анализа газотурбинных двигателей / И.Н. Крупенич, В.С. Кузьмичев, В.В. Кулагин, А.Ю. Ткаченко. — Самара : Самарский государственный аэрокосмический университет, 2006. — 7 с.

73 Системы автоматического управления (САУ) [электронный ресурс] / Официальный сайт ЦИАМ. – Режим доступа: http://www.ciam.ru свободный.

74 Гольберг Ф.Д. Математические модели газотурбинных двигателей как объектов управления: Учебное пособие / Ф.Д. Гольберг, А.В. Батенин. – М. : Изд-во МАИ, 1999. – 80 с.

75 Кривошеев И.А. Имитационное моделирование работы авиационных ГТД с элементами систем управления / И.А. Кривошеев, Д.А. Ахмедзянов, А.Е. Кишалов // Вестник Уфимского государственного авиационного технического университета. – 2008. – Т.11. – №2 (29). – С. 3-11.

76 Ахмедзянов Д.А. Моделирование совместной работы авиационных ГТД и элементов топливной автоматики на переходных режимах в компьютерной среде DVIGw / Д. А. Ахмедзянов, Х. С. Гумеров, И. А. Кривошеев // Известия высших учебных заведений. Авиационная техника. – 2002. – №1. – С.43–46.

77 Ахмедзянов Д.А. Методы и средства имитационного моделирования работы авиационных ГТД с элементами систем управления и контроля / Д.А. Ахмедзянов // Альманах современной науки и образования — 2008. — №7 (14). — С.7—9.

78 Ахмедзянов Д.А. Математические модели авиационных двигателей произвольных схем (компьютерная среда DVIG): Учебное пособие / Д.А. Ахмедзянов и др.; под редакцией А.М. Ахмедзянова. – Уфа : УГАТУ, 1998. – 128 с.

79 Горюнов И.М. Термогазодинамические расчеты ГТД и теплоэнергетических установок с использованием системы DVIGwT

- / И.М. Горюнов // Вестник Уфимского государственного авиационного технического университета. -2006. Т.7. №1 (14). С. 61-70.
- 80 Технический отчет № 118/89-27 «Программа и методика расчета газотермодинамических параметров изделия «27» на установившихся и неустановившихся режимах работы» ЗМКБ «Прогресс» им. А.Г. Ивченко, 1989.
- 81 Факс № 330/3485 от 26.06.2013. Зам. Генерального директора Главному конструктору по AB и BП ОАО «НПП «Аэросила» М.И. Шатланову от Зам. Генерального директора по общим вопросам ОАО «УНПП «Молния» Г.И. Погорелова. Дроссельные характеристики двигателя Д-27.
- 82 Технический отчет № 199/2001 27, редакция 1 «Двигатель Д-27 турбовинтовентиляторный. Высотно-скоростные характеристики (экспериментально-расчетные)» ЗМКБ «Прогресс» им. А.Г. Ивченко, 2002.
- 83 Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок. Книга первая. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Книга вторая. Основы теории ГТД. Совместная работа узлов выполненного двигателя и его характеристики / В.В. Кулагин 2-е издание, исправленное. М.: Машиностроение, 2003. С. 365-374.
- 84 Булавкин А.А. Приведение к стандартным атмосферным условиям параметров ГТД и расчет их полетных характеристик: Монография / А.А. Булавкин. Казань : Изд-во КГТУ, 2002. 92 с.
- 85 Ахмедзянов Д.А. О возможности учета неравномерного распределения топлива по топливному коллектору при моделировании рабочих процессов ГТД / Д.А. Ахмедзянов, Ю.М. Ахметов, А.Е. Михайлов // Альманах современной науки и образования 2009. –№6 (25). С.10–12.
- 86 Гусев Ю.М. Решение задачи оптимизации удельного расхода топлива ТВВД на основе интеллектуальных методов управления и анализ полученных результатов / Ю.М. Гусев, О.Е. Данилин, Б.И. Бадамшин // Вестник Уфимского государственного авиационного технического университета. 2010. Т.14. №2 (37). С. 136-145.

87 Гусев Ю.М. Система автоматического управления ТВВД с оптимизацией удельного расхода топлива / Ю.М. Гусев, О.Е. Данилин, Б.И. Бадамшин // Вестник Уфимского государственного авиационного технического университета. – 2011. – Т.15. –№5 (45). – С. 12-21.

88 Гусев Ю.М. Подстроечная идентификация математической модели ТВВД с использованием генетических алгоритмов в методе оптимизации удельного расхода топлива / Ю.М. Гусев, О.Е. Данилин, Б.И. Бадамшин // Вестник Ижевского государственного технического университета. − 2011. − №2 (50). − С. 173-176.

89 Белоусов А.И. Синтез конструктивно-силовой схемы авиационного ГТД на основе генетического алгоритма / А.И. Белоусов, А.Ю. Сапожников // Известия высших учебных заведений. Авиационная техника. – 2015. – №2. – С. 60-64.

90 Васильев В.И. Проектирование интеллектуальных систем управления ГТД на основе принципа минимальной сложности / В.И. Васильев, С.С. Валеев // Вестник Уфимского государственного авиационного технического университета. — 2007. — Т.9. — №2 (20). — С. 32-41.

91 Костюк В.Е. Совершенствование гидравлических характеристик камеры сгорания ГТД методами вычислительной аэрогидродинамики и оптимизации / В.Е. Костюк, Е.И. Кирилаш // Вестник НТУ «ХПИ». Энергетические и теплотехнические процессы и оборудование. — 2011. — №6. — С. 60-68.

92 Рутковская Д. Нейронные сети, генетические алгоритмы и нечеткие системы / Д. Рутковская, М. Пилиньский, Л. Рутковский.; пер. с польск. И.Д. Рудинского. – М.: Горячая линия – Телеком, 2006. – 452 с.

93 Панченко Т.В. Генетические алгоритмы: учебное пособие / под ред. Ю.Ю. Тарасевича. — Астрахань: Издательский дом «Астраханский университет», 2007. — 87 с.

94 Иванов А.В. Исследование применения генетического алгоритма при моделировании турбовинтового двигателя / А.В. Иванов // Вестник Московского авиационного института. – 2016. – Т.23. – №4. – С. 79-85.

95 Технический отчет № 116.060.013.2017 «Реализация математической модели силовой установки легкого военно-транспортного самолета Ил-112В в среде программирования LabView» – ОАО «НПП «Аэросила», 2017.

96 Протокол «Подтверждение статических и динамических характеристик двигателя ТВ7-117СТ в математической модели силовой установки ЛВТС Ил-112В, разработанной ОАО «НПП «Аэросила», после проведения уточняющих мероприятий в части характеристик осевого и центробежного компрессоров» – АО «Климов», 2017.

97 Технический отчет № 116.060.031.2017 «Определение реверсирующих свойств воздушного винта AB112 при активном неуправляемом реверсе» — ОАО «НПП «Аэросила», 2017.

98 Технический отчет № 116.060.035.2017 «Определение приборной скорости самолета Ил-112В, ограничивающей реверсирующие свойства винта АВ112, в момент снятия с промежуточного упора» – ПАО «НПП «Аэросила», 2017.

приложение а

(обязательное)

Характеристики узлов двигателя Д-27

Таблица А.1 – Характеристика КНД ТВВД Д-27

$n_{\rm HJ, \Pi p} = 5109, \frac{\rm o6}{\rm MuH}$		
кг мин		
$G_{\text{в.кнд.пр}}, {c}$	$\pi^*_{\scriptscriptstyle ext{KHZ}}$	$\eta_{ ext{ iny KHZ}}$
4,808	1,281	0,6256
5,289	1,28	0,6769
5,77	1,26	0,7036
6,251	1,22	0,7128
6,54	1,19	0,7046
6,924	1,15	0,6666
$n_{\rm HД.пр} =$: 5839. -	об
5,77	1,346	ин 0,6769
6,251	1,345	0,723
6,924	1,318	0,7374
7,405	1,265	0,72
7,886	1,2	0,6666
	,	об
$n_{\rm Hд.пp} =$: 6569, -	ин
6,732	1,421	0,6974
7,405	1,42	0,7425
7,694	1,41	0,7477
7,982	1,39	0,7446
8,463	1,342	0,721
8,751	1,305	0,6872
$n_{\rm HД.пр} =$	7299, –	об
8,271	1,52	0,7405
8,655	1,512	0,7569
8,848	1,5	0,7595
9,04	1,487	0,7591
9,425	1,449	0,7499
9,809	1,4	0,7272
$n_{\scriptscriptstyle \mathrm{HJ.np}} =$	0000	
9,425	1,68	<u>ин</u> 0 7477
9,423	1,664	0,7477 0,7602
10,194	1,63	0,7602
10,194	1,607	0,761
10,380	1,557	0,7548
11,156	1,499	0,7348
11,130	,	об об
$n_{\rm HJRIP} = 8759, {\rm MUH}$		
10,386	1,872	0,7414
10,963	1,853	0,7618
11,348	1,812	0,7713
11,733	1,76	0,7748
12,117	1,714	0,7727
12,502	1,645	0,7673

$n_{\rm HJ.пp} = 9489, \frac{{ m of}}{{ m мин}}$		
п _{нд.пр} — 9409, мин		
$G_{\text{в.кнд.пр}}, \frac{\kappa_1}{c}$	$\pi^*_{\scriptscriptstyle ext{KHZ}}$	$\eta_{ ext{ iny KHZ}}$
11,54	2,103	0,7398
12,117	2,087	0,7602
12,502	2,061	0,7703
12,887	2,016	0,7812
13,271	1,966	0,7948
13,656	1,905	0,8007
13,848	1,868	0,7989
14,233	1,76	0,7823
11,233	1,70	об
$n_{\scriptscriptstyle \mathrm{HJ.np}} =$	10220,	мин
13,079	2,375	0,7456
13,656	2,368	0,7682
14,041	2,34	0,7897
14,425	2,305	0,8096
14,81	2,255	0,8225
15,195	2,18	0,8287
15,387	2,132	0,8277
15,772	1,973	0,804
		об
$n_{\rm Hд.пp} =$	10950,	мин
15,387	2,724	0,7978
15,58	2,718	0,8092
15,964	2,696	0,8291
16,349	2,65	0,8438
16,734	2,54	0,8467
17,118	2,39	0,8403
17,593	2,165	0,8132
	11670	об
$n_{\scriptscriptstyle \mathrm{HJ.\Pi p}} =$		мин
17,311	3,149	0,8195
17,695	3,123	0,837
18,08	3,053	0,8494
18,465	2,909	0,8546
18,849	2,704	0,8494
19,042	2,568	0,8401
19,234	2,384	0,8185
$n_{\rm HJ, \pi p} = 12408, \frac{\rm of}{\rm MHH}$		
19,042	3,63	мин 0,813
19,234	3,62	0,8231
19,619	3,59	0,8424
20,003	3,51	0,8568
20,388	3,325	0,8643
20,773	2,99	0,856
20,965	2,72	0,8348
21,032	2,43	0,7752
-1,002	,	0,

n — 13138 <u>об</u>		
$n_{\rm HJ, np} = 13138, \frac{{ m o}}{{ m MUH}}$		
$G_{\text{в.кнд.пр}}, \frac{\text{кг}}{C}$	$\pi^*_{\scriptscriptstyle ext{KHZ}}$	$\eta_{ ext{ iny KHZ}}$
23,081	4,52	0,8275
23,465	4,49	0,8454
23,403	4,44	0,8605
24,235	4,34	0,8003
24,233		
	4,15	0,883
24,812	4	0,8849
25,1	3,74	0,881
25,293	3,49	0,8728
25,418	3,26	0,8552
25,437	3,035	0,8174
$n_{\rm HZ.\pi p} =$	13868,-	об
28,274		мин 0,8449
	5,71	
28,659 28,851	5,7	0,8589 0,8656
	5,687	0,8656
29,236	5,626	
29,62	5,462	0,8902
29,909	5,176	0,898
30,101	4,91	0,8995
30,294	4,63	0,8967
30,486	4,29	0,8876
30,553	4,036	0,871
30,576	3,67	0,8261
$n_{\rm HZ.\pi p} =$	14598,	об
34,429	7,199	мин 0,8559
34,814	7,19	0,8671
35,391	6,97	0,8854
35,45	6,69	0,8896
35,468	6,397	0,8890
35,408		0,891
	6,203	
35,481	5,945	0,8888
35,487 35,491	5,635	0,884
35,491	5,33 5,1	0,8763 0,8683
33,493	3,1	об
$n_{\scriptscriptstyle \mathrm{HД.пp}} =$	15328,	
36,4	7,94	мин 0,806
36,593	7,92	0,8168
36,665	7,83	0,826
36,679	7,67	0,8389
36,689	7,42	0,8512
36,691	7,187	0,8555
36,692	6,9	0,8579
36,693	6,67	0,8579
36,694	6,46	0,8573
36,695	6,2 5,9	0,8545 0,8489
36,6955		
36,697	5,68	0,8424

Таблица А.2 – Характеристика КВД ТВВД Д-27

об		
$n_{\scriptscriptstyle ext{BД.пр}}$	$=100, \frac{0}{MI}$	ин
$G_{\scriptscriptstyle ext{В.Пр.КВД}}, rac{K\Gamma}{C}$ $\pi^*_{\scriptscriptstyle ext{KВД}}$ $\eta_{\scriptscriptstyle ext{КВД}}$		
0,001	7 квд 1	0,0908
0,019	0,998	0,1413
0,038	0,995	0,1918
0,056	0,99	0,2574
0,075	0,985	0,2675
0,151	0,98	0,2857
0,282	0,975	0,2927
0,377	0,95	0,2826
0,565	0,9	0,2423
0,753	0,775	0,1968
0,941	0,6	0,1514
1,13	0,4	0,111
$n_{\scriptscriptstyle \mathrm{B}\mathrm{\mathcal{I}}.\mathrm{п}\mathrm{p}}$	$= 5530, \frac{0}{M}$	ин
0,998	1,343	0,5693
1,13	1,342	0,6016
1,318	1,341	0,6309
1,506	1,34	0,639
1,695	1,31	0,6299
1,883	1,25	0,5834
1,977	1,2	0,54
2,052	1,11	0,4946
2,071	1	0,4815
2,076	0,8	0,4542
2,08	0,6	0,429
2,09	0,4	0,3957
$n_{\scriptscriptstyle ext{вд.пр}}$	= 7900 -	об ин
1,883	1,674	0,753
2,071	1,673	0,7671
2,259	1,672	0,7803
2,391	1,671	0,7894
2,448	1,67	0,7914
2,542	1,665	0,7883
2,636	1,653	0,7853
2,787	1,624	0,7651
2,824	1,615	0,7591
2,871	1,56	0,7369
2,89	1,52	0,6955
2,918	1,39	0,648
2,928	1,3	0,6157
2,937	1,2	0,5855
2,956	1,1	0,5501
$n_{\scriptscriptstyle ext{B},\Pi,\Pi}$	= 9480	об
2,542	2,033	ин 0,7782
2,824	2,033	0,7762
3,012	2,032	0,8095
3,201	2,023	0,8229
3,314	2,017	0,8257
3,389	2,004	0,8247
3,483	1,98	0,8196
3,577	1,933	0,81
3,634	1,85	0,7999
3,671	1,63	0,7894
3,672	1,63	0,7237
3,674	1,55	0,6662
3,676	1,4	0,6258

л – 11060 ^{об}			
л _{вд.пр} -	$n_{\scriptscriptstyle \mathrm{B}\mathrm{\mathcal{I}},\mathrm{\Pi}\mathrm{p}}=11060, rac{\mathrm{o}\mathrm{f}}{\mathrm{м}\mathrm{u}\mathrm{H}}$		
$G_{\text{в.пр.квд}}, \frac{\kappa \Gamma}{C}$	$\pi^*_{\scriptscriptstyle ext{KB} ext{ iny L}}$	$\eta_{\scriptscriptstyle ext{ t KB} ext{ t J}}$	
3,577	2,587	0,8126	
3,766	2,585	0,8312	
3,954	2,57	0,8449	
4,142	2,534	0,8533	
4,236	2,506	0,855	
4,33	2,464	0,8506	
4,368	2.415	0,8459	
4,406	2,31	0,8378	
4,425	2,2	0,8328	
4,426	1,87	0,7702	
4,4265	1,76	0,6864	
4,428	1,5	0,6561	
$n_{\scriptscriptstyle ext{вд.пр}}$ =	= 12640, -	иин	
4,293	3,328	0,8123	
4,519	3,318	0,8343	
4,707	3,286	0,8479	
4,895	3,236	0,858	
5,008	3,2	0,8624	
5,084	3,155	0,864	
5,14	3,116	0,862	
5,215	3,027	0,855	
5,253	2,91	0,8469	
5,272	2,65	0,8408	
5,273	2,3	0,747	
5,274	2	0,7369	
5,275	1,74	0,6763	
n _{вд.пр} =	= 13430, -	<u>об</u>	
5,084	3,82	0,8292	
5,272	3,8	0,8439	
5,46	3,77	0,856	
5,648	3,72	0,864	
5,743	3,67	0,8661	
5,799	3,63	0,8645	
5,874	3,56	0,859	
5,931	3,49	0,8529	
5,984	3,25	0,8398	
5,9845	2,8	0.7671	
5,985	2,3	0,7268	
5,986	1,92	0,6864	
	= 14220,	об	
	ľ	иин	
5,272	4,41	0,8005	
5,743	4,407	0,8251	
5,968	4,403	0,8414	
6,213	4,372	0,8557	
6,402	4,3	0,8634	
6,496	4,25	0,8661	
6,59	4,174	0,8671	
6,684	4,1	0,864	
6,74	4,05	0,86	
6,778	4	0,858	
6,872	3,7	0,8338	
6,873	3,22	0,8105	
6,874	2,75	0,6844	

26		
$n_{_{ m BД,пр}} = 14615, \frac{{ m o}6}{{ m мин}}$		
$G_{\text{в.пр.квд}}, \frac{\kappa \Gamma}{c}$	$\pi^*_{\scriptscriptstyle ext{KB} ext{ iny }}$	$\eta_{{}_{\mathrm{KBJ}}}$
5,837	4,752	0,8035
6,119	4,751	0,8252
6,307	4,75	0,8388
6,496	4,73	0,8503
6,684	4,676	0,859
6,872	4,58	0,8648
6,966	4,52	0,8661
7,06	4,44	0,8636
7,155	4,345	0,857
7,211	4,2	0,8509
7,249	3,9	0,8338
7,258		-
	3,56	0,8156
7,268		0,6864 об
п _{вд.пр} =	= 15010,	мин
6,402	5,12	0,8146
6,59	5,119	0,8295
6,74	5,118	0,8393
6,912	5,076	0,8484
7,155	5,012	0,8585
7,343	4,904	0,863
7,437	4,835	0,8616
7,531	4,75	0,8575
7,625	4,6	0,8489
7,672	4,46	0,8398
7,673	4,2	0,8156
7,674	3,93	0,7772
7,675	3,65	0,7268
7,676	3,28	0,6864
n _{n, m} =	= 15405,	об
- БД.ПР	- ' ' ' I	иин
6,59	5,5	0,8025
6,872	5,499	0,8199
7,117	5,498	0,8345
7,324	5,47	0,8459
7,531	5,382	0,8544
7,719	5,265	0,859
7,814	5,195	0,86
7,908	5,115	0,8582
8,002	5,02	0,854
8,096	4,79	0,8408
8,097	4,25	0,8146
8,098	3,9	0,7571
8,099	3,5	0,6864
n _{вд.пр} =	= 15800, ,	об
7,249	5,915	иин 0,8065
7,625	5,913	0,8301
7,814	5,896	0,8391
8,096	5,890	0,8509
8,247	5,7	0,8552
8,341	5,63	0,8562
8,435	5,55	0,855
8,433	5,455	0,855
		0,8314
8,604	5,355 5,2	
8,661		0,8338
8,662	4,95	0,8277
8,663	4,4	0,7572
8,664	4	0,6803

$n_{\scriptscriptstyle \mathrm{B}\mathrm{J}.\mathrm{n}\mathrm{p}}=16116, rac{\mathrm{o}\mathrm{f}}{\mathrm{м}\mathrm{u}\mathrm{H}}$		
КГ		
$G_{\text{в.пр.квд}}, \frac{1}{c}$	$\pi^*_{\scriptscriptstyle ext{KB},\!$	$\eta_{{}_{\mathrm{KB}\mathtt{J}}}$
7,625	6,22	0,8116
7,87	6,21	0,8263
8,021	6,19	0,8342
8,247	6,1	0,8447
8,435	5,97	0,8504
8,529	5,89	0,8515
8,604	5,817	0,8509
8,68	5,725	0,8489
8,755	5,6	0,8439
8,756	5,3	0,8277
8,757	4,98	0,8095
8,758	4,5	0,7571
8,759	4,05	0,6834
n =	= 16590,-	об
n _{вд.пр} =	· N	иин
7,719	6,641	0,783
7,943	6,64	0,8008
8,115	6,639	0,8108
8,284	6,618	0,8206
8,529	6,5	0,8307
8,699	6,34	0,8358
8,774	6,255	0,8368
8,849	6,155	0,8358
8,906	5,95	0,8307
8,907	5,85	0,8126
8,908	5,75	0,7823
8,909	5,65	0,7253

Таблица А.3 – Характеристика ТВД ТВВД Д-27

$\bar{G}_{\Gamma, \text{TBД}}, \frac{\text{K}\Gamma}{\text{C}} \cdot \text{K}^{0,5} \cdot \frac{\text{CM}^2}{\text{K}\Gamma\text{C}}$	$\pi^*_{\scriptscriptstyle ext{TB}oldsymbol{oldsymbol{oldsymbol{TB}}}$	$\eta_{\scriptscriptstyle \mathrm{TB} \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
39,755	1,32	0,8242
40,742	1,37	0,8466
41,909	1,45	0,8639
42,896	1,55	0,8731
43,703	1,65	0,8767
44,242	1,8	0,8792
44,376	2	0,8782
44,376	2,2	0,8762
44,376	2,5	0,8721
44,376	2,8	0,868

Таблица А.4 — Характеристика ТНД ТВВД Д-27

$\bar{G}_{\Gamma, \text{THZ}}, \frac{\text{K}\Gamma}{\text{C}} \cdot \text{K}^{0,5} \cdot \frac{\text{CM}^2}{\text{K}\Gamma\text{C}}$	$\pi^*_{\scriptscriptstyle \mathrm{THД}}$	$\eta_{ ext{ iny THZ}}$
84,139	1,2	0,9064
96,832	1,3	0,9059
103,541	1,4	0,9054
108,219	1,5	0,9049
111,308	1,6	0,9046
113,603	1,7	0,9043
114,928	1,8	0,9039
115,81	1,9	0,9034
116,119	2	0,9024
116,163	2,1	0,9014
116,163	2,2	0,899

Таблица A.5 – Характеристика ТВВ ТВВД Д-27

$n_{\text{\tiny TBB}} = 165,5,\frac{06}{-}$				
$\bar{G}_{\Gamma,TBB}$, $\frac{K\Gamma}{}$ · $K^{0,5}$ · $\frac{CM^2}{}$	C			
$\bar{G}_{\Gamma.TBB}, \frac{1}{C} \cdot K^{0,5} \cdot \frac{1}{K\Gamma C}$	$\pi^*_{\scriptscriptstyle exttt{TBB}}$	$\eta_{{}_{\mathrm{TBB}}}$		
46,755	1,18	0,187		
74,808	1,3	0,31		
119,225	1,5	0,5184		
156,629	1,7	0,7522		
185,15	2	0,864		
197,306	2,4	0,8833		
206,657	3	0,8884		
210,397	4	0,8803		
211,8	5	0,8701		
211,987	6	0,8539		
212,174	6,6 об	0,8437		
$n_{\text{\tiny TBB}} = 191$	$1, \frac{00}{c}$			
39,742	1,2	0,1586		
104,264	1,5	0,3903		
155,694	1,8	0,6282		
176,734	2	0,7858		
187,02	2,2	0,86		
192,864	2,4	0,8894		
201,046	2,88	0,9128		
205,722	3,4	0,926		
208,294	4,2	0,9311		
209,462	4,9	0,9291		
209,93	5,7	0,9209		
210,117	6,6	0,9108		
об				
$n_{\scriptscriptstyle \mathrm{TBB}} = 213$	3, 			
32,729	1,2	0,122		
85,094	1,5	0,3171		
131,382	1,8	0,5103		
157,564	2	0,6363		
178,604	2,2	0,7766		
186,552	2,4	0,8417		
194,968	2,8	0,8905		
201,28	3,4	0,9209		
205,254	4,2	0,9372		
207,125	4,9	0,9423		
207,592	5,7	0,9403		
207,686	6,6	0,9301		
	ინ	5,2501		
$n_{\text{\tiny TBB}} = 229$	9, _			
28,754	1,2	0,0935		
28,754 76,711	1,2 1,5	0,0935 0,2572		
76,711	1,5	0,2572		
76,711 120,16	1,5 1,8	0,2572 0,4147		
76,711 120,16 146,811	1,5 1,8 2	0,2572 0,4147 0,5286		
76,711 120,16 146,811 168,318 182,111	1,5 1,8 2 2,2	0,2572 0,4147 0,5286 0,6302		
76,711 120,16 146,811 168,318 182,111 191,695	1,5 1,8 2 2,2 2,4	0,2572 0,4147 0,5286 0,6302 0,741		
76,711 120,16 146,811 168,318 182,111	1,5 1,8 2 2,2 2,4 2,8	0,2572 0,4147 0,5286 0,6302 0,741 0,86		
76,711 120,16 146,811 168,318 182,111 191,695 198,709 202,917	1,5 1,8 2 2,2 2,4 2,8 3,4 4,2	0,2572 0,4147 0,5286 0,6302 0,741 0,86 0,9057		
76,711 120,16 146,811 168,318 182,111 191,695 198,709	1,5 1,8 2 2,2 2,4 2,8 3,4	0,2572 0,4147 0,5286 0,6302 0,741 0,86 0,9057 0,9311		

$n_{\text{\tiny TBB}} = 249, \frac{\text{of}}{\text{c}}$		
	C	
$\bar{G}_{\Gamma.\mathrm{TBB}}, \frac{\mathrm{K}\Gamma}{\mathrm{C}} \cdot \mathrm{K}^{0,5} \cdot \frac{\mathrm{CM}^2}{\mathrm{K}\Gamma\mathrm{C}}$	$\pi^*_{\scriptscriptstyle{ ext{TBB}}}$	$\eta_{\scriptscriptstyle ext{ t TBB}}$
24,78	1,2	0,0752
64,522	1,5	0,2124
102,393	1,8	0,3405
125,771	2	0,4269
148,681	2,2	0,5184
166,915	2,4	
		0,6038
186,786	2,8	0,7817
194,968	3,4	0,8722
199,644	4,2	0,9128
201,046	4,9	0,9291
201,748	5,7	0,9372
201,982	6,6	0,9403
$n_{\scriptscriptstyle \mathrm{TBB}} = 263$	3, c	
30,858	1,3	0,1118
72,938	1,64	0,2328
102,861	1,9	0,3253
134,187	2,22	0,4432
171,591	2,6	0,5967
181,877	2,8	
		0,675
187,955	3,1	0,7827
191,228	3,4	0,8366
195,062	3,8	0,8722
197,119	4,2	0,8935
198,709	4,9	0,9128
199,457	5,71	0,924
199,644	6,6	0,926
$n_{\scriptscriptstyle ext{TBB}} = 294$,6, с	
31,326	1,3	0,0895
58,911	1,6	0,1708
		0,1708
84,627	1,86	
108,004	2,1	0,306
136,057	2,4	0,3903
163,643	2,8	0,5001
181,409	3,35	0,6506
189,358	3,9	0,801
191,695	4,2	0,8335
194,501	5	0,8701
196,371	6	0,8935
196,839	6,6	0,8986
$n_{\text{\tiny TBB}} = 325$,9, <u>об</u>	
31,326	1,38	0,0813
59,846	1,7	0,1494
85,562	2	
		0,2114
119,693	2,4	0,2948
147,278	2,8	0,3781
165,045	3,2	0,4615
173,929	3,6	0,5509
181,409	4,2	0,6689
187,488	5	0,7898
190,76	6	0,8284
191,228	6,6	0,8376

ПРИЛОЖЕНИЕ Б

(обязательное)

Результаты исследования адекватности разработанной ММ ТВВД Д-27, представленные в графическом виде

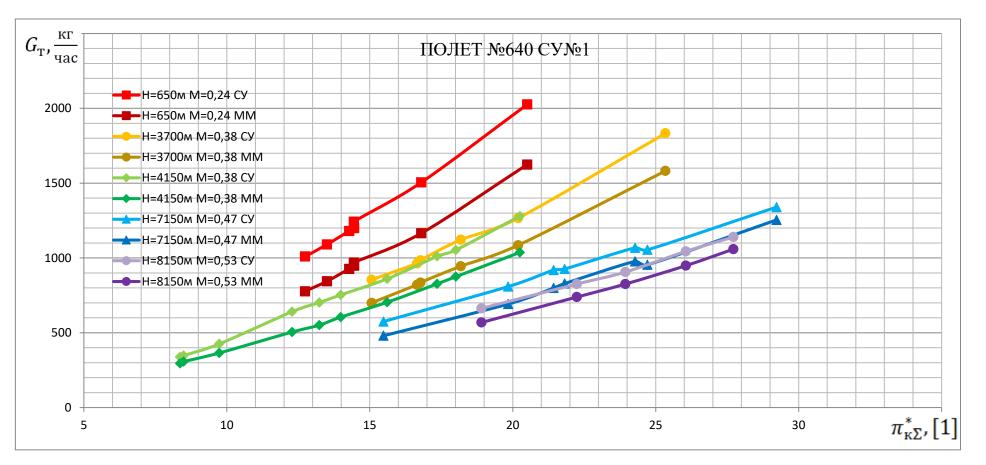


Рисунок Б.1 – Сравнение расходов топлива в КС СУ №1, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, при различных условиях полета

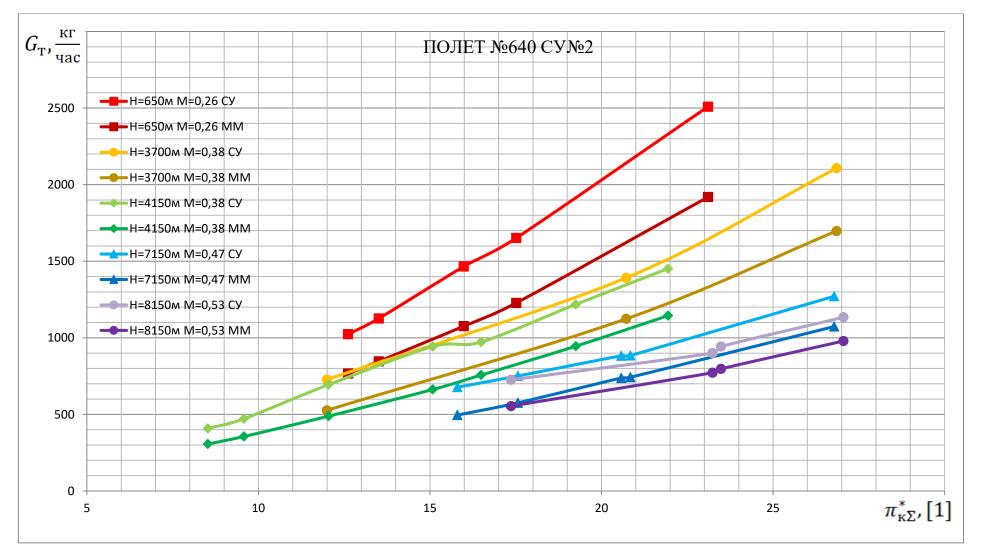


Рисунок Б.2 — Сравнение расходов топлива в КС СУ №2, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, при различных условиях полета

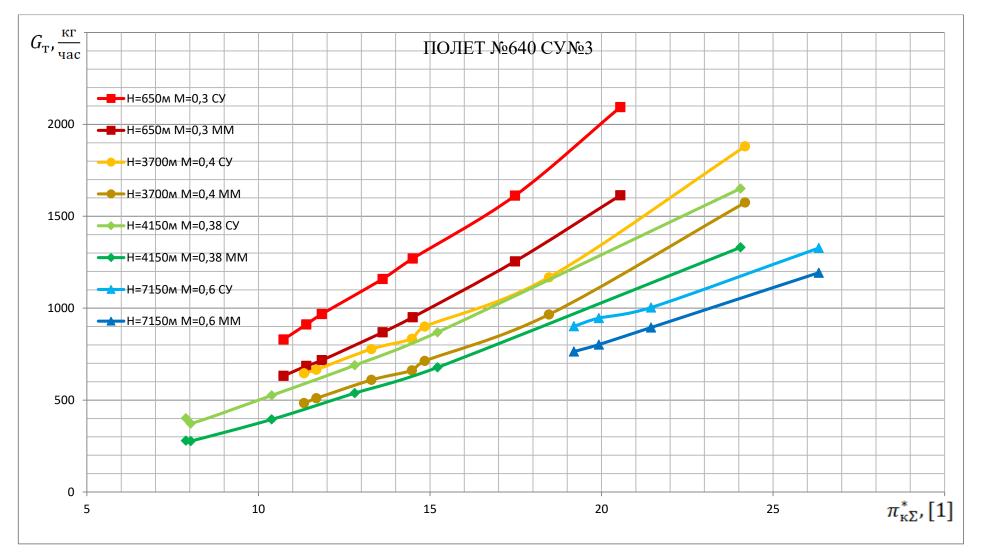


Рисунок Б.3 — Сравнение расходов топлива в КС СУ №3, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, при различных условиях полета

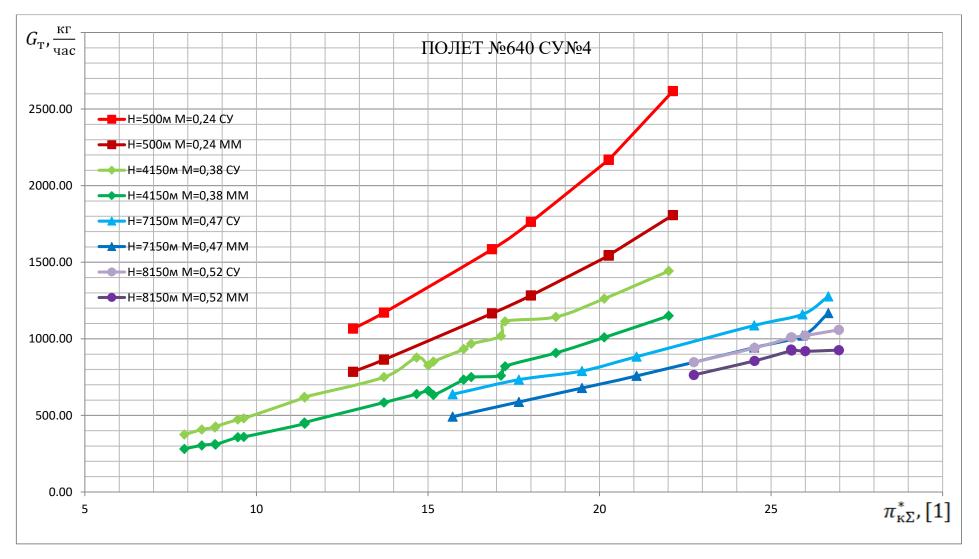


Рисунок Б.4 — Сравнение расходов топлива в КС СУ №4, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, при различных условиях полета

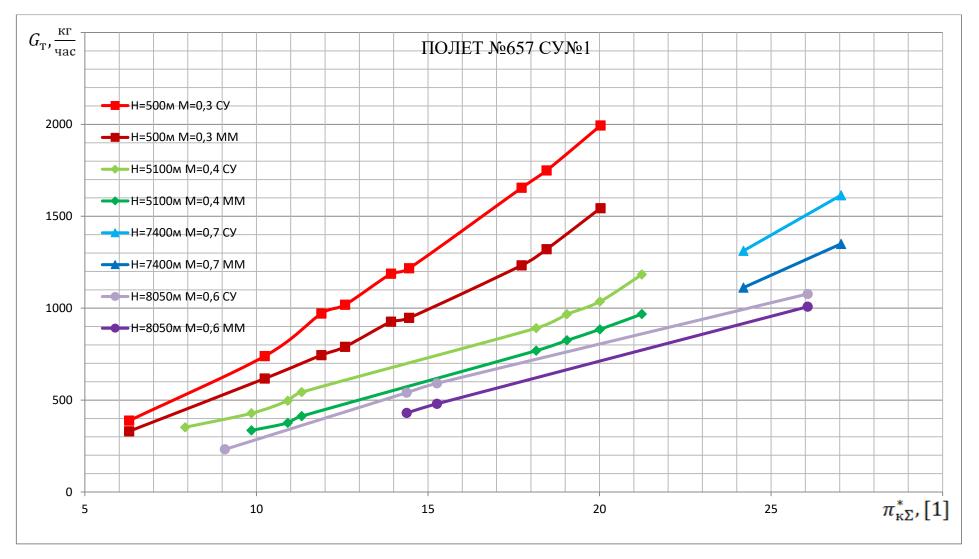


Рисунок Б.5 — Сравнение расходов топлива в КС СУ №1, измеренных в процессе летных испытаний (полет №657 от 27.01.13), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, при различных условиях полета

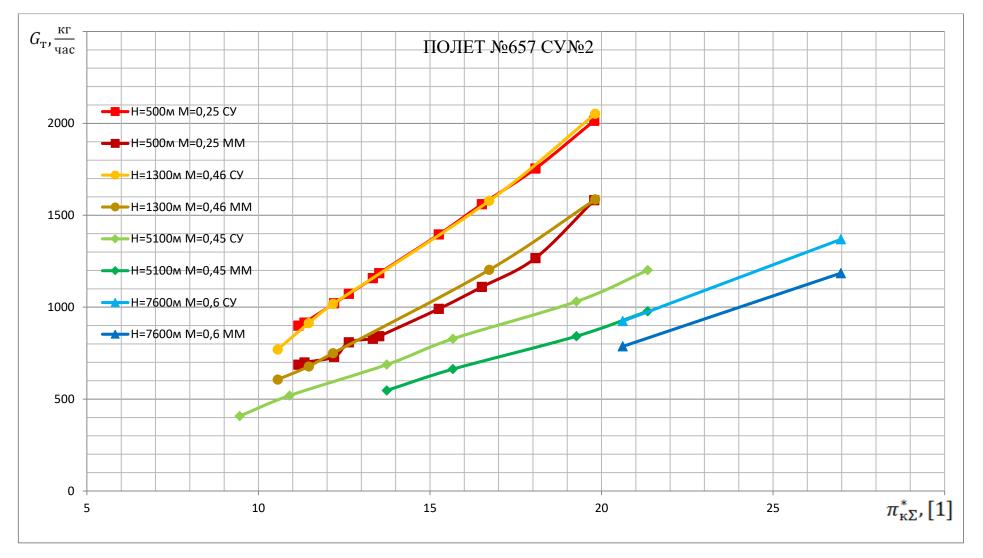


Рисунок Б.6 — Сравнение расходов топлива в КС СУ №2, измеренных в процессе летных испытаний (полет №657 от 27.01.13), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, при различных условиях полета

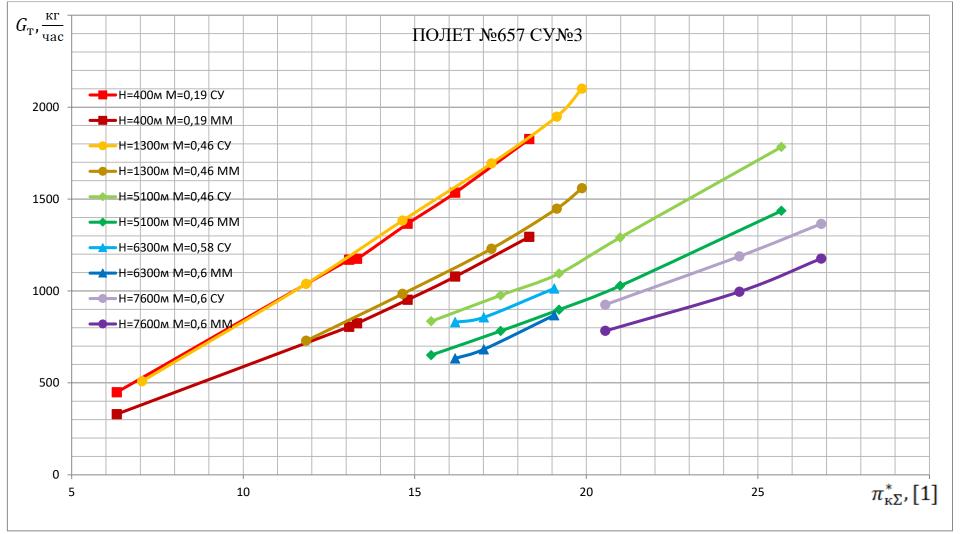


Рисунок Б.7 – Сравнение расходов топлива в КС СУ №3, измеренных в процессе летных испытаний (полет №657 от 27.01.13), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, при различных условиях полета

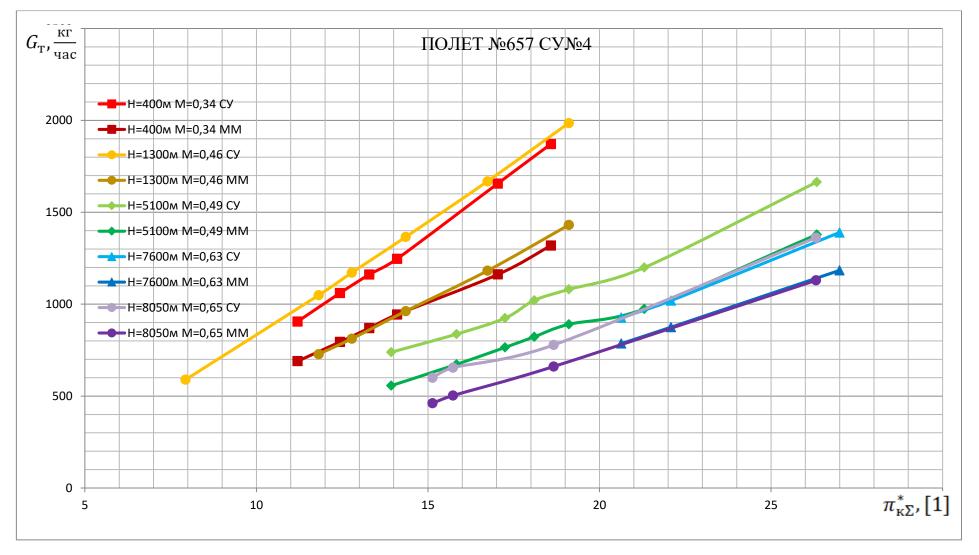


Рисунок Б.8 — Сравнение расходов топлива в КС СУ №4, измеренных в процессе летных испытаний (полет №657 от 27.01.13), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, при различных условиях полета

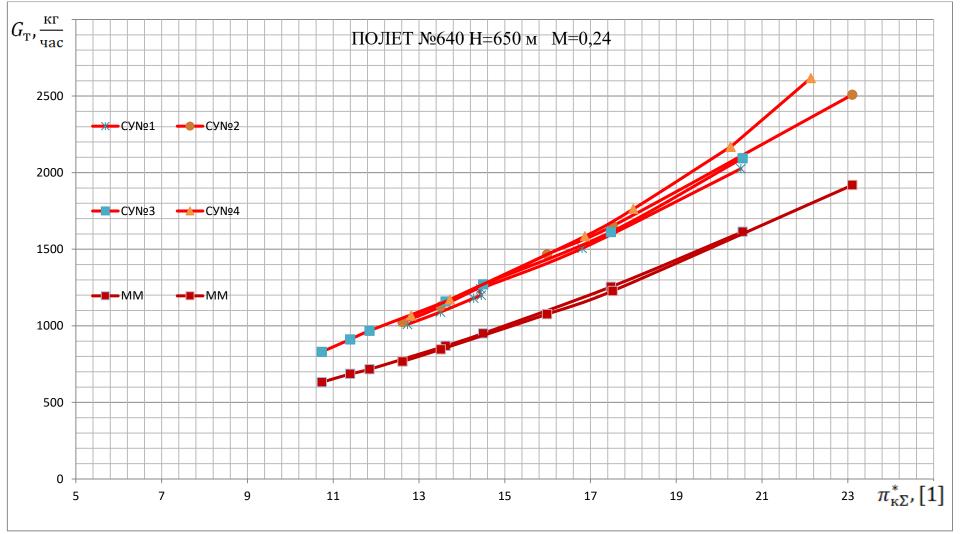


Рисунок Б.9 — Сравнение расходов топлива в КС СУ №1,2,3,4, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на высоте H=650 м и при числе Маха M=0,24

Рисунок Б.10 – Сравнение расходов топлива в КС СУ №1,2,3,4, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на высоте H=4150 м и при числе Маха M=0,38

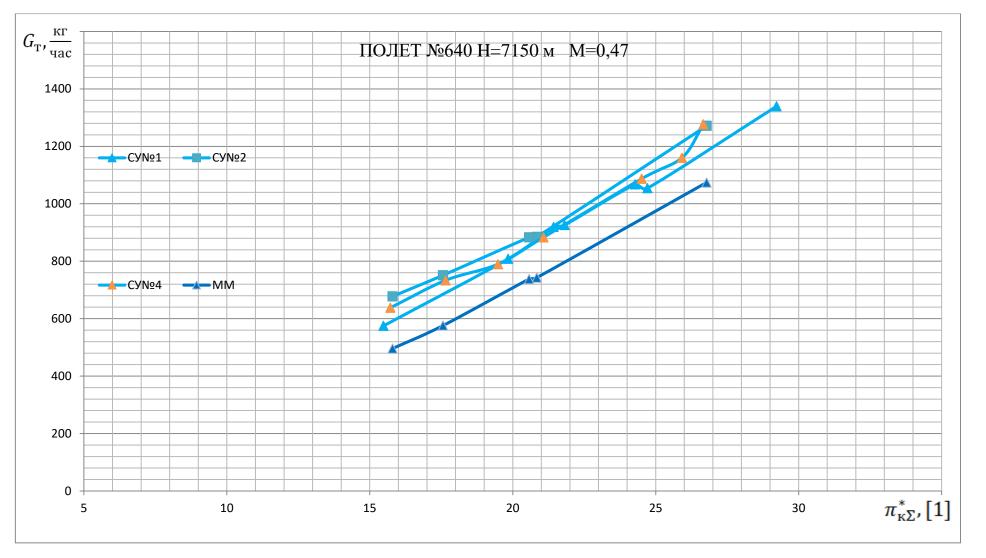


Рисунок Б.11 — Сравнение расходов топлива в КС СУ №1,2,4, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на высоте H=7150 м и при числе Маха M=0,47

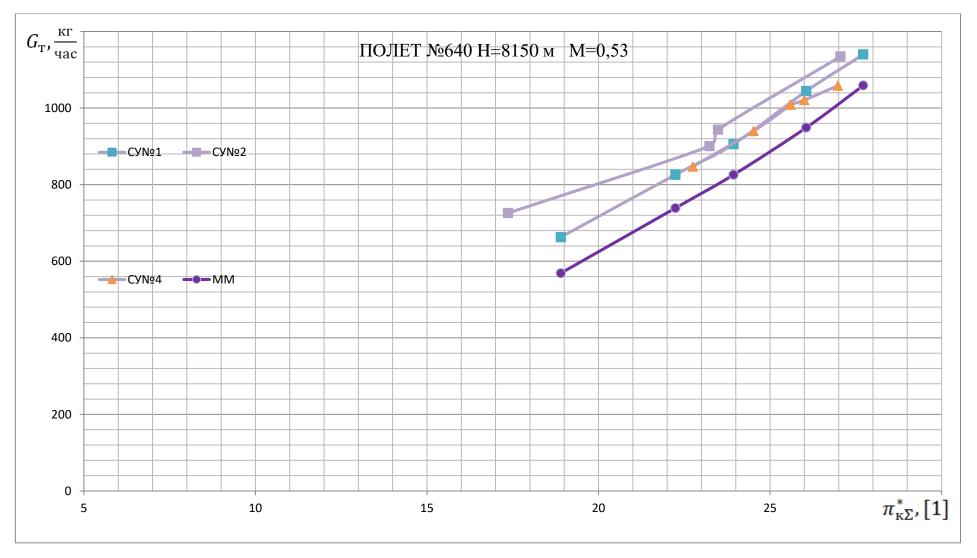


Рисунок Б.12 — Сравнение расходов топлива в КС СУ №1,2,4, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на высоте H=8150 м и при числе Маха M=0,53 (полет №640 от 31.10.12)

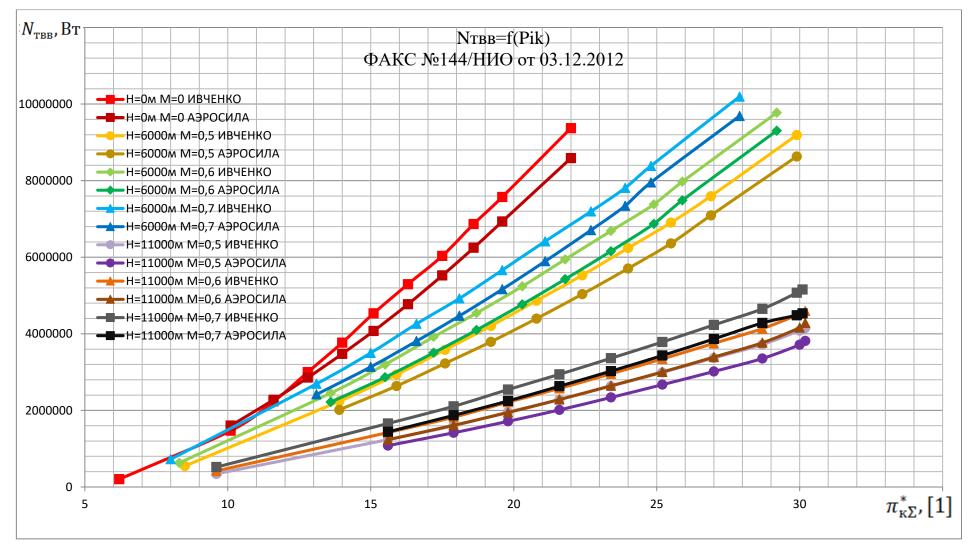


Рисунок Б.13 — Сравнение мощностей, развиваемых ТВВ, по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко с мощностями, развиваемыми ТВВ, полученными по результатам расчета ММ ТВВД Д-27, в различных условиях полета (параметры атмосферы соответствуют МСА, Факс №330/3485 от 26.06.2013, ОАО «УНПП «Молния» [81])

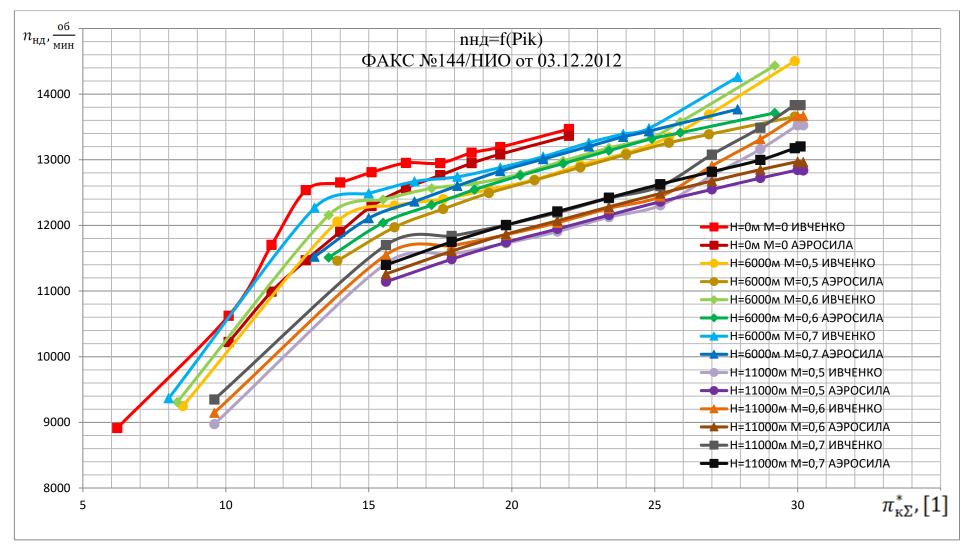


Рисунок Б.14 — Сравнение частот вращения ротора НД по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко с частотами вращения ротора НД, полученными по результатам расчета ММ ТВВД Д-27, в различных условиях полета (параметры атмосферы соответствуют МСА, Факс №330/3485 от 26.06.2013, ОАО «УНПП «Молния» [81])

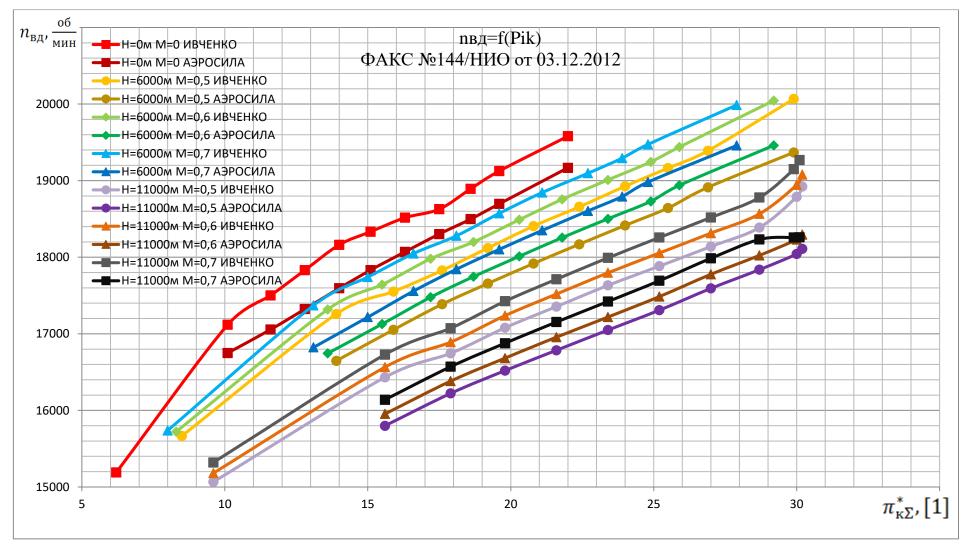


Рисунок Б.15 – Сравнение частот вращения ротора ВД по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко с частотами вращения ротора ВД, полученными по результатам расчета ММ ТВВД Д-27, в различных условиях полета (параметры атмосферы соответствуют МСА, Факс №330/3485 от 26.06.2013, ОАО «УНПП «Молния» [81])

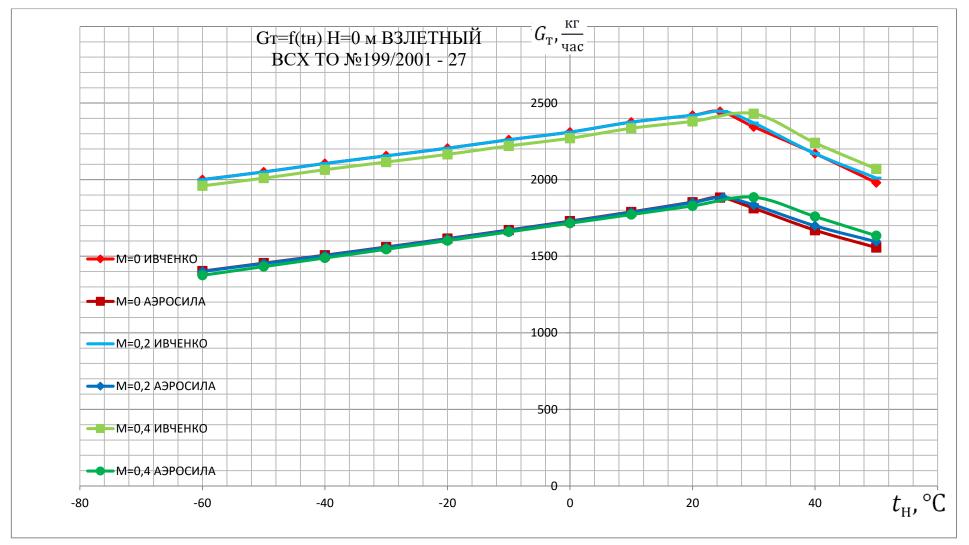


Рисунок Б.16 – Сравнение расходов топлива в КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на взлетном режиме, высоте полета H=0 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО № 199/2001-27 [82])

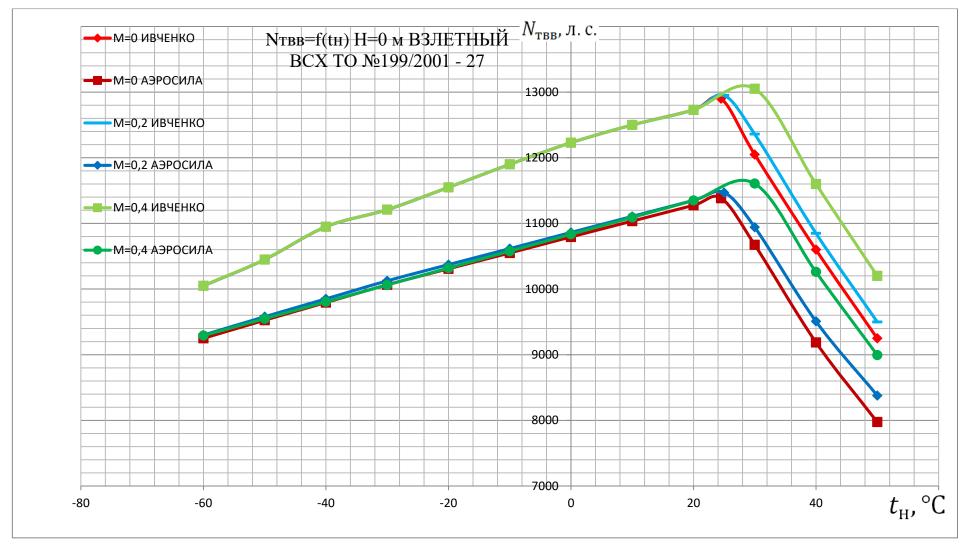


Рисунок Б.17 – Сравнение мощностей, развиваемых ТВВ, по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с мощностями, развиваемыми ТВВ, полученными по результатам расчета ММ ТВВД Д-27, на взлетном режиме, высоте полета H=0 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

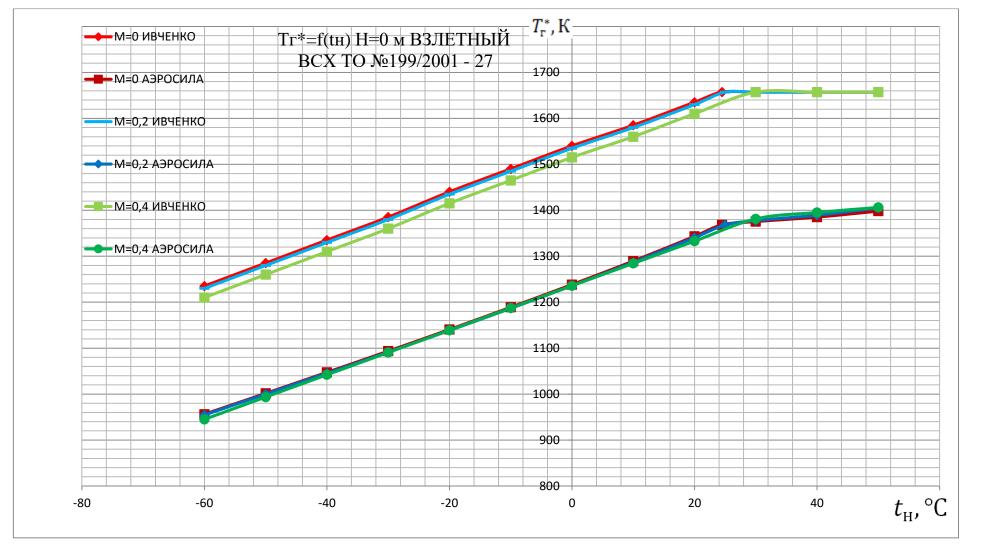


Рисунок Б.18 — Сравнение температур газа за КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с температурами газа за КС, полученными по результатам расчета ММ ТВВД Д-27, на взлетном режиме, высоте полета H=0 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

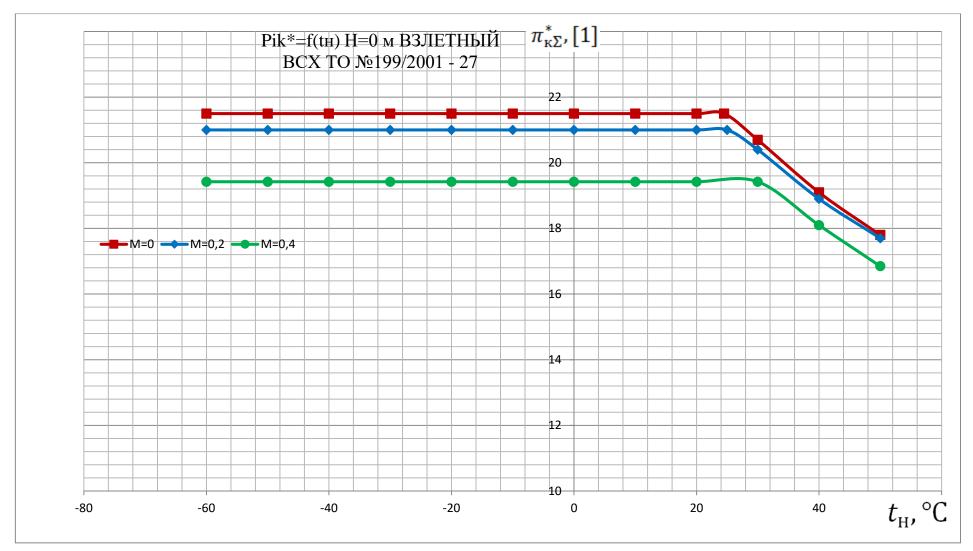


Рисунок Б.19 – Суммарная степень повышения давления в КНД и КВД по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко на взлетном режиме, высоте полета H=0 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

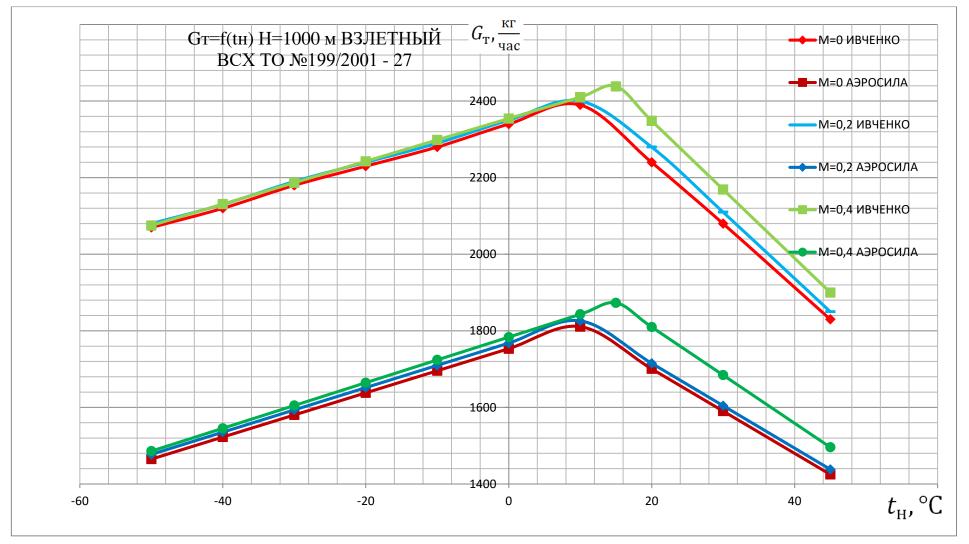


Рисунок Б.20 — Сравнение расходов топлива в КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с расходами топлива в КС, полученными по результатам расчет ММ ТВВД Д-27, на взлетном режиме, высоте полета H = 1000 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

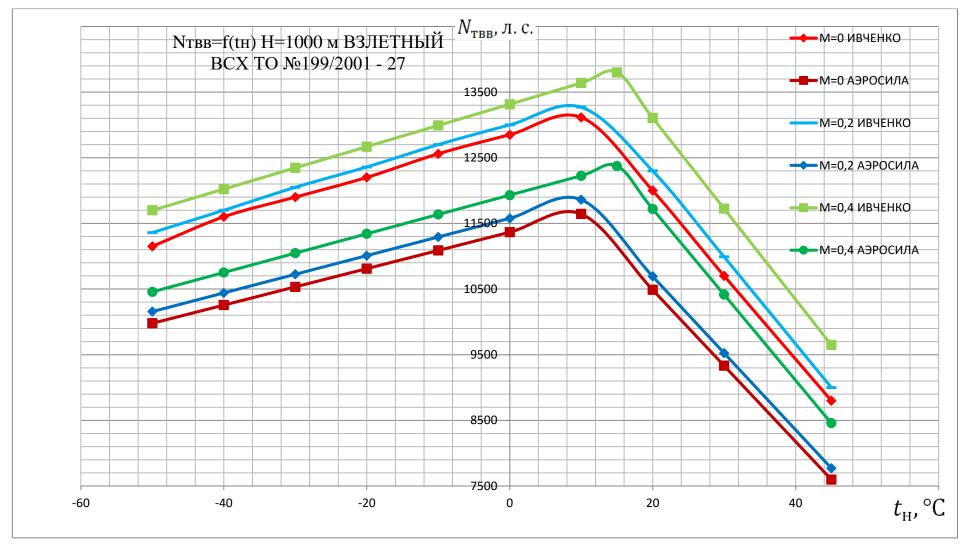


Рисунок Б.21 – Сравнение мощностей, развиваемых ТВВ, по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с мощностями, развиваемыми ТВВ, полученными по результатам расчета ММ ТВВД Д-27, на взлетном режиме, высоте полета H = 1000 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

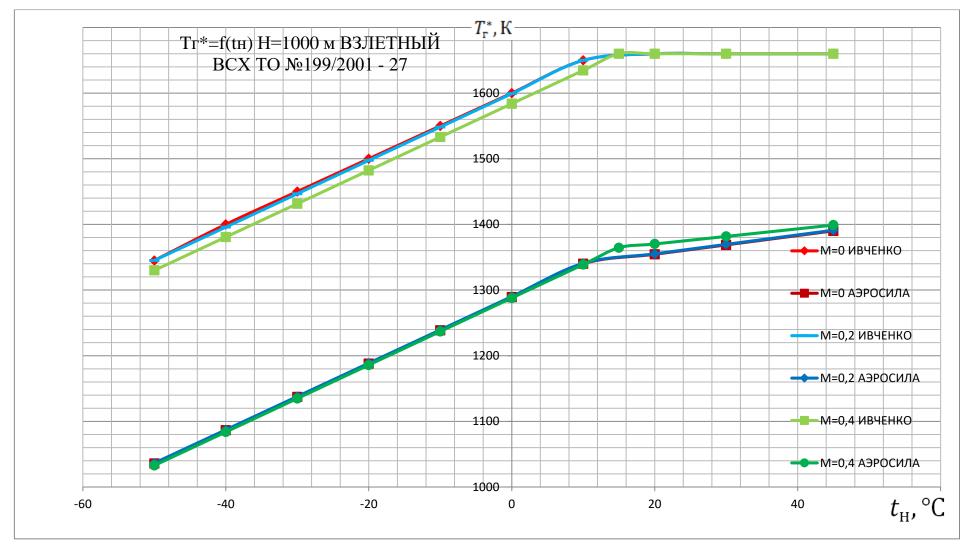


Рисунок Б.22 — Сравнение температур газа за КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с температурами газа за КС, полученными по результатам расчета ММ ТВВД Д-27, на взлетном режиме, высоте полета H = 1000 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

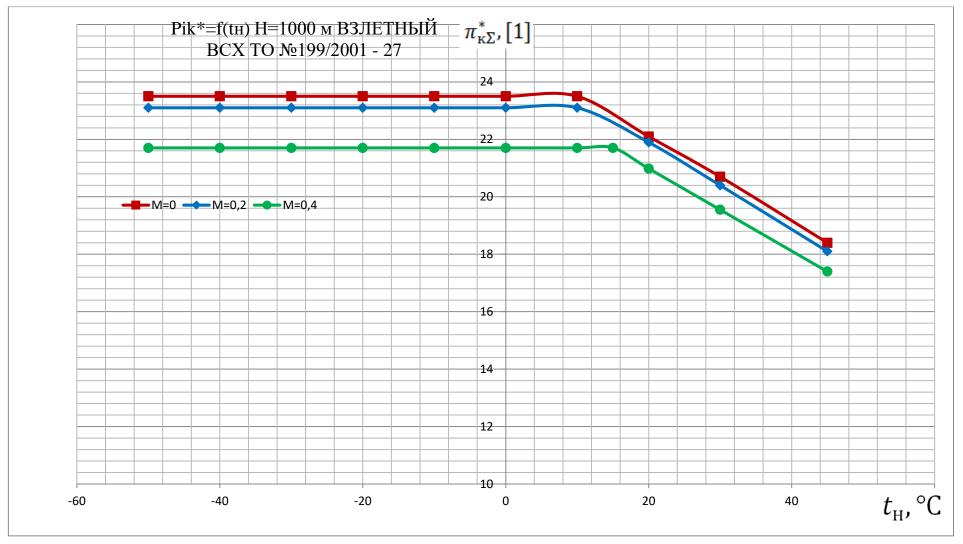


Рисунок Б.23 – Суммарная степень повышения давления в КНД и КВД по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко на взлетном режиме, высоте полета H=1000 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

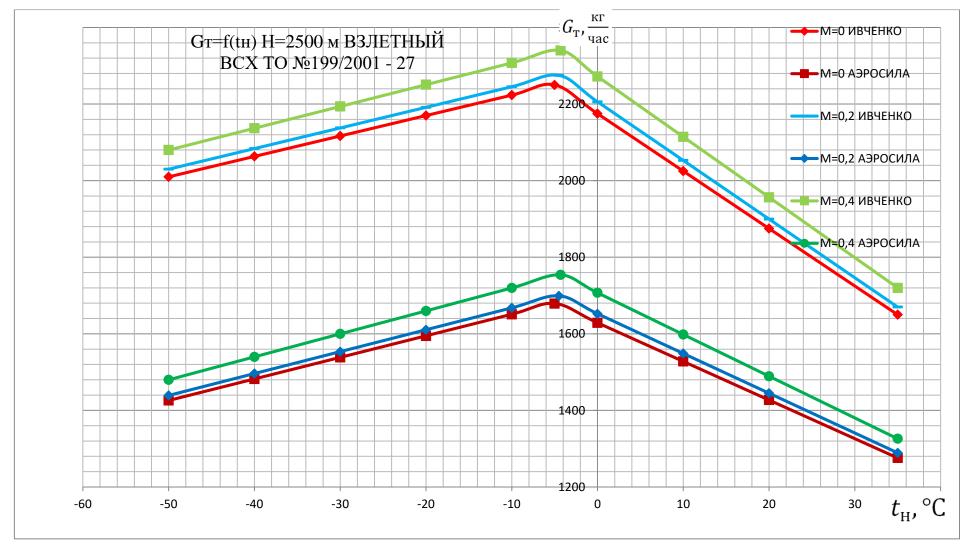


Рисунок Б.24 — Сравнение расходов топлива в КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на взлетном режиме, высоте полета H = 2500 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

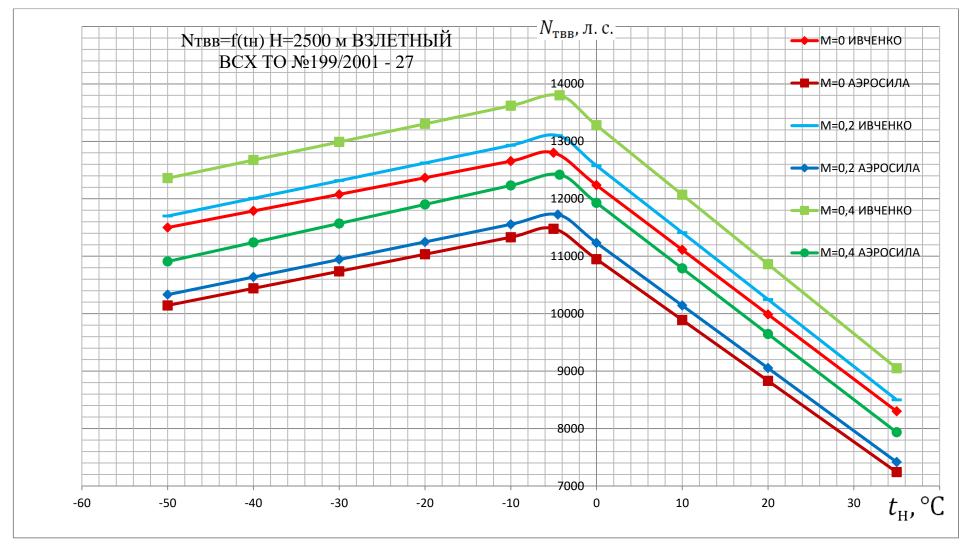


Рисунок Б.25 – Сравнение мощностей, развиваемых ТВВ, по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с мощностями, развиваемыми ТВВ, полученными по результатам расчета ММ ТВВД Д-27, на взлетном режиме, высоте полета H = 2500 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

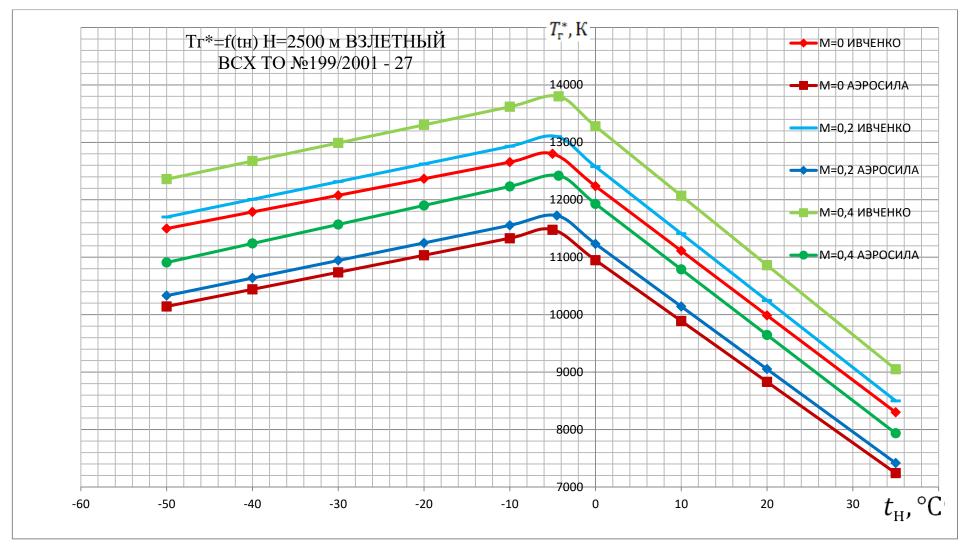


Рисунок Б.26 – Сравнение температур газа за КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с температурами газа за КС, полученными по результатам расчета ММ ТВВД Д-27, на взлетном режиме, высоте полета H = 2500 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

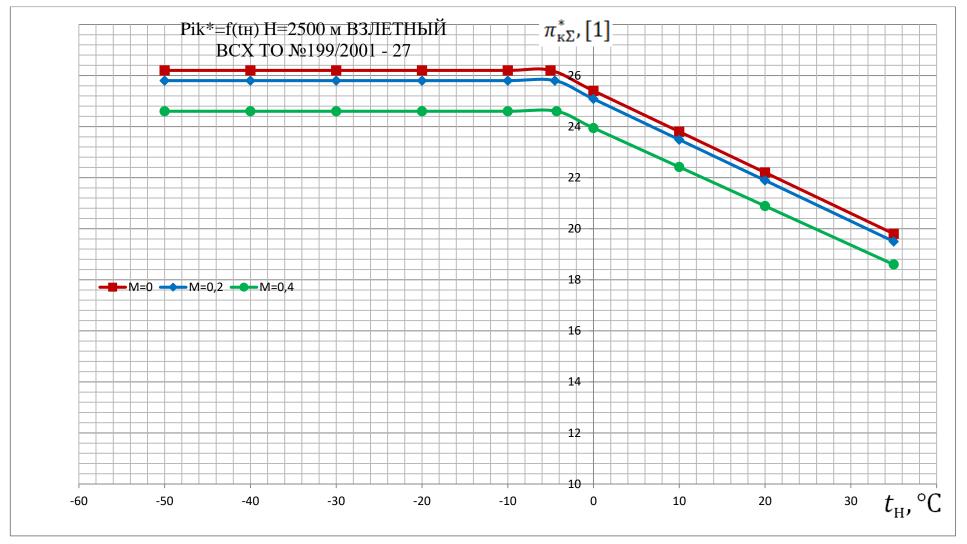


Рисунок Б.27 – Суммарная степень повышения давления в КНД и КВД по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко на взлетном режиме, высоте полета H = 2500 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

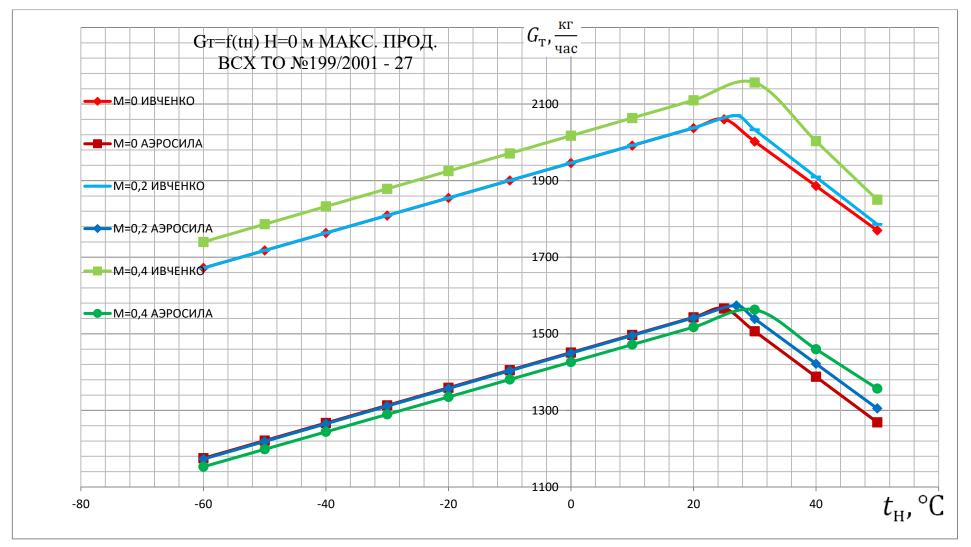


Рисунок Б.28 — Сравнение расходов топлива в КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на режиме МП, высоте полета H=0 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

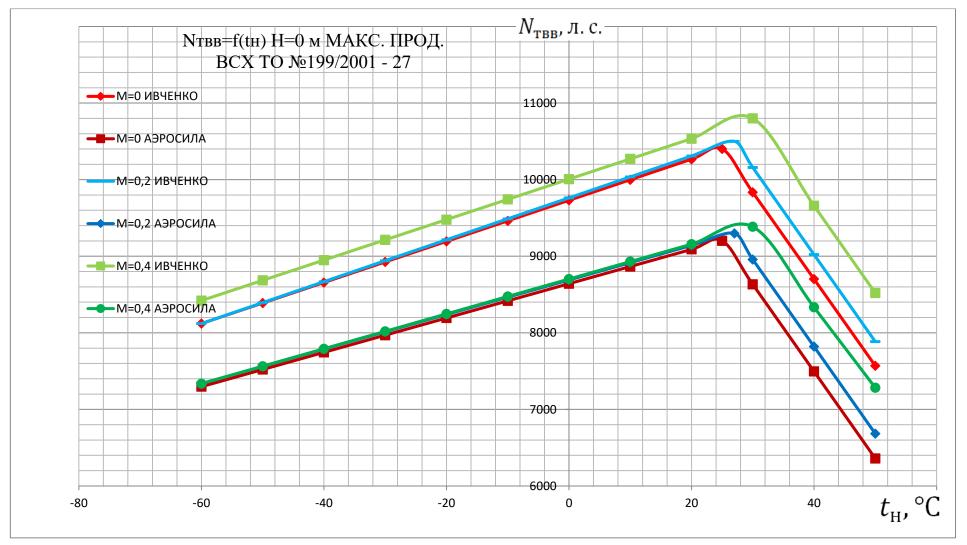


Рисунок Б.29 — Сравнение мощностей, развиваемых ТВВ, по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с мощностями, развиваемыми ТВВ, полученными по результатам расчета ММ ТВВД Д-27, на режиме МП, высоте полета H=0 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

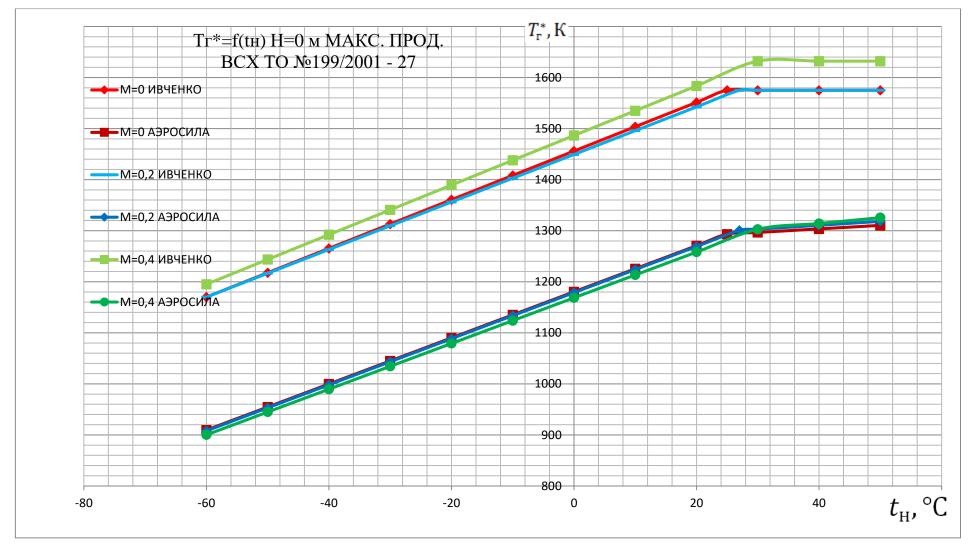


Рисунок Б.30 — Сравнение температур газа за КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с температурами газа за КС, полученными по результатам расчета ММ ТВВД Д-27, на режиме МП, высоте полета H=0 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

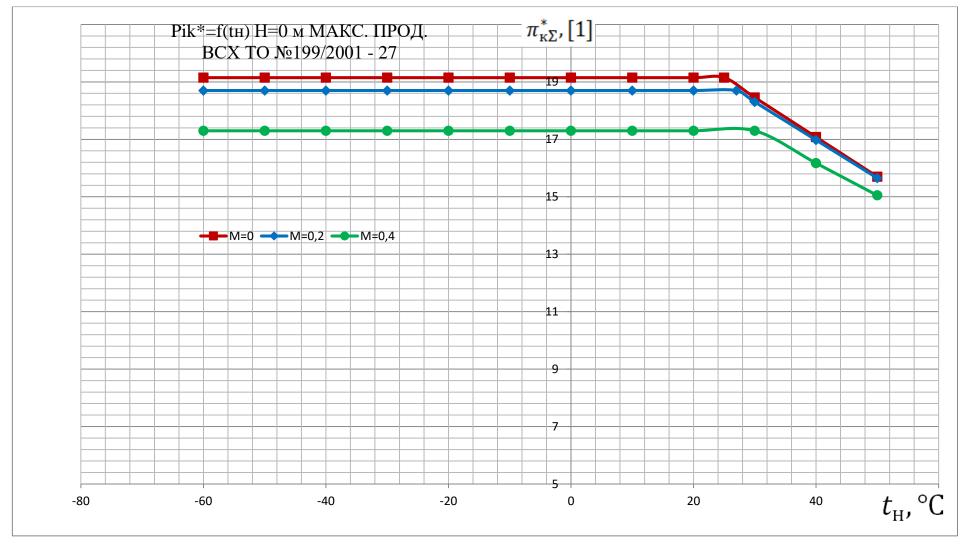


Рисунок Б.31 — Суммарная степень повышения давления в КНД и КВД по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко на режиме МП, высоте полета H=0 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

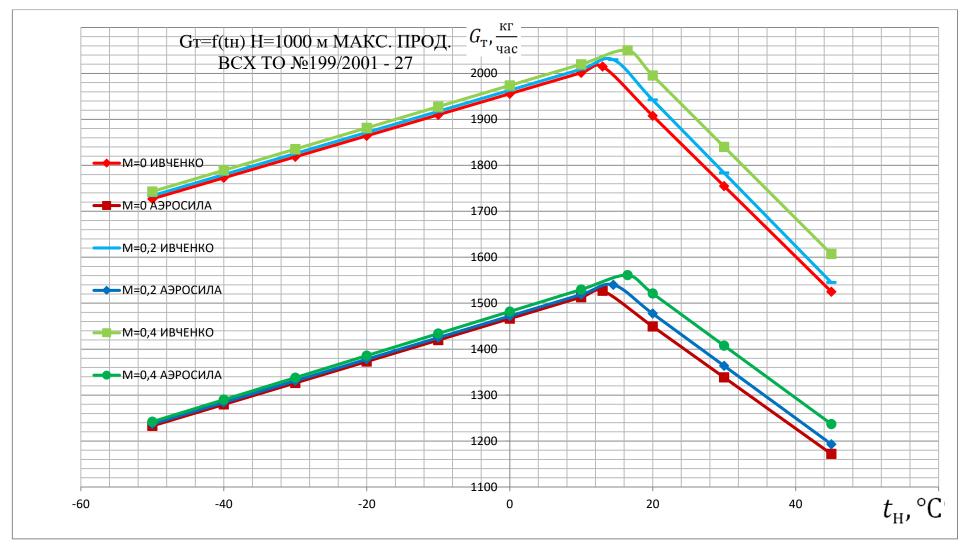


Рисунок Б.32 — Сравнение расходов топлива в КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на режиме МП, высоте полета H=1000 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

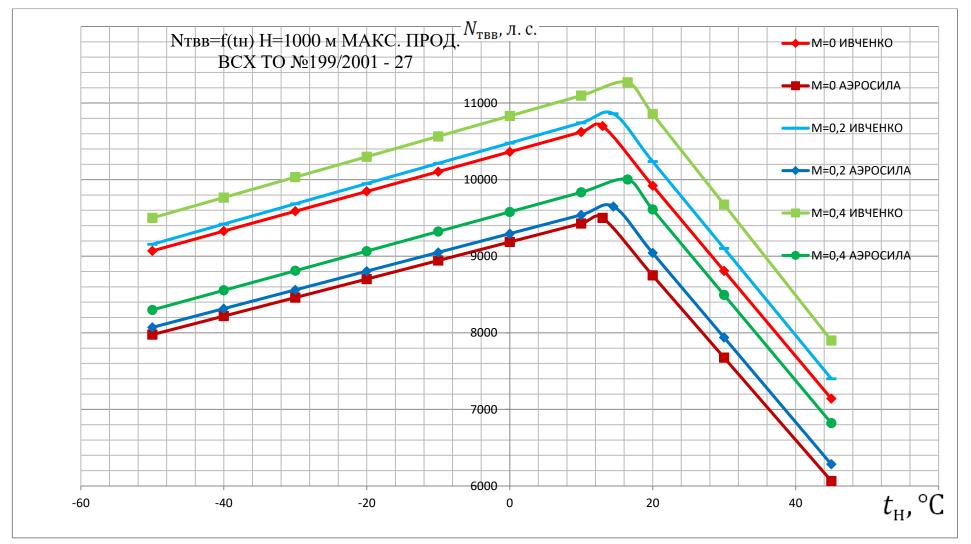


Рисунок Б.33 – Сравнение мощностей, развиваемых ТВВ, по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с мощностями, развиваемыми ТВВ, полученными по результатам расчета ММ ТВВД Д-27, на режиме МП, высоте полета H = 1000 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

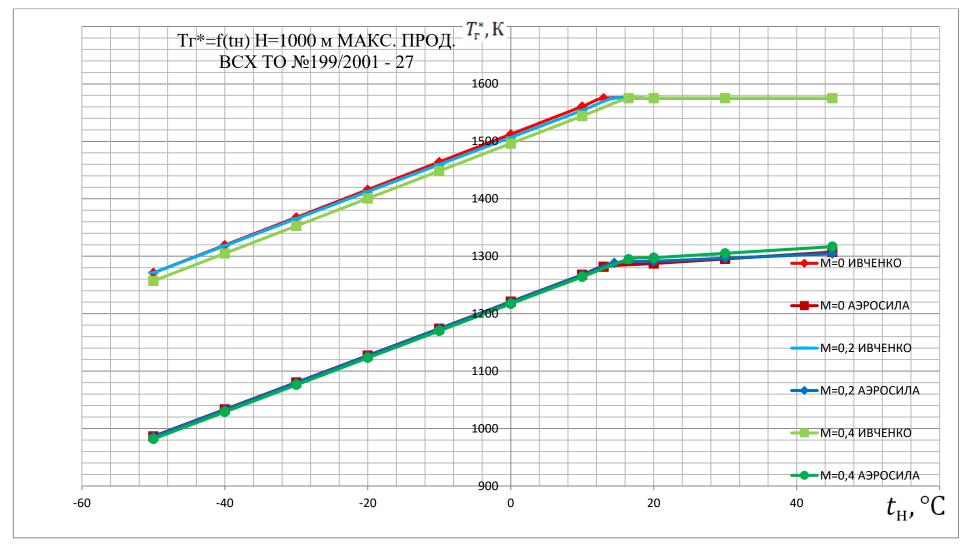


Рисунок Б.34 — Сравнение температур газа за КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с температурами газа за КС, полученными по результатам расчета ММ ТВВД Д-27, на режиме МП, высоте полета H=1000 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

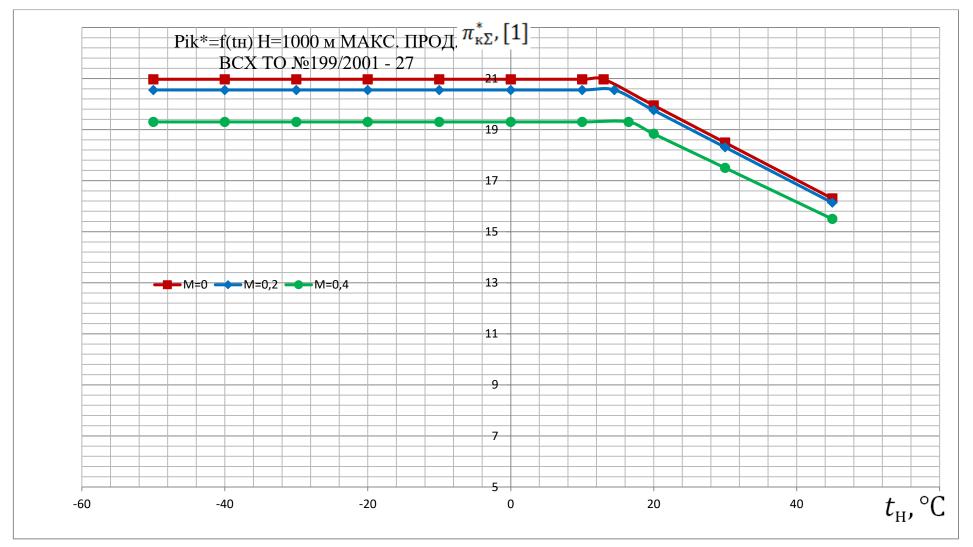


Рисунок Б.35 – Суммарная степень повышения давления в КНД и КВД по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко на режиме МП, высоте полета H=1000 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

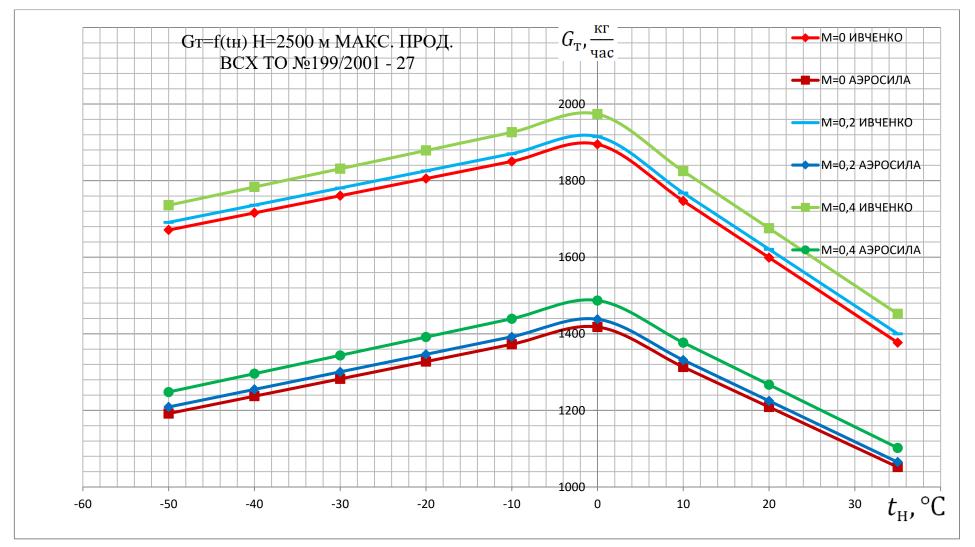


Рисунок Б.36 – Сравнение расходов топлива в КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на режиме МП, высоте полета H = 2500 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

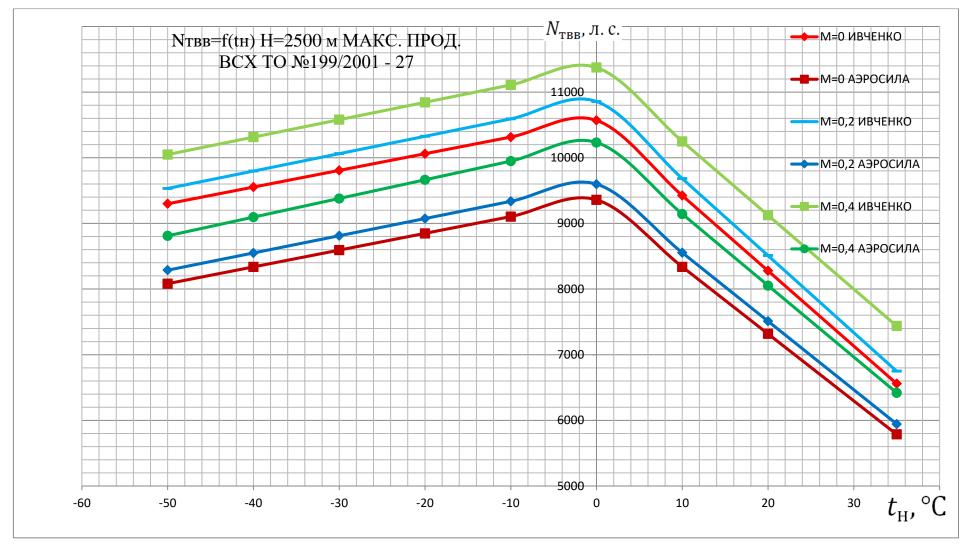


Рисунок Б.37 – Сравнение мощностей, развиваемых ТВВ, по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с мощностями, развиваемыми ТВВ, полученными по результатам расчета ММ ТВВД Д-27, на режиме МП, высоте полета H = 2500 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

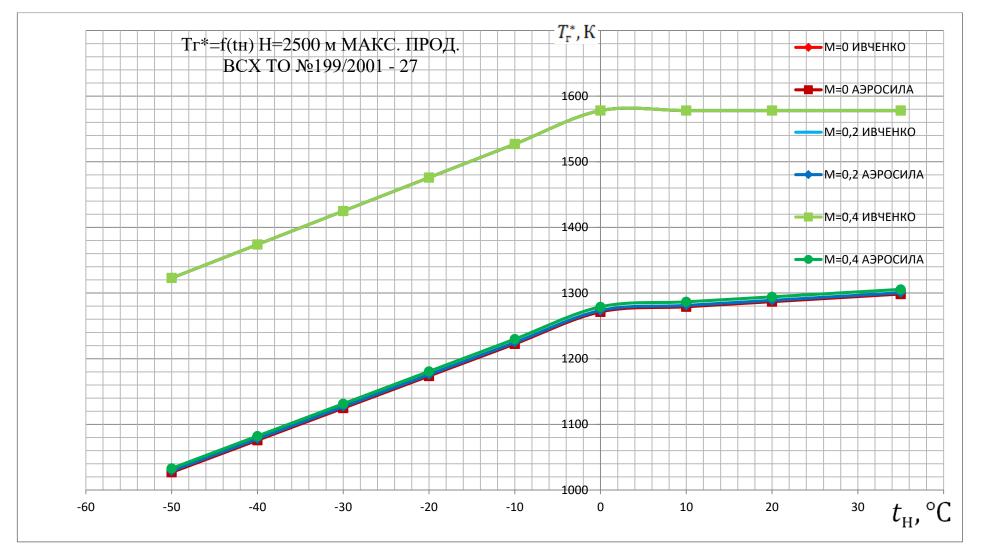


Рисунок Б.38 — Сравнение температур газа за КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с температурами газа за КС, полученными по результатам расчета ММ ТВВД Д-27, на режиме МП, высоте полета H = 2500 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

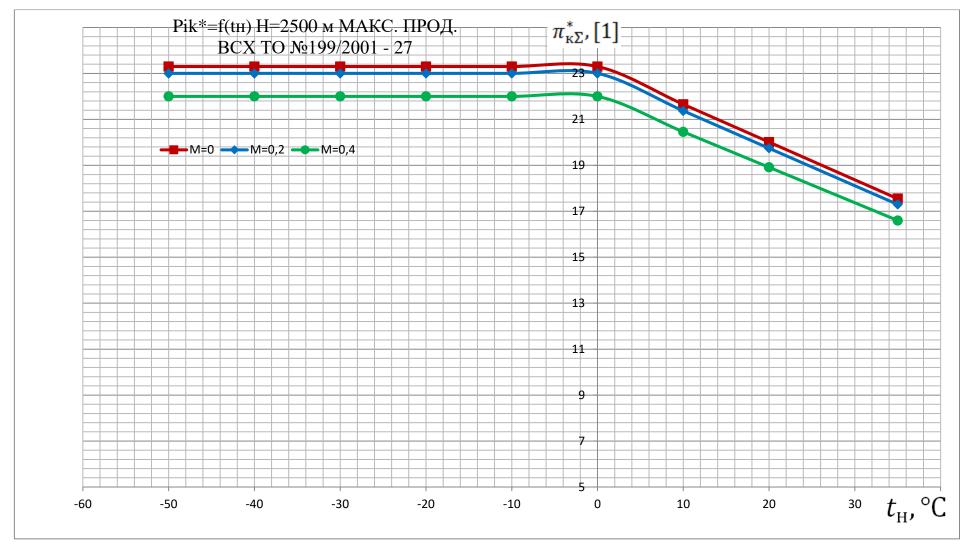


Рисунок Б.39 — Суммарная степень повышения давления в КНД и КВД по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко на режиме МП, высоте полета H = 2500 м при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

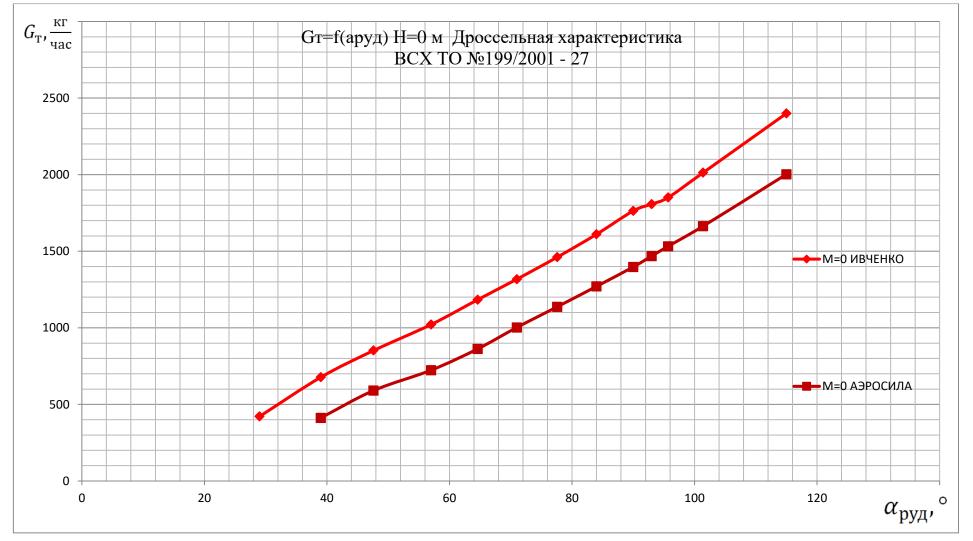


Рисунок Б.40 — Сравнение расходов топлива в КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на высоте полета H=0 м, скорости полета M=0, на различных режимах работы двигателя (параметры атмосферы соответствуют МСА, ТО №199/2001-27 [82])

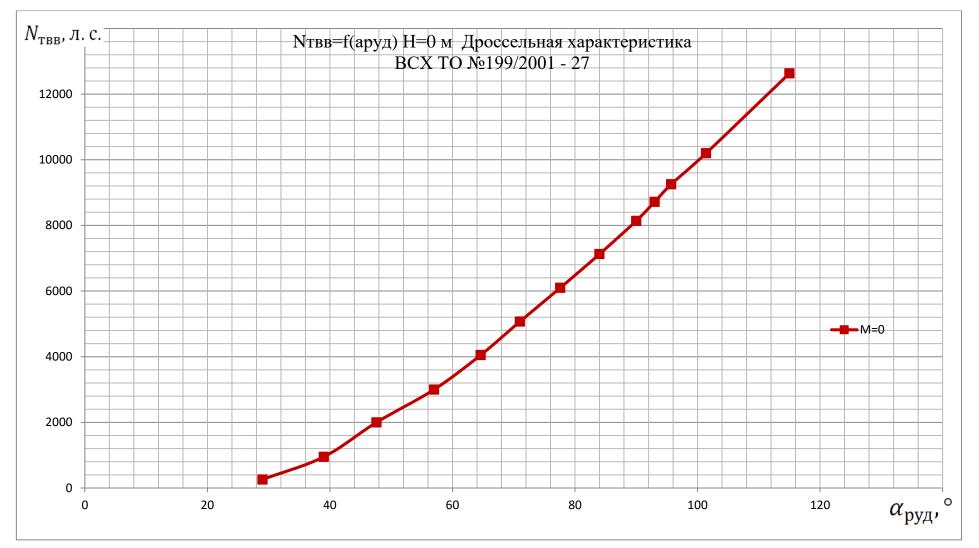


Рисунок Б.41 — Мощность, развиваемая ТВВ по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко на высоте полета H=0 м, скорости полета M=0, на различных режимах работы двигателя (параметры атмосферы соответствуют МСА, ТО №199/2001-27 [82])

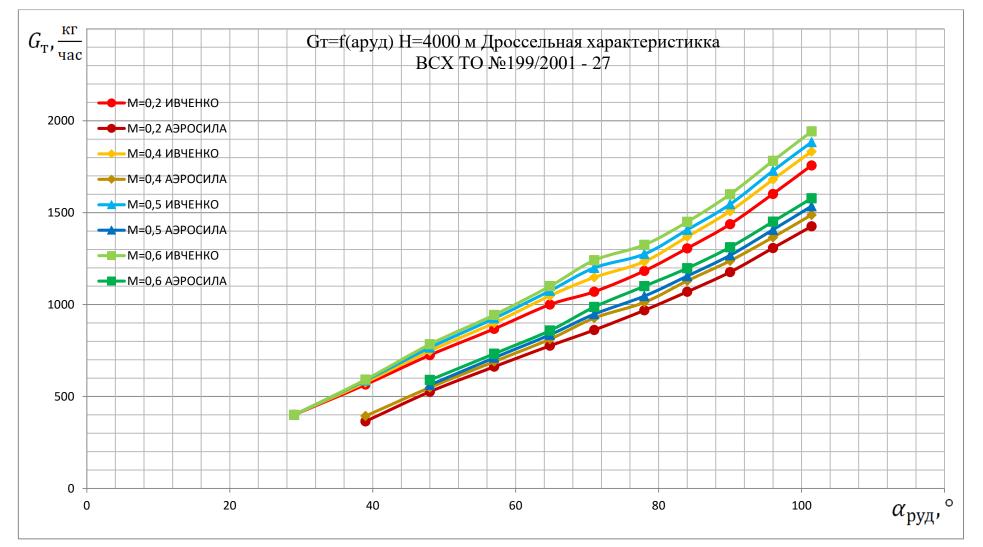


Рисунок Б.42 — Сравнение расходов топлива в КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на высоте полета H = 4000 м, на различных режимах работы двигателя и скоростях полета (параметры атмосферы соответствуют МСА, ТО №199/2001-27 [82])

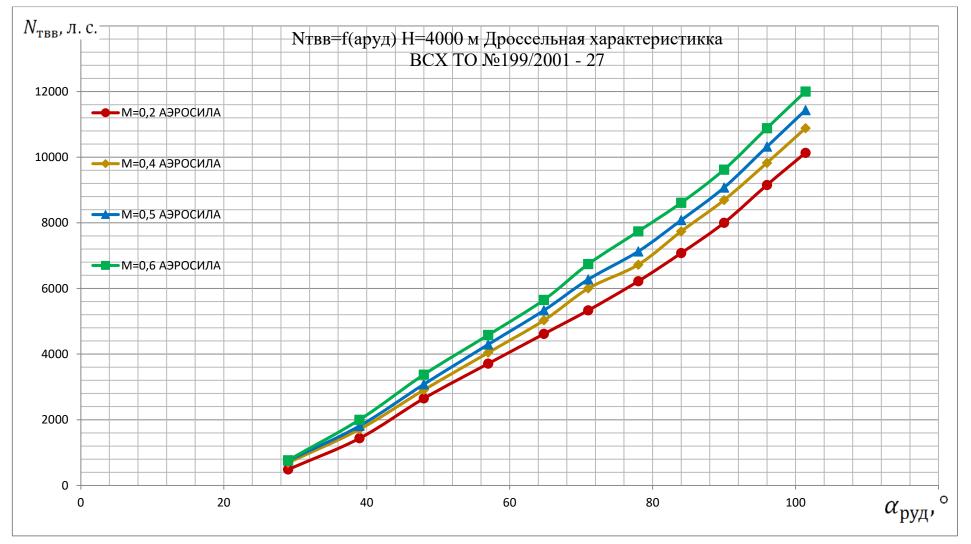


Рисунок Б.43 — Мощности, развиваемые ТВВ по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко на высоте полета H=4000 м, на различных режимах работы двигателя и скоростях полета (параметры атмосферы соответствуют МСА, ТО №199/2001-27 [82])

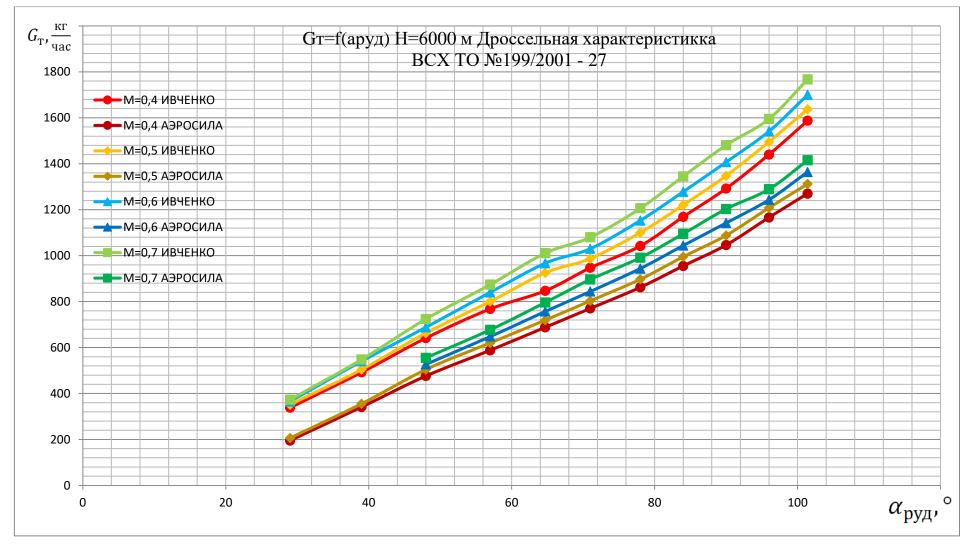


Рисунок Б.44 — Сравнение расходов топлива в КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на высоте полета H = 6000 м, на различных режимах работы двигателя и скоростях полета (параметры атмосферы соответствуют МСА, ТО №199/2001-27 [82])

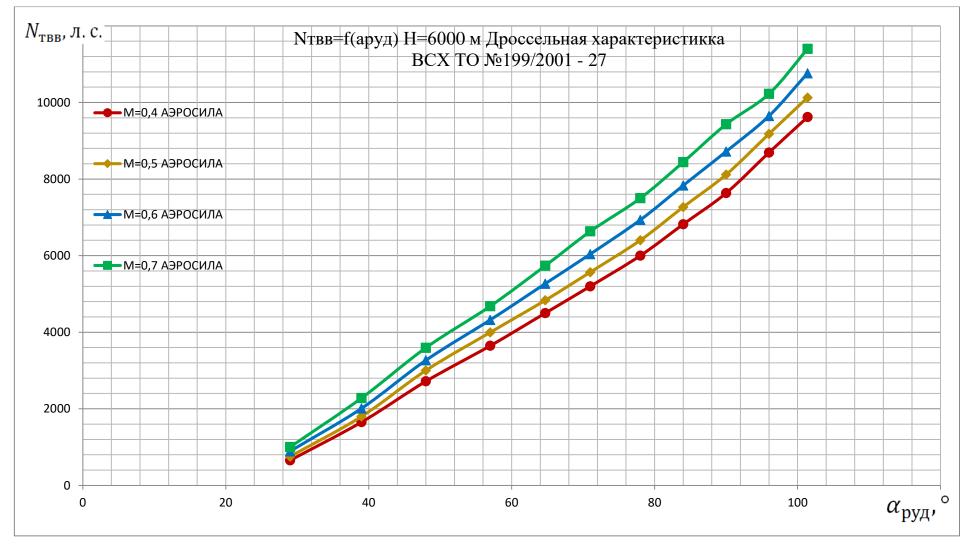


Рисунок Б.45 – Мощности, развиваемые ТВВ по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко на высоте полета H=6000 м, параметры атмосферы соответствуют МСА, на различных режимах работы двигателя и скоростях полета (параметры атмосферы соответствуют МСА, ТО №199/2001-27 [82])

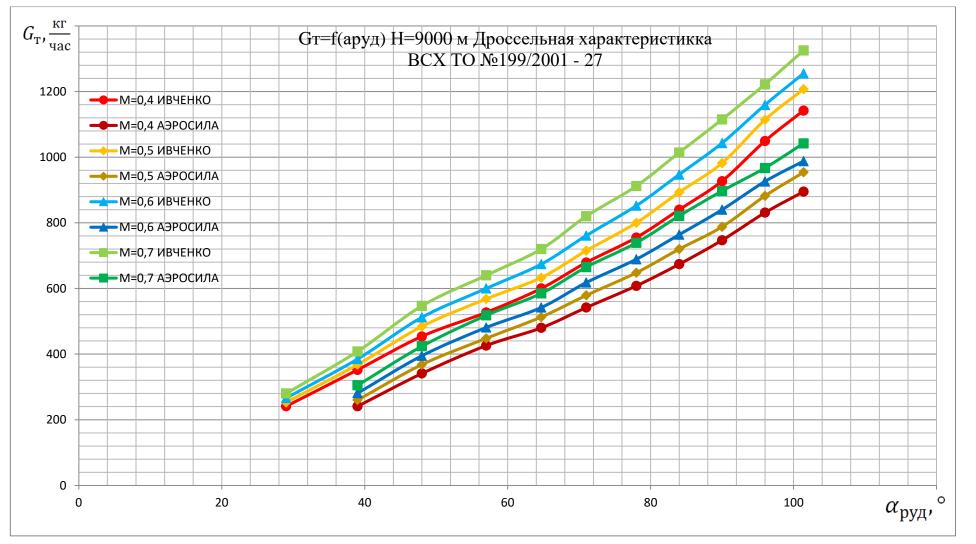


Рисунок Б.46 — Сравнение расходов топлива в КС по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27, на высоте полета H = 9000 м, на различных режимах работы двигателя и скоростях полета (параметры атмосферы соответствуют МСА, ТО №199/2001-27 [82])

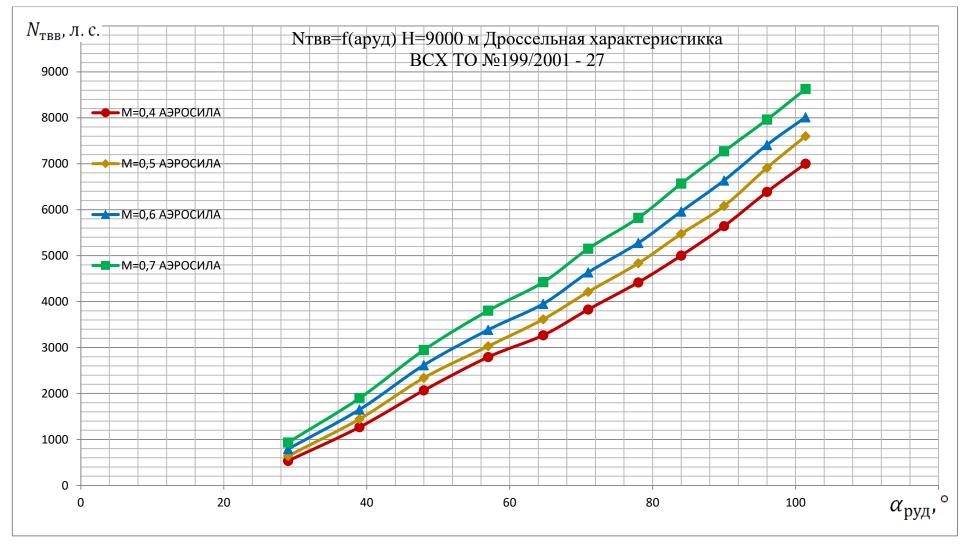


Рисунок Б.47 — Мощности, развиваемые ТВВ по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко на высоте полета H=9000 м, на различных режимах работы двигателя и скоростях полета (параметры атмосферы соответствуют МСА, ТО №199/2001-27 [82])

приложение в

(обязательное)

Результаты исследования адекватности разработанной ММ ТВВД Д-27, представленные в табличном виде

Таблица В.1 – Сравнение расходов топлива в КС СУ №1, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27,

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	G _{т.мод} , кг час 1624 1165 969 948 927 844 777 1582 1085 945 836
668 0,347 403,28 -0,06 1,56 101,43 102 20,506 7757,33 2025,63 654 0,275 323,06 -0,06 0,94 98,695 83 16,803 7094 1505,25 523 0,316 378,63 0,06 1,5 102,031 71 14,443 7126,33 1241,63 620 0,293 346,69 -0,13 1,06 99,852 70 14,453 7145,33 1199,13 654 0,291 344,84 -0,19 1 99,391 69 14,279 7156,33 1180,5 690 0,274 324,59 -0,19 0,88 98,156 64 13,5 7126,33 1089,75 688 0,267 320,06 -0,19 0,81 98,188 60 12,734 7115,66 1009,63 3688 0,421 409,41 -3,69 -1,44 72,469 102 25,34 7760,66 1833 3714 0,381	1624 1165 969 948 927 844 777 1582 1085 945 836
654 0,275 323,06 -0,06 0,94 98,695 83 16,803 7094 1505,25 523 0,316 378,63 0,06 1,5 102,031 71 14,443 7126,33 1241,63 620 0,293 346,69 -0,13 1,06 99,852 70 14,453 7145,33 1199,13 654 0,291 344,84 -0,19 1 99,391 69 14,279 7156,33 1180,5 690 0,274 324,59 -0,19 0,88 98,156 64 13,5 7126,33 1089,75 688 0,267 320,06 -0,19 0,81 98,188 60 12,734 7115,66 1009,63 3688 0,421 409,41 -3,69 -1,44 72,469 102 25,34 7760,66 1833 3714 0,381 372,5 -3,81 -1,94 70,703 81 20,186 7131,66 1266,13 3651 0,385	1165 969 948 927 844 777 1582 1085 945 836
523 0,316 378,63 0,06 1,5 102,031 71 14,443 7126,33 1241,63 620 0,293 346,69 -0,13 1,06 99,852 70 14,453 7145,33 1199,13 654 0,291 344,84 -0,19 1 99,391 69 14,279 7156,33 1180,5 690 0,274 324,59 -0,19 0,88 98,156 64 13,5 7126,33 1089,75 688 0,267 320,06 -0,19 0,81 98,188 60 12,734 7115,66 1009,63 3688 0,421 409,41 -3,69 -1,44 72,469 102 25,34 7760,66 1833 3714 0,381 372,5 -3,81 -1,94 70,703 81 20,186 7131,66 1266,13 3634 0,391 385,47 -3,69 -1,75 71,797 73 18,186 7107,33 1122,13 3651 0,385<	969 948 927 844 777 1582 1085 945 836
620 0,293 346,69 -0,13 1,06 99,852 70 14,453 7145,33 1199,13 654 0,291 344,84 -0,19 1 99,391 69 14,279 7156,33 1180,5 690 0,274 324,59 -0,19 0,88 98,156 64 13,5 7126,33 1089,75 688 0,267 320,06 -0,19 0,81 98,188 60 12,734 7115,66 1009,63 3688 0,421 409,41 -3,69 -1,44 72,469 102 25,34 7760,66 1833 3714 0,381 372,5 -3,81 -1,94 70,703 81 20,186 7131,66 1266,13 3634 0,391 385,47 -3,69 -1,75 71,797 73 18,186 7107,33 1122,13 3651 0,385 378,41 -3,69 -1,81 71,438 66 16,77 7118,33 984,75 3664 0,374	948 927 844 777 1582 1085 945 836
654 0,291 344,84 -0,19 1 99,391 69 14,279 7156,33 1180,5 690 0,274 324,59 -0,19 0,88 98,156 64 13,5 7126,33 1089,75 688 0,267 320,06 -0,19 0,81 98,188 60 12,734 7115,66 1009,63 3688 0,421 409,41 -3,69 -1,44 72,469 102 25,34 7760,66 1833 3714 0,381 372,5 -3,81 -1,94 70,703 81 20,186 7131,66 1266,13 3634 0,391 385,47 -3,69 -1,75 71,797 73 18,186 7107,33 1122,13 3651 0,385 378,41 -3,69 -1,81 71,438 66 16,77 7118,33 984,75 3664 0,374 367,53 -3,63 -1,81 70,906 65 16,656 7131,66 963,88	927 844 777 1582 1085 945 836
690 0,274 324,59 -0,19 0,88 98,156 64 13,5 7126,33 1089,75 688 0,267 320,06 -0,19 0,81 98,188 60 12,734 7115,66 1009,63 3688 0,421 409,41 -3,69 -1,44 72,469 102 25,34 7760,66 1833 3714 0,381 372,5 -3,81 -1,94 70,703 81 20,186 7131,66 1266,13 3634 0,391 385,47 -3,69 -1,75 71,797 73 18,186 7107,33 1122,13 3651 0,385 378,41 -3,69 -1,81 71,438 66 16,77 7118,33 984,75 3664 0,374 367,53 -3,63 -1,81 70,906 65 16,656 7131,66 963,88	844 777 1582 1085 945 836
688 0,267 320,06 -0,19 0,81 98,188 60 12,734 7115,66 1009,63 3688 0,421 409,41 -3,69 -1,44 72,469 102 25,34 7760,66 1833 3714 0,381 372,5 -3,81 -1,94 70,703 81 20,186 7131,66 1266,13 3634 0,391 385,47 -3,69 -1,75 71,797 73 18,186 7107,33 1122,13 3651 0,385 378,41 -3,69 -1,81 71,438 66 16,77 7118,33 984,75 3664 0,374 367,53 -3,63 -1,81 70,906 65 16,656 7131,66 963,88	777 1582 1085 945 836
3688 0,421 409,41 -3,69 -1,44 72,469 102 25,34 7760,66 1833 3714 0,381 372,5 -3,81 -1,94 70,703 81 20,186 7131,66 1266,13 3634 0,391 385,47 -3,69 -1,75 71,797 73 18,186 7107,33 1122,13 3651 0,385 378,41 -3,69 -1,81 71,438 66 16,77 7118,33 984,75 3664 0,374 367,53 -3,63 -1,81 70,906 65 16,656 7131,66 963,88	1582 1085 945 836
3714 0,381 372,5 -3,81 -1,94 70,703 81 20,186 7131,66 1266,13 3634 0,391 385,47 -3,69 -1,75 71,797 73 18,186 7107,33 1122,13 3651 0,385 378,41 -3,69 -1,81 71,438 66 16,77 7118,33 984,75 3664 0,374 367,53 -3,63 -1,81 70,906 65 16,656 7131,66 963,88	1085 945 836
3634 0,391 385,47 -3,69 -1,75 71,797 73 18,186 7107,33 1122,13 3651 0,385 378,41 -3,69 -1,81 71,438 66 16,77 7118,33 984,75 3664 0,374 367,53 -3,63 -1,81 70,906 65 16,656 7131,66 963,88	945 836
3634 0,391 385,47 -3,69 -1,75 71,797 73 18,186 7107,33 1122,13 3651 0,385 378,41 -3,69 -1,81 71,438 66 16,77 7118,33 984,75 3664 0,374 367,53 -3,63 -1,81 70,906 65 16,656 7131,66 963,88	836
3664 0,374 367,53 -3,63 -1,81 70,906 65 16,656 7131,66 963,88	
	021
3689 0,361 353,41 -3,69 -2 70,195 58 15,063 7129 854,5	821
	700
7166 0,46 360 -9,63 -7,19 46,375 102 29,227 7760,66 1339,5	1254
7170 0,47 367,19 -9,69 -7,06 46,602 86 24,711 7131,66 1054,38	954
7160 0,528 414,84 -9,5 -6,25 48,492 85 24,279 7140 1067,63	977
7168 0,52 408,84 -9,56 -6,38 48,227 76 21,818 7148 926,25	829
7167 0,51 400,28 -9,56 -6,5 47,852 75 21,432 7137,33 919,38	799
7170 0,471 368,56 -9,63 -7 46,656 68 19,84 7123,66 808,38	692
7138 0,466 365,66 -9,5 -7 46,719 50 15,479 7145,33 574,88	480
7360 0,567 441,59 -9,94 -6,25 48,594 28 8,891 7159 234,88	-
8132 0,548 402,81 -11,19 -7,75 42,813 95 27,717 7121 1140	1059
8142 0,539 396 -11,25 -7,94 42,453 89 26,055 7126,33 1044,25	949
8167 0,532 390,22 -11,31 -8,06 42,125 82 23,938 7129 905,88	826
8164 0,528 387,31 -11,38 -8,19 42,016 75 22,242 7137,33 826	739
8168 0,502 367,53 -11,44 -8,56 41,266 62 18,904 7142,66 663	569
4108 0,391 372,5 -4,56 -2,63 67,32 80 20,25 7153,66 1279,63	1037
4148 0,401 382,56 -4,56 -2,5 67,492 70 18,012 7107,33 1053	875
4128 0,392 374 -4,5 -2,56 67,359 66 17,355 7110,33 1010,63	827
4150 0,388 370,19 -4,5 -2,63 67,063 59 15,607 7107,33 860,38	704
4166 0,402 382,56 -4,63 -2,56 67,406 51 13,986 7159 753,38	605
4160 0,375 356,53 -4,56 -2,75 66,484 48 13,236 7129 702,13	551
4160 0,401 382,56 -4,56 -2,5 67,469 44 12,283 7129 641	505
4160 0,367 348,66 -4,5 -2,75 66,211 35 9,734 7148 425,5	365
4044 0,373 357,44 -4,31 -2,5 67,438 31 8,486 7102 347,75	307
4160 0,346 328,28 -4,56 -3,06 65,539 30 8,363 7137,33 337,88	295

Таблица В.2 – Сравнение расходов топлива в КС СУ №2, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27,

Н, м	M, 1	$V_{\text{приб}}, \frac{\text{км}}{\text{час}}$	t _н ,°C	t _{BX} , °C	<i>P</i> _{вх} , кПа	$\alpha_{ m pyg}$, $^{\circ}$	$\pi_{ ext{ iny K}\Sigma}^*$, 1	$n_{\scriptscriptstyle ext{TBB}}$, $rac{ ext{об}}{ ext{мин}}$	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$
634	0,297	352,72	0	1,19	99,898	118	23,105	8408	2509	1919
620	0,25	293,34	0	0,81	98,188	87	17,518	7154	1652,38	1228
638	0,256	305,59	0	0,88	98,438	79	15,988	7116	1466,38	1076
690	0,273	324,59	-0,19	0,81	98,359	64	13,508	7126	1126,75	846
685	0,272	316,47	-0,19	0,81	98,188	59	12,615	7186	1023,88	767
3682	0,369	361,5	-3,75	-2	70,547	118	26,852	8397	2107,13	1697
3720	0,375	367,06	-3,81	-2	70,438	83	20,723	7121	1392,13	1124
3645	0,411	403,75	-3,69	-1,5	72,445	45	11,998	7148	727,5	527
7156	0,453	354,09	-9,69	-7,31	46,219	99	26,781	7341	1271,5	1074
7167	0,467	365,66	-9,56	-7	46,563	72	20,844	7140	885	743
7172	0,485	380,84	-9,63	-6,88	47,094	71	20,576	7137	883	738
7158	0,463	362,19	-9,5	-7	46,492	59	17,563	7148	751,25	576
7139	0,468	366,94	-9,5	-6,94	46,766	52	15,799	7140	677,75	496
8185	0,508	371,81	-11,44	-8,5	41,344	98	27,053	7327	1134,63	979
8170	0,524	383,84	-11,38	-8,25	41,867	80	23,482	7145	943,75	797
8207	0,511	372,84	-11,44	-8,44	41,266	79	23,236	7140	900,75	772
8172	0,615	454,09	-11,38	-7,06	44,813	57	17,361	7145	725,75	554
4188	0,374	354,78	-4,75	-2,94	66,219	86	21,938	7116	1451,63	1145
4170	0,373	354,31	-4,69	-2,94	66,328	75	19,254	7121	1218,25	946
4110	0,365	347,97	-4,44	-2,75	66,586	63	16,49	7113	972,75	757
4160	0,379	360	-4,63	-2,81	66,609	57	15,08	7118	943	663
4156	0,391	372,5	-4,63	-2,69	67,094	43	12,045	7107	694,38	489
4160	0,365	347,16	-4,5	-2,75	66,172	34	9,574	7145	471,38	356
4141	0,387	368,91	-4,56	-2,63	67,094	31	8,525	7148	408,25	307

Таблица В.3 – Сравнение расходов топлива в КС СУ №3, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27,

Н, м	M, 1	$V_{\text{приб}}, \frac{\text{км}}{\text{час}}$	t _н ,°C	t _{BX} , °C	<i>P</i> _{вх} , кПа	$\alpha_{ m pyg}$, $^{\circ}$	$\pi_{{\scriptscriptstyle\mathrm{K}}\Sigma}^*$, 1	$n_{\scriptscriptstyle ext{TBB}}, rac{ ext{об}}{ ext{мин}}$	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$
676	0,452	532,34	0,19	3	107,461	104	20,133	7881	2201,88	1697
668	0,347	403,28	-0,06	1,56	101,43	102	20,547	7741	2093,88	1614
650	0,314	374	-0,06	1,31	100,398	86	17,477	7102	1612,13	1255
622	0,286	341,59	-0,06	1,06	99,813	70	14,498	7124	1270	951
632	0,295	344,94	-0,13	1	99,688	65	13,621	7156	1159	869
641	0,295	348,88	-0,06	1,19	99,781	55	11,848	7140	967,88	717
628	0,308	367,28	-0,06	1,19	100,422	52	11,396	7132	911,25	686
641	0,294	347,25	0,06	1,25	99,656	48	10,734	7121	829,88	632
3808	0,525	513,47	-3,88	-0,31	76,188	102	24,184	7741	1880,38	1575
3638	0,39	383,5	-3,69	-1,75	71,711	73	18,467	7121	1168	966
3666	0,421	413,69	-3,69	-1,44	72,688	57	14,846	7145	899,88	713
3688	0,359	351,91	-3,69	-2	70,148	54	14,475	7137	833,38	662
3657	0,421	415,09	-3,69	-1,44	72,789	49	13,293	7129	777,63	610
3645	0,415	409,06	-3,63	-1,44	72,664	43	11,688	7148	665,38	510
3648	0,399	393,09	-3,63	-1,63	72,008	42	11,33	7154	646,13	484
7304	0,616	482,56	-9,69	-5,25	50,727	102	26,336	7719	1327,63	1193
7174	0,632	501,09	-9,5	-4,81	52,43	75	21,447	7129	1004,13	895
7192	0,636	503,28	-9,44	-4,69	52,453	70	19,922	7140	946,25	802
7184	0,641	508,16	-9,44	-4,56	52,719	67	19,197	7129	901,88	764
7139	0,464	363,47	-9,5	-7	46,641	96	25,961	7124	1164,63	1030
7180	0,497	389,75	-9,63	-6,69	47,398	27	8,93	7156	315,38	-
8218	0,603	443,69	-11,44	-7,31	44,086	96	25,742	7121	1092,63	979
8170	0,64	473,66	-11,44	-6,75	45,727	27	9,082	7116	286,5	-
4145	0,388	369,94	-4,56	-2,63	67,102	96	24,053	7110	1651,13	1331
4150	0,388	370,06	-4,5	-2,63	67,063	57	15,219	7137	869,13	678
4152	0,384	365,66	-4,5	-2,69	66,875	46	12,809	7135	689,5	538
4184	0,36	341,81	-4,56	-2,94	65,813	37	10,389	7143	525,88	395
4164	0,314	297,5	-4,5	-3,25	64,547	27	8,025	7124	372,25	277
4112	0,37	356,06	-4,5	-2,69	66,836	27	7,885	7143	401,25	279

Таблица В.4 – Сравнение расходов топлива в КС СУ №4, измеренных в процессе летных испытаний (полет №640 от 31.10.12), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27,

Н, м	M, 1	$V_{\text{приб}}, \frac{\kappa M}{\text{час}}$	t _н , °C	<i>t</i> _{вх} , °C	<i>P</i> _{вх} , кПа	$lpha_{ m pyg}$, $^{\circ}$	$\pi_{{\scriptscriptstyle{\mathrm{K}}}\Sigma}^*$, 1	$n_{{}^{_{ ext{TBB}}}}, rac{{}_{ ext{об}}}{{}_{ ext{мин}}}$	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{Yac}}$	$G_{\text{т.мод}}, \frac{\kappa \Gamma}{\text{час}}$
320,5	0,22	258,25	0,75	1,44	100,5313	118,08	22,14	8381,66	2617,88	1808
503,5	0,23	276,19	0,73	1,06	98,9063	102,04	20,27	7751	2168,50	1546
543,5	0,23	286,97	0,31	1,00	98,7734	102,03	20,27	7744,66	2169,88	1543
620,5	0,24	293,34	0,23	0,81	98,1875	89,31	18	7156,33	1763,25	1283
651	0,24	308,97	-0,06	0,88	98,4063	83,5	16,87	7126,33	1584,63	1166
690	0,27	318,78	-0,19	0,88	98,1563	65,3	13,72	7189,33	1171,50	864
687,5	0,27	317,28	-0,13	0,81	98,1719	60,15	12,82	7153,66	1066,50	785
3630	0,39	386,97	-3,69	-1,75	71,8828	74,43	18,62	7118,33	1201,75	981
3647,5	0,37	395,19	-3,63	-1,75	72,0391	45,88	12,38	7137,33	740,63	547
3553,5	0,46	454,44	-4,31	-1,69	75,4844	28,8	7,63	7137,55	374	547
7150	0,55	432	-9,5	-6	49,2969	101,98	26,67	7741,33	1276,5	1168
7175,5	0,46	362,53	-9,63	-7,13	46,4063	94,51	25,92	7110,33	1160	1021
7170,5	0,47	367,19	-9,63	-7,13	46,5938	85,04	24,51	7134,66	1087,25	943
7165,5	0,47	370,75	-9,63	-7,00	46,7656	72,52	21,08	7134,66	883,5	758
7158,5	0,48	373,06	-9,63	-6,94	46,875	66,14	19,49	7142,66	789,88	679
7145	0,48	373,88	-9,56	-6,88	46,9922	58,98	17,65	7137,33	733,38	588
7139	0,47	366,72	-9,56	-7	46,7578	50,92	15,72	7131,66	638,13	492
8158,5	0,51	373,06	-11,38	-8,44	41,5156	100,56	26,98	7594	1058,63	926
8190	0,51	375,03	-11,44	-8,44	41,4453	95,83	26	7129	1021,13	919
8142,5	0,55	401,19	-11,25	-7,81	42,6875	93,73	25,59	7118,33	1008,88	930
8142,5	0,54	396,22	-11,31	-7,94	42,4688	89,65	25,6	7118,33	1008,88	924
8167	0,53	390,22	-11,31	-8,06	42,125	82,69	24,52	7121	940	856
8165,5	0,53	386,5	-11,38	-8,19	41,9922	76,78	22,75	7126,33	847	764
6636,5	0,57	468,22	-8,5	-4,63	54,0313	28,77	8,72	7145,33	296,63	-
4186,5	0,37	354,69	-4,75	-3	66,2188	85,91	22,02	7113	1442,63	1150
4178	0,37	353,5	-4,69	-2,94	66,2344	78,36	20,14	7115,66	1262,63	1009
4167	0,37	355,47	-4,69	-2,94	66,3906	72,36	18,73	7110,33	1143,13	908
4126,5	0,39	374,34	-4,5	-2,56	67,3828	66,2	17,25	7118,33	1113,25	820
4179	0,28	267,28	-4,56	-3,56	63,625	64,51	17,13	7104,66	1018,88	760
4136,5	0,39	372,84	-4,5	-2,56	67,25	61,86	16,26	7126,33	967,13	750
4151	0,39	369,59	-4,5	-2,63	67,0313	60,41	16,04	7123,66	932,75	733
4182,5	0,27	258,5	-4,5	-3,56	63,3047	55,81	15,16	7126,33	851,5	633
4134	0,38	359,06	-4,5	-2,75	66,7734	55,52	15,01	7115,66	826,25	661
4160,5	0,38	360,69	-4,63	-2,81	66,625	54,1	14,67	7121	877,5	639
4152	0,38	365,91	-4,5	-2,69	66,875	49,57	13,72	7129	749,75	584
4156	0,39	372,84	-4,63	-2,69	67,1094	41,04	11,4	7107,33	620,88	453
4185	0,36	342,63	-4,56	-2,88	65,8203	40,99	11,41	7140	616,88	445
4159,5	0,37	348,19	-4,5	-2,81	66,2109	34,67	9,63	7151	480,38	359
4168	0,4	384,31	-4,63	-2,63	67,4531	34,21	9,46	7121	473,25	357
4163	0,3	288,81	-4,56	-3,38	64,3281	31,81	8,81	7131,66	427,63	309
4158,5	0,34	323,88	-4,56	-3,06	65,4063	31,73	8,79	7145,33	421,25	312
4042,5	0,38	360,22	-4,38	-2,56	67,5469	30,67	8,41	7115,66	407,5	304
4171,5	0,42	397,16	-4,69	-2,5	67,9141	28,77	7,9	7126,33	374,75	281

Таблица В.5 – Сравнение расходов топлива в КС СУ №1, измеренных в процессе летных испытаний (полет №657 от 27.01.13), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27,

Н, м	M, 1	$V_{\text{приб}}, \frac{\text{км}}{\text{час}}$	t _н ,°C	t _{BX} , °C	$P_{\rm BX}^*, \frac{\kappa\Gamma}{{\rm cm}^2}$	$\alpha_{ m руд}$, °	$\pi_{ ext{ iny K}\Sigma}^*$, 1	$n_{\scriptscriptstyle ext{TBB}}, rac{of}{muH}$	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{Yac}}$	$G_{\text{т.мод}}, \frac{\kappa \Gamma}{\text{час}}$
476	0,297	350,5	-3,88	-2,69	1,0366	101,47	20,029	7719	1993,5	1544
514	0,245	288,59	-3,81	-3,06	1,0122	92,7	18,461	7115,66	1749,5	1321
436	0,182	215,78	-3,75	-3,31	1,0035	89,48	17,732	7129	1654,88	1233
552	0,301	355,94	-3,69	-2,5	1,0293	71,11	14,453	7126,33	1217,13	947
436	0,334	398,66	-3,69	-2,25	1,0595	69,13	13,924	7145,33	1187,5	926
524	0,32	380,25	-3,69	-2,31	1,0423	59,95	12,584	7156,33	1018,63	790
420	0,335	399	-3,75	-2,25	1,061	57,45	11,893	7121	970,75	744
429	0,344	411,03	-3,75	-2,19	1,0653	47,22	10,244	7099,33	739,25	617
414	0,29	349,81	-3,69	-2,63	1,0421	28,09	6,291	7025	387,88	330
5122	0,393	350,97	-6,94	-5,06	0,6025	100,65	21,234	7110,33	1183	968
5124	0,39	348,53	-7,06	-5,19	0,6013	74,23	20,012	7134,66	1036,25	885
5124	0,392	350,38	-7,06	-5,19	0,6021	70,22	19,053	7131,66	966,88	825
5126	0,395	352,59	-6,94	-5,06	0,6027	66,33	18,154	7134,66	891,38	769
5117	0,467	418,78	-6,63	-4	0,6293	39,61	11,322	7142,66	543	413
5126	0,4	358,25	-7,06	-5,13	0,6048	37,98	10,916	7153,66	496,63	376
5120	0,425	380,72	-6,69	-4,5	0,6136	34,27	9,854	7151	428	335
5128	0,592	534,88	-7	-2,75	0,6861	28,1	7,922	7153,66	351,88	-
7430	0,708	554,69	-11,06	-5,31	0,5497	101,82	27,043	7741,33	1614,38	1350
7417	0,703	550,75	-11,06	-5,38	0,5484	88,7	24,199	7131,66	1312,13	1112
8052	0,588	436,84	-11,56	-7,63	0,4552	89,74	26,066	7123,66	1077,25	1008
8044	0,65	485,69	-11,56	-6,75	0,4789	49	15,262	7140	591,25	480
8045	0,623	463,81	-11,56	-7,19	0,4681	45,87	14,381	7151	540,5	430
8057	0,564	417,88	-11,38	-7,81	0,4467	28,1	9,082	7156,33	232,13	-

Таблица В.6 – Сравнение расходов топлива в КС СУ №2, измеренных в процессе летных испытаний (полет №657 от 27.01.13), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27,

Н, м	M, 1	$V_{\text{приб}}, \frac{\text{км}}{\text{час}}$	t _н ,°C	t _{BX} , °C	$P_{\rm BX}^*, \frac{\kappa\Gamma}{{ m cm}^2}$	$\alpha_{ m pyg}$, $^{\circ}$	$\pi_{{\scriptscriptstyle\mathrm{K}}\Sigma}^*$, 1	$n_{\scriptscriptstyle ext{TBB}}, rac{ ext{об}}{ ext{мин}}$	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\scriptscriptstyle \mathrm{T.MOД}}, rac{\mathrm{K}\Gamma}{\mathrm{vac}}$
658	0,408	479,09	-3,5	-1,38	1,0701	101,06	19,787	7672	2014,25	1582
436	0,182	215,78	-3,75	-3,31	1,0034	91,65	18,074	7135	1754,13	1267
430	0,172	205,94	-3,69	-3,25	1,002	83,39	16,512	7145	1559,88	1110
426	0,171	203,41	-3,75	-3,38	1,0028	76,82	15,26	7145	1395,5	991
435	0,201	237,88	-3,69	-3,19	1,0087	66,27	13,523	7121	1185,38	842
422	0,208	248,88	-3,69	-3,13	1,0124	65,09	13,338	7078	1158,13	828
429	0,335	399,69	-3,75	-2,31	1,0605	61,93	12,637	7145	1073	809
435	0,2	239,03	-3,69	-3,19	1,0086	58,56	12,209	7126	1020,88	730
434	0,331	398,53	-3,69	-2,31	1,0602	54,16	11,346	7113	916,25	699
424	0,336	401,53	-3,75	-2,31	1,0631	53,41	11,168	7151	899,25	687
5126	0,397	355,13	-6,94	-5,06	0,6036	101,52	21,348	7126	1201,38	978
5126	0,398	356,19	-6,88	-4,94	0,6041	71,77	19,271	7124	1031,13	842
5126	0,491	441,47	-6,75	-3,75	0,6386	57,04	15,67	7151	828,13	663
5124	0,487	438	-6,75	-3,81	0,6372	47,89	13,742	7135	687,5	547
5117	0,468	420,19	-6,69	-4	0,6298	38,2	10,908	7159	519	-
5120	0,437	391,25	-6,69	-4,38	0,6176	33,21	9,455	7151	407,5	-
7642	0,621	475,28	-10,88	-6,44	0,4954	101,82	26,98	7748	1369,5	1185
7617	0,631	484,31	-10,81	-6,19	0,5013	71,98	20,619	7143	924,38	787
8046	0,624	465,09	-11,56	-7,13	0,4688	43,16	13,41	7151	512,5	388
1318	0,484	549,13	-1,81	1,31	1,0341	99,84	19,818	7509	2052	1586
1320	0,486	552,94	-1,81	1,38	1,0356	83,93	16,73	7129	1578,75	1203
1312	0,461	525,75	-1,75	1,06	1,0208	57,74	12,176	7143	1017,63	750
1310	0,433	490,91	-1,75	0,69	1,0025	52,52	11,469	7156	913,38	677
1310	0,426	484,53	-1,81	0,63	0,9994	46,95	10,564	7118	769,88	606

Таблица В.7 – Сравнение расходов топлива в КС СУ №3, измеренных в процессе летных испытаний (полет №657 от 27.01.13), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27,

Н, м	M, 1	$V_{\text{приб}}, \frac{\text{км}}{\text{час}}$	t _н ,°C	t _{BX} , °C	$P_{\rm BX}^*, \frac{\kappa\Gamma}{{ m cm}^2}$	$lpha_{ m pyg}$, $^{\circ}$	$\pi_{{\scriptscriptstyle\mathrm{K}}\Sigma}^*$, 1	$n_{\scriptscriptstyle ext{TBB}}$, $rac{of}{мин}$	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$
436	0,182	216,94	-3,75	-3,31	1,0035	92,85	18,336	7121	1826,25	1294
422	0,182	208,59	-3,63	-3,25	1,0033	81,43	16,176	7121		1078
422						,		7126	1534,63 1366	952
435	0,182	216,94	-3,63	-3,19	1,0056	73,31	14,793			824
	0,201	240,44	-3,69	-3,19	1,0087	64,57	13,32	7113	1174,88	
430	0,206	246	-3,69	-3,13	1,0106	63,55	13,088	7073	1170,25	805
410	0,27	326,56	-3,63	-2,69	1,0346	27,27	6,316	7020	448,88	330
5135	0,529	474,22	-7,19	-3,75	0,6542	101,53	25,688	7706	1783,63	1436
5054	0,487	439,97	-6,56	-3,63	0,6428	80,45	20,986	7129	1290,88	1028
5120	0,492	442,41	-6,75	-3,75	0,6394	71,92	19,205	7140	1094,63	898
5104	0,489	440,56	-6,69	-3,69	0,6396	64,88	17,502	7140	976,88	782
5126	0,491	441,25	-6,75	-3,75	0,6386	55,77	15,479	7135	835,38	651
5120	0,473	425,16	-6,69	-3,94	0,6318	35,32	10,037	7137	467,25	-
5120	0,438	392,88	-6,69	-4,31	0,6182	29,76	8,475	7140	364,63	-
5126	0,4	358,38	-7,06	-5,13	0,6048	101,18	20,957	7151	1178,13	954
5120	0,397	355,03	-7	-5,13	0,604	27,23	8,334	7173	334,38	261
7642	0,621	475,28	-10,88	-6,44	0,496	101,38	26,846	7706	1365,13	1176
7498	0,595	459,66	-11,38	-7,38	0,4956	86,13	24,465	7118	1188,5	996
7620	0,63	483,97	-10,75	-6,19	0,5009	71,14	20,555	7126	925,5	783
7494	0,709	553,16	-11,06	-5,31	0,5452	88,46	24,455	7113	1351,5	1125
8046	0,671	501,78	-11,5	-6,38	0,4872	27,15	8,85	7132	325,75	-
6342	0,582	485,56	-9,38	-5,38	0,5774	68,62	19,066	7132	1013,5	868
6317	0,581	485,69	-9,31	-5,38	0,579	59,39	17,012	7124	856,38	682
6286	0,578	483,72	-9,19	-5,25	0,5801	56,63	16,178	7137	830,13	633
1320	0,485	550,03	-1,81	1,31	1,0353	99,14	19,873	7414	2100,38	1559
1323	0,468	531,41	-1,81	1,06	1,0232	94,73	19,139	7121	1948,75	1448
1289	0,453	514,97	-1,63	1,06	1,0175	84,66	17,236	7110	1693,75	1230
1248	0,467	531,63	-1,63	1,25	1,0323	71,3	14,645	7086	1382,88	984
1308	0,477	540,09	-2	1,06	1,0315	54,4	11,834	7065	1038,75	729
1588	0,49	546,91	-2,69	0,44	1,0054	31,32	7,053	7075	509,25	-

Таблица В.8 – Сравнение расходов топлива в КС СУ №4, измеренных в процессе летных испытаний (полет №657 от 27.01.13), с расходами топлива в КС, полученными по результатам расчета ММ ТВВД Д-27,

Н, м	M, 1	$V_{\text{приб}}, \frac{\text{км}}{\text{час}}$	t _н ,°C	t _{BX} , °C	$P_{\rm BX}^*, \frac{\kappa\Gamma}{{\rm cm}^2}$	$\alpha_{ m руд}$, $^{\circ}$	$\pi_{ ext{ iny K}\Sigma}^*$, 1	$n_{{}^{ ext{ iny TBB}}}, rac{ ext{ iny Of}}{ ext{ iny MИН}}$	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$
436	0,182	215,78	-3,75	-3,31	1,0035	94,11	18,584	7126	1871,25	1319
430	0,173	205,94	-3,69	-3,25	1,0021	85,75	17,037	7129	1656,5	1162
438	0,337	400,16	-3,69	-2,25	1,0607	70,05	14,1	7121	1246,5	944
424	0,34	407,09	-3,75	-2,19	1,0637	65,3	13,289	7135	1161,13	870
422	0,341	408,5	-3,69	-2,19	1,0656	60,39	12,436	7124	1060,38	795
426	0,337	398,53	-3,75	-2,25	1,0619	53,08	11,201	7145	905,63	690
5139	0,43	384,75	-7,19	-4,94	0,6141	101,48	26,334	7722	1664,75	1379
5126	0,397	355,13	-7,13	-5,19	0,6037	101,39	21,307	7062	1199,63	974
5116	0,491	441,59	-6,69	-3,75	0,6393	71,69	19,109	7148	1081	891
5106	0,49	440,56	-6,69	-3,69	0,6396	67,44	18,1	7148	1021,13	823
5128	0,493	443,44	-6,75	-3,75	0,6392	63,66	17,246	7126	924,38	765
5126	0,491	441,25	-6,75	-3,75	0,6384	57,52	15,834	7135	837,63	673
5122	0,485	436,63	-6,75	-3,81	0,6367	48,48	13,93	7137	739	557
5117	0,469	421,47	-6,69	-4	0,6303	38,39	11,033	7145	521,25	-
5120	0,394	352,34	-7,06	-5,19	0,6031	28,7	8,127	7049	319,63	251
7438	0,708	554,56	-11,06	-5,31	0,5495	102,15	27,283	7751	1715,5	1369
7642	0,621	475,28	-10,88	-6,44	0,4954	101,02	26,996	7662	1389,75	1184
7610	0,633	486,16	-10,81	-6,19	0,5025	77,37	22,082	7137	1019,63	875
7636	0,629	483,16	-10,75	-6,13	0,4997	71,77	20,635	7135	927,25	786
8052	0,682	510,56	-11,5	-6,25	0,4915	96,34	26,311	7118	1362	1130
8045	0,668	500,38	-11,5	-6,38	0,4865	63,73	18,664	7137	778,25	661
8044	0,651	485,91	-11,56	-6,69	0,4794	51,09	15,729	7140	655	503
8045	0,621	462,66	-11,56	-7,19	0,4677	47,98	15,131	7140	599,63	461
1332	0,456	518,78	-1,81	0,94	1,0152	94,77	19,105	7132	1985,5	1431
1278	0,454	517,06	-1,63	1,06	1,021	82,94	16,736	7099	1668,5	1182
1248	0,467	531,63	-1,63	1,25	1,0323	70,01	14,354	7113	1365,88	962
1260	0,472	537,44	-1,81	1,19	1,0345	61,27	12,783	7129	1171,63	812
1295	0,474	539,5	-1,94	1,06	1,0323	55,12	11,814	7113	1048,75	728
1579	0,489	547,97	-2,69	0,44	1,0057	35,43	7,932	7121	589	-

Таблица В.9 — Сравнение параметров ТВВД Д-27 по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на высоте H=0 м, числе Маха M=0, на различных режимах работы двигателя

Пар./Реж.	3МГ	0,2МП	0,3МП	0,4МП	0,5МП	0,6МП	0,7МП	0,8МП	МАКС.КР	МΠ	ВЗЛЕТ
<i>P</i> _{вх} , Па	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325	101325
$\pi_{{ t K}\Sigma}^*$, 1	6,2	10,1	11,6	12,8	14	15,1	16,3	17,5	18,6	19,6	22
$P_{\scriptscriptstyle \mathrm{KB}\mathcal{J}}^*$, Па	628280	1027313	1172573	1301573	1416088	1534389	1651807	1773246	1884182	1986890	2227954
$n_{\rm HJ}$, $\frac{{ m of}}{{ m мин}}$	8913	10624	11702	12536	12654	12810	12951	12950	13108	13193	13468
$n_{\rm HД.МОД}$, $\frac{{ m of}}{{ m MUH}}$	-	10223	10992	11468	11904	12295	12567	12766	12948	13086	13366
$n_{\scriptscriptstyle m BZ}$, ${{ m of}\over { m MWH}}$	15189	17118	17501	17832	18162	18334	18516	18628	18894	19126	19580
$n_{\text{вд.мод}}, \frac{\text{об}}{\text{мин}}$	-	16750	17056	17323	17595	17832	18070	18303	18498	18696	19167
$n_{\text{\tiny TBB}}$, $\frac{\text{об}}{\text{мин}}$	5712	7135	7135	7135	7135	7135	7135	7136	7135	7723	8394
$N_{\scriptscriptstyle ext{TBB}}$, Вт	203300	1470400	2234600	3000700	3769000	4533400	5296000	6033900	6867300	7573500	9372000
$N_{{}_{\mathrm{TBB.MOД}}}$, Вт	-	1603490	2278640	2859140	3478660	4075800	4774230	5524650	6246420	6934540	8587660

Таблица В.10 — Сравнение параметров ТВВД Д-27 по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на высоте H=6000 м, числе Маха M=0.5, на различных режимах работы двигателя

Пар./Реж.	3МГ	0,2МП	0,3МП	0,4МП	0,5МП	0,6МП	0,7ΜΠ	0,8МП	МАКС.КР	МΠ	ВЗЛЕТ
<i>P</i> _{вх} , Па	55958	55958	55958	55958	55958	55958	55958	55958	55958	55958	55958
$\pi_{{ t K}\Sigma}^*$, 1	8,5	13,9	15,9	17,6	19,2	20,8	22,4	24	25,5	26,9	29,9
$P_{\scriptscriptstyle ext{ kg}}^*$, Па	476214	778659	888761	986536	1073327	1163002	1251989	1344027	1428122	1504331	1671166
$n_{\scriptscriptstyle \mathrm{HJ}}, \frac{\mathrm{of}}{\mathrm{мин}}$	9249	12060	12302	12401	12545	12697	12919	13102	13343	13688	14503
$n_{\rm HД.МОД}, \frac{{ m of}}{{ m MUH}}$	-	11461	11971	12250	12493	12689	12884	13081	13259	13387	13658
$n_{\scriptscriptstyle m BZ}$, $\frac{{ m of}}{{ m мин}}$	15667	17259	17551	17828	18120	18407	18658	18927	19164	19391	20067
$n_{\text{вд.мод}}, \frac{\text{об}}{\text{мин}}$	-	16647	17052	17385	17656	17917	18169	18414	18641	18912	19368
$n_{\text{\tiny TBB}}$, $\frac{\text{об}}{\text{мин}}$	7135	7135	7135	7135	7135	7135	7135	7135	7135	7723	8394
$N_{\scriptscriptstyle ext{TBB}}$, Вт	549000	2239900	2936100	3581200	4205800	4865700	5529500	6238900	6902200	7595400	9191600
$N_{{}_{\mathrm{TBB.MOД}}}$, Вт	-	2015680	2635230	3226760	3790620	4398090	5035980	5705510	6360180	7094300	8632460

Таблица В.11 — Сравнение параметров ТВВД Д-27 по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на высоте H=6000 м, числе Маха M=0.6, на различных режимах работы двигателя

Пар./Реж.	3МГ	0,2МП	0,3МП	0,4МП	0,5МП	0,6МП	0,7ΜΠ	0,8МП	МАКС.КР	МΠ	ВЗЛЕТ
<i>P</i> _{вх} , Па	60165	60165	60165	60165	60165	60165	60165	60165	60165	60165	60165
$\pi_{{ t K}\Sigma}^*$, 1	8,3	13,6	15,5	17,2	18,7	20,3	21,8	23,4	24,9	25,9	29,2
$P_{\scriptscriptstyle \mathrm{KB}}^*$, Па	499103	816082	931480	1033952	1124931	1218911	1312174	1408635	1496780	1558877	1756741
$n_{\rm HZ}$, $\frac{{ m of}}{{ m muh}}$	9307	12156	12392	12564	12638	12781	12982	13179	13338	13575	14435
$n_{\rm HД.МОД}, \frac{{ m of}}{{ m MUH}}$	-	11511	12040	12309	12545	12759	12942	13139	13321	13412	13713
$n_{\scriptscriptstyle m BZ}$, $\frac{{ m of}}{{ m мин}}$	15721	17318	17641	17979	18199	18489	18755	19009	19244	19438	20045
$n_{\text{вд.мод}}, \frac{\text{об}}{\text{мин}}$	-	16745	17127	17478	17746	18011	18255	18501	18729	18938	19460
$n_{\text{твв}}$, $\frac{\text{об}}{\text{мин}}$	7135	7135	7135	7135	7135	7135	7135	7135	7135	7723	8394
$N_{\scriptscriptstyle ext{TBB}}$, Вт	628600	2451700	3198500	3919400	4542500	5240200	5943800	6685500	7379900	7973200	9774100
$N_{{}_{\mathrm{TBB.MOД}}}$, Вт	-	2217510	2865410	3506560	4100060	4770030	5427430	6157550	6872240	7486800	9304710

Пар./Реж.	3МГ	0,2МП	0,3МП	0,4МП	0,5МП	0,6МП	0,7МП	0,8МП	МАКС.КР	МΠ	ВЗЛЕТ
$P_{\scriptscriptstyle m BX}^*$, Па	65422	65422	65422	65422	65422	65422	65422	65422	65422	65422	65422
$\pi_{{ t K}\Sigma}^*$, 1	8	13,1	15	16,6	18,1	19,6	21,1	22,7	23,9	24,8	27,9
<i>P</i> _{квд} , Па	525229	858801	980240	1088077	1183802	1282705	1380842	1482364	1560417	1619670	1825213
$n_{\rm HZ}$, $\frac{{ m of}}{{ m muh}}$	9367	12269	12489	12669	12741	12882	13048	13261	13393	13479	14260
$n_{\rm HД.МОД}, \frac{\rm of}{\rm мин}$	-	11524	12109	12363	12602	12827	13009	13203	13349	13435	13768
$n_{\scriptscriptstyle \mathrm{B}\mathrm{ ilde{ id}}}}}}}}} n} n} n} n} }} } } } } } } } $	15738	17371	17741	18049	18280	18574	18845	19097	19295	19474	19988
$n_{\text{вд.мод}}, \frac{\text{об}}{\text{мин}}$	-	16823	17218	17559	17844	18103	18351	18605	18794	18982	19459
$n_{\text{твв}}$, $\frac{\text{об}}{\text{мин}}$	7135	7135	7135	7135	7135	7135	7135	7135	7135	7722	8394
$N_{\scriptscriptstyle ext{TBB}}$, Вт	726000	2694900	3503800	4260900	4924100	5664700	6416200	7195500	7809900	8385200	10194100
$N_{\scriptscriptstyle ext{TBB.MOД}}$, Вт	-	2419150	3139550	3811420	4469890	5165200	5897100	6707090	7344670	7955110	9689670

Пар./Реж.	3МГ	0,2МП	0,3МП	0,4МП	0,5МП	0,6МП	0,7МП	0,8МП	МАКС.КР	МΠ	ВЗЛЕТ
<i>P</i> _{вх} , Па	26832	26832	26832	26832	26832	26832	26832	26832	26832	26832	26832
$\pi_{{ t K}\Sigma}^*$, 1	9,6	15,6	17,9	19,8	21,6	23,4	25,2	27	28,7	30	30,2
$P_{\scriptscriptstyle ext{ kg}}^*$, Па	256755	419824	479185	531907	578696	627044	675049	724633	769990	805353	811041
$n_{\scriptscriptstyle \mathrm{HJ}}$, $\frac{\mathrm{o}\mathrm{f}}{\mathrm{muh}}$	8973	11421	11563	11729	11906	12126	12305	12758	13162	13525	13525
$n_{\rm HД.MОД}$, $\frac{{ m of}}{{ m muh}}$	-	11142	11486	11742	11947	12158	12362	12548	12722	12844	12838
$n_{\scriptscriptstyle m BZ}$, ${{ m of}\over { m MWH}}$	15066	16432	16745	17079	17356	17632	17884	18139	18387	18788	18923
$n_{\text{вд.мод}}, \frac{\text{об}}{\text{мин}}$	-	15798	16222	16519	16785	17049	17309	17593	17839	18042	18109
$n_{\text{твв}}$, $\frac{\text{об}}{\text{мин}}$	7135	7135	7135	7135	7135	7135	7135	7135	7135	7723	8394
$N_{\scriptscriptstyle ext{TBB}}$, Вт	342800	1234800	1599500	1955400	2282900	2633000	2991600	3366600	3720200	4083400	4150000
$N_{{}_{\mathrm{TBB.MOД}}}$, Вт	-	1081540	1417370	1715700	2014310	2338760	2672970	3016860	3356760	3714570	3813580

Таблица В.14 — Сравнение параметров ТВВД Д-27 по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на высоте H=11000 м, числе Маха M=0.6, на различных режимах работы двигателя

Пар./Реж.	3МГ	0,2МП	0,3МП	0,4МП	0,5МП	0,6МП	0,7ΜΠ	0,8МП	МАКС.КР	МΠ	ВЗЛЕТ
<i>P</i> _{вх} , Па	28852	28852	28852	28852	28852	28852	28852	28852	28852	28852	28852
$\pi_{{ t K}\Sigma}^*$, 1	9,6	15,6	17,9	19,8	21,6	23,4	25,2	27	28,7	30	30,2
$P_{ ext{ iny KBД}}^*$, Па	276094	451451	515285	571968	622296	674284	725888	779238	827997	864185	870226
$n_{\scriptscriptstyle \mathrm{H}\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	9146	11550	11692	11858	12040	12260	12439	12906	13314	13666	13666
$n_{\rm ^{HД. MOД}}, \frac{\rm o 6}{\rm ^{MUH}}$	-	11260	11607	11864	12070	12282	12485	12676	12849	12969	12961
$n_{\text{вд}}, \frac{\text{об}}{\text{мин}}$	15181	16565	16892	17238	17520	17797	18056	18315	18567	18945	19079
$n_{\text{вд.мод}}, \frac{\text{об}}{\text{мин}}$	-	15954	16383	16683	16957	17219	17486	17777	18024	18230	18296
$n_{\text{\tiny TBB}}$, $\frac{\text{об}}{\text{мин}}$	7135	7135	7135	7135	7135	7135	7135	7135	7135	7723	8394
$N_{\scriptscriptstyle ext{TBB}}$, BT	418000	1420200	1822000	2213500	2573000	2955700	3343400	3750500	4134700	4520300	4598300
$N_{{\scriptscriptstyle \mathrm{TBB.MOД}}}$, Вт	-	1236620	1614210	1947370	2285050	2644790	3004860	3394540	3768500	4161690	4282950

Таблица В.15 — Сравнение параметров ТВВД Д-27 по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на высоте H=11000 м, числе Маха M=0.7, на различных режимах работы двигателя

Пар./Реж	3МГ	0,2МП	0,3МП	0,4МП	0,5МП	0,6МП	0,7ΜΠ	0,8МП	МАКС.КР	МΠ	ВЗЛЕТ
$P_{\scriptscriptstyle m BX}^*$, Па	31372	31372	31372	31372	31372	31372	31372	31372	31372	31372	31372
$\pi_{{ t K}\Sigma}^*$, 1	9,6	15,6	17,9	19,8	21,6	23,4	25,2	27	28,7	29,9	30,1
<i>P</i> _{квд} , Па	300268	490963	560386	622033	676765	733302	789407	847435	900471	938080	944249
$n_{\scriptscriptstyle \mathrm{H}\! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	9349	11700	11840	12008	12195	12415	12597	13079	13489	13832	13832
$n_{\rm HД.МОД}, \frac{\rm of}{\rm мин}$		11398	11750	12004	12212	12422	12628	12818	12997	13176	13203
$n_{\text{вд}}, \frac{\text{об}}{\text{мин}}$	15320	16729	17073	17425	17713	17992	18258	18519	18780	19150	19269
$n_{\text{вд.мод}}, \frac{\text{об}}{\text{мин}}$		16139	16570	16877	17153	17421	17693	17985	18232	18257	18259
$n_{{}_{\mathrm{TBB}}}$, $\frac{\mathrm{of}}{\mathrm{{}_{\mathrm{MИН}}}}$	7135	7135	7135	7135	7135	7135	7135	7135	7135	7723	8394
$N_{\scriptscriptstyle ext{TBB}}$, Вт	520100	1658300	2107800	2544200	2943400	3362400	3787200	4233100	4653200	5072200	5156100
$N_{\scriptscriptstyle ext{TBB.MOД}}$, Вт		1441040	1871340	2248680	2632890	3026980	3434040	3866930	4284660	4484430	4533370

Таблица В.16 – Сравнение параметров ТВВД Д-27 по экспериментальнорасчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на взлетном режиме, высоте полета H = 0 м, при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

$t_{\scriptscriptstyle \rm H}$, °C	$\pi_{{\scriptscriptstyle\mathrm K}\Sigma}^*$	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\text{кг}}{\text{час}}$	N _{твв} , л. с.	<i>N</i> _{твв.мод} , л. с.	T_{Γ}^* , K	$T^*_{\scriptscriptstyle{\Gamma.MOД}}$, К
		I.		M=0	l		I.
-60	21,5	2000	1403	10050	9250	1235	956
-50	21,5	2050	1455	10450	9525	1285	1002
-40	21,5	2105	1507	10950	9795	1335	1047
-30	21,5	2155	1560	11210	10065	1385	1093
-20	21,5	2205	1615	11550	10309	1440	1140
-10	21,5	2260	1671	11900	10550	1490	1189
0	21,5	2310	1729	12230	10794	1540	1238
10	21,5	2375	1789	12500	11035	1585	1289
20	21,5	2420	1853	12730	11276	1635	1343
24,5	21,5	2445	1883	12900	11384	1657	1368
30	20,7	2345	1813	12050	10674	1657	1375
40	19,1	2170	1670	10600	9188	1657	1385
50	17,8	1980	1557	9250	7975	1657	1398
				M=0,2			
-60	21	2000	1401	10050	9299	1230	954
-50	21	2050	1453	10450	9578	1280	1000
-40	21	2105	1505	10950	9850	1330	1045
-30	21	2155	1558	11210	10124	1380	1091
-20	21	2205	1613	11550	10372	1435	1138
-10	21	2260	1669	11900	10615	1485	1186
0	21	2310	1727	12230	10862	1535	1236
10	21	2375	1787	12500	11106	1580	1287
20	21	2420	1851	12730	11351	1630	1340
25	21	2445	1884	12950	11470	1657	1368
30	20,4	2370	1835	12360	10942	1657	1377
40	18,9	2170	1699	10850	9507	1657	1389
50	17,7	2010	1595	9500	8378	1657	1405
				M=0,4			
-60	19,42	1960	1376	10050	9291	1210	945
-50	19,42	2010	1433	10450	9548	1260	993
-40	19,42	2065	1489	10950	9806	1310	1042
-30	19,42	2115	1546	11210	10063	1360	1090
-20	19,42	2165	1602	11550	10320	1415	1139
-10	19,42	2220	1659	11900	10578	1465	1187
0	19,42	2270	1715	12230	10835	1515	1236
10	19,42	2335	1772	12500	11092	1560	1284
20	19,42	2380	1828	12730	11349	1610	1333
30	19,42	2430	1885	13050	11607	1657	1381
40	18,1	2240	1759	11600	10261	1657	1395
50	16,85	2070	1634	10200	8995	1657	1406

Таблица В.17 – Сравнение параметров ТВВД Д-27 по экспериментальнорасчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на взлетном режиме, высоте полета H = 1000 м, при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

t _н , °C	$\pi^*_{{\scriptscriptstyle\mathrm K}\Sigma}$	$G = \frac{\kappa \Gamma}{}$	G Kr	<i>N</i> _{твв} , л. с.	<i>N</i> _{твв.мод} , л. с.	<i>Т</i> * К	$T^*_{\scriptscriptstyle{\Gamma, MOJ}}$, К
C _H , C	KΣ	$G_{\mathrm{T}}, \frac{\mathrm{K}^{\mathrm{T}}}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\mathbf{K}^{T}}{час}$	TTBB, JII CI	ттвв.модут ст	1 _Γ ,1	т.мод) т
		l .		M=0	1	II.	
-50	23,5	2070	1465	11150	9979	1345	1036
-40	23,5	2120	1523	11600	10256	1400	1087
-30	23,5	2180	1580	11900	10534	1450	1137
-20	23,5	2230	1638	12200	10811	1500	1188
-10	23,5	2280	1696	12560	11089	1550	1239
0	23,5	2340	1753	12850	11366	1600	1289
10	23,5	2390	1811	13115	11644	1650	1340
20	22,1	2240	1701	12000	10488	1660	1354
30	20,7	2080	1590	10700	9332	1660	1369
45	18,4	1830	1425	8800	7598	1660	1390
				M=0,2			
-50	23,1	2080	1477	11360	10156	1345	1036
-40	23,1	2130	1535	11700	10441	1396	1087
-30	23,1	2190	1593	12050	10725	1447	1138
-20	23,1	2240	1652	12360	11009	1498	1189
-10	23,1	2290	1710	12700	11293	1548	1239
0	23,1	2350	1768	13000	11577	1599	1290
10	23,1	2400	1826	13270	11862	1650	1341
20	21,9	2280	1715	12300	10693	1660	1355
30	20,4	2110	1604	10990	9524	1660	1369
45	18,1	1850	1438	9000	7771	1660	1391
				M=0,4			
-50	21,7	2075	1486	11700	10457	1330	1033
-40	21,7	2131	1546	12023	10752	1381	1084
-30	21,7	2187	1605	12346	11047	1432	1135
-20	21,7	2243	1665	12669	11341	1482	1186
-10	21,7	2298	1724	12992	11636	1533	1237
0	21,7	2354	1784	13315	11931	1584	1288
10	21,7	2410	1843	13638	12226	1635	1339
15	21,7	2438	1873	13800	12373	1660	1364
20	20,98	2348	1810	13108	11720	1660	1370
30	19,55	2169	1685	11725	10415	1660	1382
45	17,4	1900	1496	9650	8457	1660	1399

Таблица В.18 – Сравнение параметров ТВВД Д-27 по экспериментальнорасчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на взлетном режиме, высоте полета H = 2500 м, при различных наружных температурах и скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

t _H , °C	$\pi_{{\scriptscriptstyle\mathrm{K}}\Sigma}^*$	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\text{кг}}{\text{час}}$	<i>N</i> _{твв} , л. с.	N _{твв.мод} , л. с.	T_{Γ}^* , K	$T^*_{\scriptscriptstyle{\Gamma.MOД}}$, К
		I.		M=0		ı	
-50	26,2	2010	1426	11500	10144	1410	1082
-40	26,2	2063	1482	11789	10440	1466	1135
-30	26,2	2117	1538	12078	10737	1521	1188
-20	26,2	2170	1595	12367	11033	1577	1241
-10	26,2	2223	1651	12656	11330	1632	1294
-5	26,2	2250	1679	12800	11478	1660	1320
0	25,4	2175	1629	12238	10948	1660	1327
10	23,8	2025	1528	11113	9889	1660	1342
20	22,2	1875	1427	9988	8830	1660	1357
35	19,8	1650	1276	8300	7241	1660	1379
				M=0,2			
-50	25,8	2030	1439	11700	10332	1410	1082
-40	25,8	2084	1496	12008	10638	1466	1135
-30	25,8	2138	1553	12315	10944	1521	1188
-20	25,8	2192	1610	12623	11250	1577	1241
-10	25,8	2245	1668	12931	11556	1632	1294
-4,5	25,8	2275	1699	13100	11724	1660	1323
0	25,08	2206	1652	12576	11234	1660	1330
10	23,49	2053	1548	11411	10143	1660	1344
20	21,89	1900	1445	10247	9053	1660	1358
35	19,5	1670	1289	8500	7417	1660	1380
				M=0,4			
-50	24,6	2080	1480	12360	10909	1405	1084
-40	24,6	2137	1540	12675	11239	1461	1138
-30	24,6	2194	1600	12990	11570	1517	1192
-20	24,6	2251	1660	13305	11901	1572	1246
-10	24,6	2308	1720	13620	12231	1628	1300
-4,3	24,6	2340	1754	13800	12420	1660	1330
0	23,94	2272	1707	13280	11929	1660	1336
10	22,42	2114	1598	12072	10788	1660	1350
20	20,89	1957	1489	10863	9647	1660	1363
35	18,6	1720	1326	9050	7935	1660	1383

Таблица В.19 — Сравнение параметров ТВВД Д-27 по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на максимальном продолжительном режиме, высоте полета H=0 м, при различных наружных температурах и скоростях полета

(физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

t _н , °C	$\pi^*_{ ext{ iny K}\Sigma}$	$G_{\mathrm{T}}, \frac{\mathrm{K}\mathrm{\Gamma}}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\text{кг}}{\text{час}}$	<i>N</i> _{твв} , л. с.	<i>N</i> _{твв.мод} , л. с.	T_{Γ}^* , K	$T^*_{г.мод}$, К
				M=0			
-60	19,15	1672	1175	8120	7297	1170	910
-50	19,15	1718	1221	8388	7521	1218	955
-40	19,15	1763	1267	8656	7745	1265	1000
-30	19,15	1809	1313	8925	7969	1313	1045
-20	19,15	1855	1359	9193	8193	1361	1090
-10	19,15	1900	1405	9461	8418	1408	1135
0	19,15	1946	1451	9729	8642	1456	1180
10	19,15	1992	1497	9998	8866	1504	1225
20	19,15	2037	1543	10266	9090	1551	1271
25	19,15	2060	1566	10400	9202	1575	1293
30	18,46	2002	1507	9834	8634	1575	1297
40	17,08	1886	1388	8702	7497	1575	1303
50	15,7	1770	1269	7570	6360	1575	1310
	•	•		M=0,2			
-60	18,7	1672	1173	8120	7336	1170	908
-50	18,7	1718	1219	8394	7561	1217	953
-40	18,7	1763	1265	8667	7787	1263	998
-30	18,7	1809	1311	8941	8012	1310	1043
-20	18,7	1855	1357	9214	8238	1356	1088
-10	18,7	1901	1403	9488	8464	1403	1134
0	18,7	1946	1450	9761	8689	1449	1179
10	18,7	1992	1496	10035	8915	1496	1224
20	18,7	2038	1542	10309	9140	1542	1269
27	18,7	2070	1574	10500	9298	1575	1301
30	18,3	2033	1539	10159	8957	1575	1303
40	16,98	1909	1422	9022	7820	1575	1310
50	15,65	1786	1305	7885	6684	1575	1318
				M=0,4			
-60	17,3	1740	1153	8420	7336	1195	900
-50	17,3	1786	1199	8684	7563	1244	945
-40	17,3	1832	1244	8949	7791	1292	990
-30	17,3	1879	1290	9213	8019	1341	1034
-20	17,3	1925	1335	9478	8247	1389	1079
-10	17,3	1971	1381	9742	8474	1438	1124
0	17,3	2017	1426	10007	8702	1486	1169
10	17,3	2064	1472	10271	8930	1535	1213
20	17,3	2110	1517	10536	9158	1583	1258
30	17,3	2156	1563	10800	9385	1632	1303
40	16,18	2003	1460	9660	8334	1632	1314
50	15,05	1850	1357	8520	7283	1632	1326

Таблица В.20 — Сравнение параметров ТВВД Д-27 по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на максимальном продолжительном режиме, высоте полета H=1000 м, при различных наружных температурах и скоростях полета

(физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

	1	КГ	КГ			1	
t _н ,°C	$\pi_{{\scriptscriptstyle\mathrm K}\Sigma}^*$	$G_{\mathrm{T}}, \frac{\mathrm{KI}}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\kappa_1}{\text{час}}$	<i>N</i> _{твв} , л. с.	$N_{ m \scriptscriptstyle TBB.MOД}$, л. с.	T_{Γ}^* , K	$T_{г.мод}^*$, К
	•			M=0			
-50	20,97	1727	1233	9070	7976	1271	986
-40	20,97	1773	1280	9329	8218	1319	1033
-30	20,97	1818	1326	9587	8460	1368	1080
-20	20,97	1864	1373 9846		8702	1416	1127
-10	20,97	1910	1420	10105	8944	1464	1174
0	20,97	1956	1466	10364	9186	1512	1221
10	20,97	2001	1513	10622	9428	1561	1268
13	20,97	2015	1527	10700	9501	1575	1282
20	19,95	1908	1449	9921	8749	1575	1287
30	18,49	1755	1338	8809	7676	1575	1295
45	16,3	1525	1172	7140	6066	1575	1307
	•			M=0,2			
-50	20,55	1734	1237	9155	8071	1271	986
-40	20,55	1780	1284	9419	8315	1318	1033
-30	20,55	1826	1331	9684	8560	1365	1080
-20	20,55	1872	1378	9948	8805	1412	1126
-10	20,55	1918	1425	10212	9049	1460	1173
0	20,55	1963	1472	10477	9294	1507	1220
10	20,55	2009	1519	10741	9539	1554	1267
14,5	20,55	2030	1540	10860	9649	1575	1288
20	19,75	1943	1477	10236	9042	1575	1291
30	18,31	1784	1364	9102	7939	1575	1296
45	16,14	1545	1193	7400	6283	1575	1304
	•			M=0,4			
-50	19,3	1743	1242	9500	8299	1257	982
-40	19,3	1789	1290	9766	8555	1305	1029
-30	19,3	1835	1338	10032	8811	1353	1076
-20	19,3	1881	1386	10298	9067	1400	1123
-10	19,3	1928	1434	10565	9322	1448	1170
0	19,3	1974	1482	10831	9578	1496	1217
10	19,3	2020	1530	11097	9834	1544	1264
16,5	19,3	2050	1561	11270	10001	1575	1295
20	18,83	1996	1521	10856	9610	1575	1297
30	17,5	1840	1408	9674	8494	1575	1305
45	15,5	1607	1237	7900	6820	1575	1317

Таблица В.21 — Сравнение параметров ТВВД Д-27 по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с параметрами ММ ТВВД Д-27 на максимальном продолжительном режиме, высоте полета H=2500 м, при различных наружных температурах и скоростях полета

(физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

t _н , °C	$\pi_{{\scriptscriptstyle\mathrm K}\Sigma}^*$	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\text{кг}}{\text{час}}$	<i>N</i> _{твв} , л. с.	<i>N</i> _{твв.мод} , л. с.	T_{Γ}^* , K	$T^*_{ m r.мод}$, К
				M=0			
-50	23,3	1671	1192	9300	8082	1323	1027
-40	23,3	1716	1237	9554	8337	1374	1076
-30	23,3	1761	1282	9808	8593	1425	1125
-20	23,3	1805	1328	10062	8848	1476	1174
-10	23,3	1850	1373	10316	9103	1527	1222
0	23,3	1895	1418	10570	9358	1578	1271
10	21,66	1747	1313	9424	8338	1578	1279
20	20,01	1599	1209	8279	7318	1578	1287
35	17,55	1377	1052	6560	5787	1578	1298
				M=0.2			
-50	23	1691	1209	9533	8288	1323	1029
-40	23	1736	1255	9798	8550	1374	1078
-30	23	1781	1301	10063	8812	1425	1127
-20	23	1825	1346	10327	9074	1476	1176
-10	23	1870	1392	10592	9336	1527	1225
0	23	1915	1438	10857	9598	1578	1274
10	21,37	1768	1331	9684	8554	1578	1281
20	19,74	1621	1225	8510	7510	1578	1289
35	17,3	1400	1065	6750	5944	1578	1301
				M=0.4			
-50	22	1736	1248	10050	8811	1323	1033
-40	22	1784	1296	10315	9095	1374	1082
-30	22	1831	1344	10580	9379	1425	1131
-20	22	1879	1391	10845	9664	1476	1181
-10	22	1926	1439	11110	9948	1527	1230
0	22	1974	1487	11375	10232	1578	1279
10	20,46	1825	1377	10250	9143	1578	1287
20	18,91	1676	1267	9125	8053	1578	1294
35	16,6	1452	1102	7437	6419	1578	1306

Таблица В.22 — Сравнение дроссельной характеристики ТВВД Д-27 по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с дроссельной характеристикой, полученной по результатам расчета ММ ТВВД Д-27, на высоте полета H=0 м, скорости полета M=0 (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

$\alpha_{ m pyg}$, °	N _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\mathrm{\Gamma}}{\mathrm{Yac}}$	$G_{\scriptscriptstyle \mathrm{T.MOД}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$
29	260	422	-
39	950	678	412
47,6	2000	852	590
57	3000	1022	723
64,6	4050	1184	862
71	5070	1318	1002
77,6	6100	1462	1137
84	7127	1611	1270
90	8140	1764	1397
93	8718	1808	1468
95,7	9253	1851	1532
101,4	10200	2013	1663
115	12633	2400	2002

Таблица В.23 – Сравнение дроссельных характеристик ТВВД Д-27

по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с дроссельными характеристиками, полученными по результатам расчета ММ ТВВД Д-27, на высоте полета H = 4000 м, при различных скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

		M=0,2			M=0,4			M=0,5		M=0,6		
$\alpha_{ m pyg}$, °	N _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{Vac}}$	$G_{\text{т.мод}}, \frac{\text{кг}}{\text{час}}$	N _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{Vac}}$	$G_{\text{т.мод}}, \frac{\text{кг}}{\text{час}}$	<i>N</i> _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{Vac}}$	$G_{\text{т.мод}}, \frac{\text{кг}}{\text{час}}$	$N_{\scriptscriptstyle ext{TBB}}$, л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{Vac}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$
29	485	400	-	690	400	-	753	400	-	765	400	-
39	1435	565	365	1710	577	394	1812	587	-	2000	592	-
48	2650	725	526	2908	748	549	3081	766	563	3375	784	590
57	3710	868	662	4044	900	690	4294	925	711	4580	944	733
64,8	4615	1000	776	5030	1048	812	5333	1075	836	5652	1100	859
71	5333	1070	862	6000	1148	927	6275	1200	948	6740	1241	987
78	6220	1183	969	6725	1234	1012	7129	1275	1046	7738	1325	1100
84	7077	1306	1070	7738	1369	1129	8082	1407	1155	8609	1450	1198
90	8000	1437	1177	8692	1508	1238	9074	1546	1268	9621	1600	1312
96	9151	1602	1308	9826	1680	1366	10319	1728	1407	10884	1782	1451
101,4	10132	1757	1426	10884	1833	1488	11435	1884	1535	12000	1942	1578

Таблица В.24 – Сравнение дроссельных характеристик ТВВД Д-27

по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с дроссельными характеристиками, полученными по результатам расчета ММ ТВВД Д-27, на высоте полета H = 6000 м, при различных скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

		M=0,4			M=0,5			M=0,6		M=0,7		
$\alpha_{ m pyg}$, °	N _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{Vac}}$	$G_{\text{т.мод}}, \frac{\text{кг}}{\text{час}}$	N _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$	N _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{Vac}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$	N _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$
29	653	338	195	753	351	206	890	365	-	1000	373	-
39	1653	492	341	1800	504	355	2010	540	-	2282	548	-
48	2718	641	476	3000	663	504	3266	688	527	3595	724	555
57	3646	768	588	3995	800	620	4320	840	648	4680	874	677
64,7	4500	847	688	4833	925	719	5267	967	757	5736	1011	796
71	5200	947	770	5568	987	803	6040	1030	844	6634	1080	896
78	6000	1042	862	6400	1100	897	6932	1153	944	7500	1206	991
84	6820	1169	955	7268	1220	995	7831	1278	1044	8443	1345	1095
90	7634	1292	1046	8114	1347	1088	8718	1407	1142	9430	1481	1203
96	8693	1440	1166	9177	1495	1208	9646	1541	1243	10225	1595	1289
101,4	9620	1587	1270	10127	1637	1312	10763	1700	1364	11400	1767	1415

Таблица В.25 – Сравнение дроссельных характеристик ТВВД Д-27

по экспериментально-расчетным данным ЗМКБ «Прогресс» им. А.Г. Ивченко с дроссельными характеристиками, полученными по результатам расчета ММ ТВВД Д-27, на высоте полета H = 9000 м, при различных скоростях полета (физическое наружное давление соответствует МСА, ТО №199/2001-27 [82])

		M=0,4		M=0,5				M=0,6		M=0,7			
$\alpha_{ m pyg}$, °	N _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{Yac}}$	$G_{\text{т.мод}}, \frac{\text{кг}}{\text{час}}$	N _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{Vac}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$	<i>N</i> _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$	N _{твв} , л. с.	$G_{\mathrm{T}}, \frac{\mathrm{K}\Gamma}{\mathrm{vac}}$	$G_{\text{т.мод}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$	
29	533	241	-	641	253	-	790	266	-	934	280	-	
39	1267	352	241	1443	368	260	1649	385	281	1897	408	305	
48	2067	454	341	2338	484	368	2616	512	395	2945	547	424	
57	2792	527	426	3028	568	448	3384	600	481	3803	640	518	
64,7	3267	600	480	3615	633	513	3950	674	542	4422	720	585	
71	3827	679	542	4211	715	579	4634	761	618	5151	820	665	
78	4417	755	608	4833	800	648	5274	852	689	5822	912	739	
84	5000	840	674	5473	893	720	5960	947	764	6568	1014	821	
90	5640	927	747	6079	982	788	6635	1043	840	7270	1115	897	
96	6385	1049	831	6910	1114	882	7408	1159	926	7960	1222	967	
101,4	7000	1142	895	7600	1207	954	8010	1255	988	8625	1325	1042	

приложение г

(обязательное)

Значения коэффициентов идентификации ММ ТВВД Д-27

Таблица Г.1 – Расчетные значения коэффициента идентификации $k_{\rm u}$

k _и , 1	$rac{P_0}{P_{ ext{BX}}^*} \cdot \sqrt{rac{T_0}{T_{ ext{BX}}^*}}$	$P_{\scriptscriptstyle m BX}^*$, Па	$T_{\scriptscriptstyle m H}$, К	<i>M</i> , 1	$T_{\scriptscriptstyle m BX}^*$, K
0,727	1,053929594	98187,5	273,15	0,24	276,2588786
0,736	1,052775862	98171,9	273,02	0,27	276,9527097
0,797	1,564452154	66218,8	268,4	0,37	275,6542323
0,86	2,210685794	46875	263,52	0,48	275,4959675
0,9106	2,456187721	42125	261,84	0,53	276,3432808

Таблица $\Gamma.2$ – Расчетные значения угла идентификации $\phi_{\scriptscriptstyle \mathrm{H}}$

Режим/Парам,		3МГ	0,2МП	0,3МП	0,4ΜΠ	0,5МП	0,6МП	0,7MΠ	0,8MΠ	МАКС.КР	МΠ	ВЗЛЕТ
	$\pi_{\kappa\Sigma}^*$, 1	6,2	10,1	11,6	12,8	14	15,1	16,3	17,5	18,6	19,6	22
H = 0, M; M = 0;	N_{TBB} , BT	203300	1470400	2234600	3000700	3769000	4533400	5296000	6033900	6867300	7573500	9372000
$\frac{P_0}{P_{\text{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{BX}}^*}} = 1.$		203300	1603490	2278640	2859140	3478660	4075800	4774230	5524650	6246420	6934540	8587660
	N _{твв.мод} , Вт	-	-1,67623E-05	-3,2E-06	7,21E-06	1,11E-05	1,39E-05	1,3E-05	1,06E-05	1,1E-05	9,89E-06	9,23648E-06
	$\varphi_{_{\mathrm{H}}}$, $^{\circ}$	8,5	13,9	-5,2E-06 15,9	17,6		20,8	22,4	24	-	26,9	29,9
H = 6000, M;	$\pi_{\kappa\Sigma}^*$, 1					19,2	•			25,5		
M = 0.5;	N_{TBB} , BT	549000	2239900	2936100	3581200	4205800	4865700	5529500	6238900	6902200	7595400	9191600
$\frac{P_0}{P_{\text{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{BX}}^*}} = 1,9.$	$N_{\text{твв.мод}}$, Вт	-	2015680	2635230	3226760	3790620	4398090	5035980	5705510	6360180	7094300	8632460
	φ _и , °	-	2,67999E-05	2,52E-05	2,26683E-05	2,15E-05	2E-05	1,78E-05	1,64E-05	1,45E-05	1,17E-05	1E-05
H = 6000, m;	$\pi_{{\scriptscriptstyle{\mathrm{K}}}\Sigma}^*$, 1	8,3	13,6	15,5	17,2	18,7	20,3	21,8	23,4	24,9	25,9	29,2
M = 0.6;	N_{TBB} , BT	628600	2451700	3198500	3919400	4542500	5240200	5943800	6685500	7379900	7973200	9774100
$\frac{P_0}{P_{\text{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{BX}}^*}} = 1,75.$	$N_{\text{твв.мод}}$, Вт	-	2217510	2865410	3506560	4100060	4770030	5427430	6157550	6872240	7486800	9304710
$P_{\rm BX} = \sqrt{T_{\rm BX}}$	$arphi_{\scriptscriptstyle m H}$, $^{\circ}$	-	2,193E-05	2,23E-05	2,12E-05	1,87E-05	1,65E-05	1,54E-05	1,35E-05	1,14E-05	9,7E-06	7,1E-06
H = 6000, m;	$\pi_{{\scriptscriptstyle{\mathrm{K}}}\Sigma}^*$, 1	8	13,1	15	16,6	18,1	19,6	21,1	22,7	23,9	24,8	27,9
M = 0.7;	$N_{\scriptscriptstyle ext{TBB}}$, Вт	726000	2694900	3503800	4260900	4924100	5664700	6416200	7195500	7809900	8385200	10194100
$\frac{P_0}{P_{\text{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{BX}}^*}} = 1,59.$	$N_{_{\mathrm{TBB.MOД}}}$, Вт	-	2419150	3139550	3811420	4469890	5165200	5897100	6707090	7344670	7955110	9689670
$P_{\rm BX}^* \sqrt{T_{\rm BX}^*}$	$\varphi_{\scriptscriptstyle m H}$, $^{\circ}$	-	1,97E-05	1,9E-05	1,83E-05	1,54E-05	1,42E-05	1,25E-05	1,02E-05	8,69E-06	7,23E-06	6,62E-06
H = 11000, M;	$\pi_{{\scriptscriptstyle{\mathrm{K}}}\Sigma}^*$, 1	9,6	15,6	17,9	19,8	21,6	23,4	25,2	27	28,7	30	30,2
M = 0.5;	$N_{\scriptscriptstyle ext{TBB}}$, Вт	342800	1234800	1599500	1955400	2282900	2633000	2991600	3366600	3720200	4083400	4150000
$\frac{P_0}{P_{\rm BX}^*} \cdot \sqrt{\frac{T_0}{T_{\rm BX}^*}} = 4,25.$	$N_{{\scriptscriptstyle \mathrm{TBB.MOД}}}$, Вт	-	1081540	1417370	1715700	2014310	2338760	2672970	3016860	3356760	3714570	3813580
$P_{\rm BX}^* \sqrt{T_{\rm BX}^*}^{-4,23}.$	$\varphi_{\scriptscriptstyle m M}$, $^{\circ}$	-	9,11E-05	7,2E-05	7,05E-05	6,29E-05	5,59E-05	5,04E-05	4,68E-05	4,22E-05	3,69E-05	3,25E-05
H = 11000, M;	$\pi_{{\scriptscriptstyle\mathrm{K}}\Sigma}^*$, 1	9,6	15,6	17,9	19,8	21,6	23,4	25,2	27	28,7	30	30,2
M = 0.6;	$N_{\scriptscriptstyle ext{TBB}}$, Вт	418000	1420200	1822000	2213500	2573000	2955700	3343400	3750500	4134700	4520300	4598300
$\frac{P_0}{P_{\text{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{BX}}^*}} = 3,916.$		-	1236620	1614210	1947370	2285050	2644790	3004860	3394540	3768500	4161690	4282950
$P_{\rm BX}^* \sqrt{T_{\rm BX}^*}^{-3,910}.$	$arphi_{\scriptscriptstyle m H}$, $^{\circ}$	-	7,86E-05	6,1E-05	5,91E-05	5,15E-05	4,56E-05	4,19E-05	3,75E-05	3,37E-05	2,86E-05	2,42E-05
H = 11000, M;	$\pi_{{\scriptscriptstyle{\mathrm{K}}}\Sigma}^*$, 1	9,6	15,6	17,9	19,8	21,6	23,4	25,2	27	28,7	29,9	30,1
M = 0.7;	$N_{\scriptscriptstyle ext{TBB}}$, BT	520100	1658300	2107800	2544200	2943400	3362400	3787200	4233100	4653200	5072200	5156100
$\frac{P_0}{P_{\text{BX}}^*} \cdot \sqrt{\frac{T_0}{T_{\text{BX}}^*}} = 3,559.$	$N_{{ m \tiny TBB.MOД}}$, Вт	-	1441040	1871340	2248680	2632890	3026980	3434040	3866930	4284660	4484430	4533370
$\frac{1}{P_{\rm BX}^*} \cdot \sqrt{\frac{1}{T_{\rm BX}^*}} = 3,339.$	$N_{\scriptscriptstyle \mathrm{TBB.MOД}}$, Br	-	6,5E-05	4,99E-05	4,81E-05	4,12E-05	3,71E-05	3,32E-05	2,96E-05	2,62E-05	3,83E-05	3,98E-05

приложение д

(обязательное)

Результаты идентификации уточненной ММ ТВВД Д-27

Таблица Д.1 – Значения расходов топлива в КС, полученных по результатам расчета уточненной ММ ТВВД Д-27 для различных условий полета

							-		
Н, м	M,[1]	$V_{\text{приб}}, \frac{\text{км}}{\text{час}}$	t _н ,°C	t _{BX} , °C	$P_{\scriptscriptstyle m BX}^*$, кПа	$lpha_{ m pyg}$, $^{\circ}$	$\pi_{{ t K}\Sigma}^*$, [1]	$n_{\scriptscriptstyle ext{TBB}}, rac{ ext{об}}{ ext{мин}}$	$G_{\text{т.мод.ут}}, \frac{\mathrm{K}\Gamma}{\mathrm{час}}$
320,5	0,22	258,25	0,75	1,44	100,5313	118,08	22,14	8381,66	2480
503,5	0,23	276,19	0,31	1,06	98,9063	102,04	20,27	7751	2113
543,5	0,24	286,97	0,25	1	98,7734	102,03	20,27	7744,66	2111
620,5	0,24	293,34	0	0,81	98,1875	89,31	18	7156,33	1746
651	0,26	308,97	-0,06	0,88	98,4063	83,5	16,87	7126,33	1593
690	0,27	318,78	-0,19	0,88	98,1563	65,3	13,72	7189,33	1181
687,5	0,27	317,28	-0,13	0,81	98,1719	60,15	12,82	7153,66	1073
7175,5	0,46	362,53	-9,63	-7,13	46,4063	94,51	25,92	7110,33	1166
7170,5	0,47	367,19	-9,63	-7,06	46,5938	85,04	24,51	7134,66	1079
7165,5	0,47	370,75	-9,63	-7	46,7656	72,52	21,08	7134,66	869
7158,5	0,48	373,06	-9,63	-6,94	46,875	66,14	19,49	7142,66	777
7145	0,48	373,88	-9,56	-6,88	46,9922	58,98	17,65	7137,33	674
7139	0,47	366,72	-9,56	-7	46,7578	50,92	15,72	7131,66	564
8158,5	0,51	373,06	-11,38	-8,44	41,5156	100,56	26,98	7594	1085
8190	0,51	375,03	-11,44	-8,44	41,4453	95,83	26	7129	1049
8142,5	0,55	401,19	-11,25	-7,81	42,6875	93,73	25,59	7118,33	1036
8142,5	0,54	396,22	-11,31	-7,94	42,4688	89,65	25,6	7118,33	1027
8167	0,53	390,22	-11,31	-8,06	42,125	82,69	24,52	7121	949
8165,5	0,53	386,5	-11,38	-8,19	41,9922	76,78	22,75	7126,33	846
4186,5	0,37	354,69	-4,75	-3	66,2188	85,91	22,02	7113	1450
4178	0,37	353,5	-4,69	-2,94	66,2344	78,36	20,14	7115,66	1272
4167	0,37	355,47	-4,69	-2,94	66,3906	72,36	18,73	7110,33	1146
4126,5	0,39	374,34	-4,5	-2,56	67,3828	66,2	17,25	7118,33	1038
4179	0,28	267,28	-4,56	-3,56	63,625	64,51	17,13	7104,66	947
4136,5	0,39	372,84	-4,5	-2,56	67,25	61,86	16,26	7126,33	950
4151	0,39	369,59	-4,5	-2,63	67,0313	60,41	16,04	7123,66	927
4182,5	0,27	258,5	-4,5	-3,56	63,3047	55,81	15,16	7126,33	787
4134	0,38	359,06	-4,5	-2,75	66,7734	55,52	15,01	7115,66	835
4160,5	0,38	360,69	-4,63	-2,81	66,625	54,1	14,67	7121	807
4152	0,38	365,91	-4,5	-2,69	66,875	49,57	13,72	7129	738
4156	0,39	372,84	-4,63	-2,69	67,1094	41,04	11,4	7107,33	573
4185	0,36	342,63	-4,56	-2,88	65,8203	40,99	11,41	7140	560
4159,5	0,37	348,19	-4,5	-2,81	66,2109	34,67	9,63	7151	453
4168	0,4	384,31	-4,63	-2,63	67,4531	34,21	9,46	7121	452
4163	0,3	288,81	-4,56	-3,38	64,3281	31,81	8,81	7131,66	387
4158,5	0,34	323,88	-4,56	-3,06	65,4063	31,73	8,79	7145,33	392
4042,5	0,38	360,22	-4,38	-2,56	67,5469	30,67	8,41	7115,66	385
4171,5	0,42	397,16	-4,69	-2,5	67,9141	28,77	7,9	7126,33	357

Таблица Д.2 – Сравнение мощностей, развиваемых ТВВ, по экспериментально-расчетным данным ГП «ЗМКБ «Прогресс» им. А.Г. Ивченко с мощностями, развиваемыми ТВВ, полученными по результатам расчета уточненной ММ ТВВД Д-27, в различных условиях полета (параметры атмосферы соответствуют МСА, Факс №330/3485 от 26.06.2013 «УНПП «Молния» [81])

Режим/Парам.		3МГ	0,2ΜΠ	0,3МП	0,4ΜΠ	0,5МП	0,6МП	0,7ΜΠ	0,8ΜΠ	MAKC.KP	МΠ	ВЗЛЕТ
	$\pi_{{}_{\mathrm{K}\Sigma}}^{*}$, [1]	6,2	10,1	11,6	12,8	14	15,1	16,3	17,5	18,6	19,6	22
H = 0, M; M = 0	N _{твв} , Вт	203300	1470400	2234600	3000700	3769000	4533400	5296000	6033900	6867300	7573500	9372000
	$N_{{}_{\mathrm{TBB.MOД.ут}}}$, Вт	-	1467200	2254300	2981100	3766400	4500500	5309500	6114000	6842500	7524900	9381000
	ε,%	-	0,217627856	-0,88159	0,653181	0,068984	0,725725	-0,25491	-1,3275	0,361132	0,641711	-0,09603073
	$\pi_{{\scriptscriptstyle\mathrm{K}}\Sigma}^*$, [1]	8,5	13,9	15,9	17,6	19,2	20,8	22,4	24	25,5	26,9	29,9
H = 6000, M;	$N_{_{\mathrm{TBB}}}$, Вт	549000	2239900	2936100	3581200	4205800	4865700	5529500	6238900	6902200	7595400	9191600
M = 0.5	$N_{_{\mathrm{TBB.MOД.ут}}}$, Вт	-	2252180	2933900	3564800	4184790	4835300	5509000	6204400	6881700	7667600	9225855
	ε,%	-	-0,548238761	0,074929	0,457947057	0,499548	0,624782	0,370739	0,552982	0,297007	-0,95058	-0,37268
	$\pi_{{ t K}\Sigma}^*$, $[1]$	8,3	13,6	15,5	17,2	18,7	20,3	21,8	23,4	24,9	25,9	29,2
H = 6000, m;	$N_{_{\mathrm{TBB}}}$, Вт	628600	2451700	3198500	3919400	4542500	5240200	5943800	6685500	7379900	7973200	9774100
M = 0.6	$N_{_{\mathrm{TBB.MOД.ут}}}$, Вт	-	2483700	3190300	3883200	4517000	5219200	5905700	6657900	7386300	8029450	9849068
	ε,%	-	-1,3052168	0,25637	0,923611	0,561365	0,400748	0,641004	0,412834	-0,08672	-0,70549	-0,76701
	$\pi_{{\scriptscriptstyle\mathrm{K}}\Sigma}^*$, $[1]$	8	13,1	15	16,6	18,1	19,6	21,1	22,7	23,9	24,8	27,9
H = 6000, m;	$N_{\scriptscriptstyle exttt{TBB}}$, $B exttt{T}$	726000	2694900	3503800	4260900	4924100	5664700	6416200	7195500	7809900	8385200	10194100
M = 0.7	$N_{_{\mathrm{TBB.MOД.ут}}}$, Вт	-	2712200	3499000	4213200	4911600	5631500	6383000	7210000	7848600	8476700	10166690
	ε,%	-	-0,64195	0,136994	1,119482	0,253853	0,586086	0,51744	-0,20151	-0,49552	-1,09121	0,268881
	$\pi_{{\scriptscriptstyle\mathrm{K}}\Sigma}^*$, $[1]$	9,6	15,6	17,9	19,8	21,6	23,4	25,2	27	28,7	30	30,2
H = 11000, M;	$N_{_{\mathrm{TBB}}}$, Вт	342800	1234800	1599500	1955400	2282900	2633000	2991600	3366600	3720200	4083400	4150000
M = 0.5	$N_{_{\mathrm{TBB.MOД.ут}}}$, Вт	-	1225030	1607100	1941200	2275700	2622600	2979500	3340200	3692586	4062400	4175484
	ε,%	-	0,791221	-0,47515	0,726194	0,315388	0,394987	0,404466	0,784174	0,742272	0,514277	-0,61407
	$\pi_{{\scriptscriptstyle\mathrm{K}}\Sigma}^*$, $[1]$	9,6	15,6	17,9	19,8	21,6	23,4	25,2	27	28,7	30	30,2
H = 11000, M;	$N_{_{\mathrm{TBB}}}$, Вт	418000	1420200	1822000	2213500	2573000	2955700	3343400	3750500	4134700	4520300	4598300
M = 0.6	$N_{_{\mathrm{TBB.MOД.ут}}}$, Вт	-	1408370	1831400	2200200	2568700	2948400	3324000	3716900	4096900	4494900	4632518
	ε,%	-	0,832981	-0,51592	0,600858	0,16712	0,24698	0,580248	0,895881	0,914214	0,56191	-0,74414
	$\pi_{{ t K}\Sigma}^*$, $[1]$	9,6	15,6	17,9	19,8	21,6	23,4	25,2	27	28,7	29,9	30,1
H = 11000, m; $M = 0.7$	N _{твв} , Вт	520100	1658300	2107800	2544200	2943400	3362400	3787200	4233100	4653200	5072200	5156100
	$N_{_{\mathrm{TBB.MOД.ут}}}$, Вт		1641200	2116300	2533300	2947100	3359800	3777900	4215400	4629957	4805900	4853870
	ε,%	-	1,031177	-0,40326	0,428425	-0,1257	0,077326	0,245564	0,418133	0,499506	5,250187	5,861601