УДК 532.542.4

Потери давления в канале с резким поворотом на 180°. Результаты URANS- и LES-расчетов в сопоставлении с данными измерений*

Д.О. Панов, А.Д. Юхнев

Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург; e-mail: dopanov@gmail.com; a.yukhnev@mail.ru

Поступила в редакцию 12.12.2017

На основе URANS- и LES-подходов выполнено численное моделирование турбулентного течения в канале квадратного сечения с резким поворотом на 180° при Re = $2.1 \cdot 10^4$, $4 \cdot 10^4$ и $6 \cdot 10^4$. Получены экспериментальные данные о гидравлических потерях, относящиеся в основном к области неавтомодельности коэффициента сопротивления по числу Рейнольдса ($3.5 \cdot 10^3 < \text{Re} < 6 \cdot 10^4$). Эти данные хорошо согласуются с известными результатами измерений для области автомодельности (Re > $5 \cdot 10^4$). Проведено сопоставление осредненных картин течения и потерь давления в канале, предсказываемых по двум подходам. URANSрасчеты с применением *k*- ω SST модели турбулентности дали существенно, почти на 20%, заниженные значения коэффициента сопротивления, а при использовании LES-WALEподхода результаты расчетов практически совпали с данными измерений.

Ключевые слова: U-образный канал, турбулентное течение, численное моделирование, LES.

Введение

Одна из типичных форм проточной части внутренних систем конвективного охлаждения лопаток газовых турбин – это U-образный канал прямоугольного сечения с крутым поворотом на 180°. Данные о сопротивлении U-образных каналов в широкой области варьирования геометрических параметров и при значениях Re в диапазоне от $5 \cdot 10^4$ до $3 \cdot 10^5$ содержатся в [1]. Представленные в этой работе результаты обработки данных измерений указывают на слабую зависимость (автомодельность) коэффициента сопротивления от числа Рейнольдса.

Существует ряд экспериментальных и численных работ, посвященных исследованию структуры отрывного турбулентного течения в U-образном канале квадратного сечения с резким поворотом. В работах [2–6] рассматривалось течение в геометрически подобных U-образных каналах при Re=10⁵ – значении, попадающем в область автомодельности. Экспериментальные данные [2, 3] могут служить базой для проведения валидационных расчетов, но не содержат практически важной информации о гидравлических потерях. В работах [4-6] представлены результаты численного моделирования. Расчеты на основе RANS-подхода с применением моделей изотропной вихревой вязкости [4, 5] не дали удовлетворительного согласования с экспериментальными данными [2, 3] в области отрыва и ниже по потоку. В работе [6] представлены результаты LES-расчетов с применением пристенных функций. Авторам [6] удалось получить расчетные поля средней скорости и напряжений Рейнольдса, находящиеся в хорошем согласии с данными [3].

Цель настоящей работы – получить экспериментальные и расчетные данные о гидравлических потерях и структуре течения в U-образном канале квадратного сечения с резким поворотом для «неавтомодельного» диапазона значений числа Рейнольдса. Геометрия поворота – такая же, как и в работах [2, 3].

^{*} Авторы выражают благодарность профессорам В.В. Рису и Е.М. Смирнову за помощь в работе и ценные советы.

Методика и результаты эксперимента

Проточная часть экспериментальной установки состоит из U-образного канала квадратного сечения со стороной H = 24 мм, трубы диаметром 18 мм и длиной 500 мм, расходомерного устройства и вентилятора, с помощью которого воздух засасывался из атмосферы в U-образный канал через входное отверстие квадратного сечения с закругленными кромками (рис. 1). Протяженность прямых участков канала составляет 144 мм, толщина перегородки – 7.2 мм (внутренний и внешний радиусы поворота – 3.6 мм и 27.6 мм соответственно), внутренний диаметр выходной трубки – 18 мм. На боковой стенке канала расположено 12 отверстий диаметром 1.6 мм для отбора статического давления. Отверстия расположены на расстоянии 8 мм от перегородки. Первое и последнее отверстия находятся на расстоянии 13 мм от входа и выхода соответственно. Расстояние между остальными отверстиями равно Н. Давление в отверстиях измерялось микроманометрами с наклонной трубкой при малых расходах и U-образными водяными манометрами при больших расходах.

Расходомерный участок включал трубу диаметром 17 мм, камеру отбора давления и сменные диафрагмы. Расходомерный участок калибровался во всем диапазоне изменения расхода.

Коэффициент гидравлического сопротивления рассчитывался по формуле

$$\zeta_{exp} = 2\Delta P / (\rho U_{\rm b}^{2}), \qquad (1)$$

где ΔP – перепад давления между вторым (от входа) и предпоследним отверстиями отбора давления. Полученные данные для Re от $3.5 \cdot 10^3$ до $6 \cdot 10^4$ представлены на рис. 2. Сплошная линия аппроксимирует эти данные степенной зависимостью

$$\zeta_{exp} = 7.67 \cdot \text{Re}^{-0.142}.$$
 (2)

Штриховая линия показывает «автомодельное» по Re значение $\zeta_{exp} = 1.56$, взятое из [1] для канала с подобной геометрией. Видно, что для верхней границы рассматриваемого диапазона Re наши данные хорошо согласуются с данными [1].

Заметим, что в режимах с Re≥10⁴ при фиксированном расходе, задававшемся по (визуально постоянному) перепаду давления на шайбе, в наших экспериментах отмечались весьма существенные длиннопериодические изменения пе-

Рис. 1. Модель U-образного канала

Рис. 2. Экспериментальные значения коэффициента сопротивления

репада давления в точках отбора давления. Анализ распределения давления по всем отверстиям показал, что источник этих нестационарных изменений сосредоточен на участке сразу за поворотом, в зоне взаимодействия транзитного турбулентного потока с течением в области отрыва. Разброс опытных точек на рис. 2 в значительной степени связан с этим явлением.

Методика и результаты численного моделирования

Постановка и вычислительные аспекты

Рассматривается турбулентное течение воздуха с постоянными физическими свойствами. Геометрия U-образного канала соответствует экспериментальной. Расчетная область включает в себя собственно канал, выходную трубку диаметром 18 мм и длиной 48 мм, а также область перед вхо-

№ сетки	Re-10-4	N_{cell} ·10 ⁻⁶	$N_I \times N_J \times N_K$	$\delta X^+, \delta Y^+$	δZ^+	K _{skew}
1	2.1	4.4	79×79×357	30	60	0.38
2	2.1	9.4	104×104×558	20	40	0.49
3	2.1	22.5	126×126×1130	10	20	0.54
4	4.0	27	150×150×1020	20	40	0.44
5	6.0	64.5	200×200×1402	20	40	0.42

Таблица 1. Параметры расчетных сеток.

Рис. 3. Расчетные значения коэффициента сопротивления

дом в канал, границы которой удалены от входного сечения канала на расстояние 6*H* в каждом из направлений. При проведении расчетов скругленные кромки на входе в канал (см. рис. 1) были заменены на острые. Эта замена была сделана для увеличения входной отрывной зоны и, соответственно, предотвращения затянутого ламинаризованного входного участка. В условиях отсутствия достаточной турбулизации входного потока при моделировании течения в каналах с применением LES-подхода может возникнуть нереалистичное увеличение протяженности области перехода к развитой турбулентности.

На проницаемых границах входной области задается постоянная (относительно малая) скорость, которая обеспечивает требуемый расход; на выходе задается постоянное давление.

Расчеты проведены с использованием программного пакета ANSYS Fluent 16.2 [7]. Использованы два подхода к моделированию рассматри-

Таблица 2. Значения коэффициента гидравлического сопротивления ζ для Re = 2.1·10⁴

Метод расчета	сетка	ζ	$(\zeta - \zeta_{exp})/\zeta_{exp},\%$
Экспериментальная корреляция, ф-ла (2)	—	1.88	_
LES	Nº 1	1.93	3
LES	Nº 2	1.87	-1
LES	Nº 3	1.84	-2
URANS	Nº 2	1,57	-17

ваемого турбулентного течения: URANS-подход с k- ω SST моделью турбулентности Ментера, включающей поправку на кривизну линий тока, и LESподход с подсеточной моделью WALE [7].

При исследовании сеточной сходимости и влияния числа Re на решение использовались пять квазиструктурированных сеток, состоящих из гексагональных элементов. Данные о сетках содержатся в табл. 1. Сетки отличаются количеством ячеек N_{cell}, числом ячеек в поперечных сечениях N_I, N_I и вдоль канала N_K. Также в таблице приведены максимальные размеры ячеек в масштабе координаты «закона стенки» для продольного δZ^+ и поперечных δX^+ и δY^+ направлений канала, а также минимальные значения коэффициента скошенности ячеек K_{skew} . Для всех сеток нормированное расстояние от центра первой пристенной ячейки до стенки (*Y*⁺) не превышает 0.8. Сетки № 4 и № 5 отличаются от сетки № 2 количеством ячеек, но имеют сходные относительные размеры ячеек в ядре потока. При использовании LES-подхода сетки № 2, № 4 и № 5 позволяют сохранять степень разрешения вихревых структур при варьировании Re.

Центрально-разностная схема второго порядка использовалась для аппроксимации конвективных слагаемых при LES-расчетах и противопоточная схема второго порядка для URANS-вычислений. Для аппроксимации производных по времени была выбрана трехслойная схема Эйлера. Интерполяции давления на грань расчетной ячейки проводилась по опции, реализующей взвешенную сумму противопоточных схем первого и второго порядка. Формула Гаусса–Грина, записанная относительно центра ячейки, использовалась для расчета градиентов в центрах ячеек. Для обеспечения связи уравнений баланса массы и импульса была выбрана наиболее быстрая последовательная схема решения уравнений с (условно) безытерацион-

> ным продвижением по времени NITA–FSM [7]. Шаг по времени подбирался из условия, чтобы максимальное значение локального числа Куранта не превосходило 0.8. В качестве начального приближения для всех расчетов использовались результаты RANS-вычислений. Для полу

чения осредненных характеристик потока статистика накапливалась на протяжении 100000 шагов по времени, перед этим делалось 40000 шагов для выхода на квазиустановившийся режим.

Результаты численного моделирования

Для оценки влияния качества сетки на результаты LES-вычислений была выполнена серия расчетов при Re=2.1·10^{4.} В табл. 2 представлены значения ζ , полученные при расчетах на трех сетках (перепад давления брался по тем же точкам, что и в опытах). Там же дано значение ζ_{exp} , вычисленное по экспериментальной корреляции (2), и значение ζ по результатам URANS-расчетов. Результаты LES-расчетов на всех сетках хорошо согласуются с экспериментом, особенно в случае сетки № 2. В то же время URANS-расчеты, на весьма подробной для этого подхода сетке № 2, дают существенно заниженное значение ζ .

В расчетах для Re= $4 \cdot 10^4$ и $6 \cdot 10^4$ использовались сетки № 4 и № 5 как при URANS-, так и при LES-подходе. Рассчитанные значения коэффициента сопротивления представлены на рис. 3. Видно, что все значения ζ , рассчитанные на основе URANS-подхода, лежат ниже экспериментальных данных. Данные, полученные с помощью LES-подхода, хорошо совпадают с экспериментом.

Причины существенного расхождения данных моделирования на основе URANS- и LESподхода отчасти могут быть уяснены при рассмотрении структуры течения (рис. 4 и 5). На рис. 4 для случая Re= $2.1 \cdot 10^4$ представлены полученные по двум подходам поля осредненной по времени безразмерной скорости U/U_b в центральном продольном сечении канала. Видно, что поле, рассчитанное по LES-подходу, более неоднородно на прямых участках, чем в URANSрешении. Заметно различается и картина изолиний в области поворота и непосредственно за ним, где формируется зона массивного отрыва.

На рис. 5 изображены поля осредненной по времени безразмерной продольной компоненты скорости U_z/U_b и линии тока вторичного течения в трех поперечных сечениях канала за поворотом (координата Z отсчитывается от сечения в конце поворота). Изолинии нулевой продольной скорости, визуализирующие поперечное сечение отрывной области, выделены белой линией. Можно видеть существенные отличия в струк-

Рис. 4. Распределение осредненной скорости в центральном сечении канала при Re=2.1·10⁴: *a* – URANS; *б* – LES

Рис. 5. Поля осредненной продольной скорости и линии тока вторичного течения: слева – URANS, справа – LES; a - Z/H=0, $\delta - Z/H=1$, $\epsilon - Z/H=3$

туре течения, предсказываемой двумя подходами. В случае URANS-решения распределение скорости более неоднородно на выходе из поворота, но при этом быстрее выравнивается вниз по потоку. Структура вторичных течений вниз по потоку от поворота также различна в решениях по двум подходам: URANS-подход предсказывает, что сразу за поворотом поперечное течение имеет сильно выраженную четырехвихревую структуру, которая сохраняется вплоть до сечения Z/H=3 (см. рис. 5). В осредненном LES-решении картина течения проще: четырехвихревая структура наблюдается только в сечении Z/H = 1.

Заключение

Получены экспериментальные данные о гидравлическом сопротивлении U-образного канала квадратного сечения с резким поворотом в широком диапазоне чисел Рейнольдса Re – от $3.5 \cdot 10^3$ до $6 \cdot 10^4$. Эти данные хорошо согласуются с известными результатами для области автомодельности по числу Рейнольдса. Измеренные значения коэффициента потерь давления в данном диапазоне Re аппроксимируются степенной зависимостью: $\zeta_{exp} = 7.67 \cdot \text{Re}^{-0.142}$.

Для канала той же геометрии проведены численные расчеты турбулентного течения с применением URANS- и LES-подхода к моделированию турбулентности. В расчетах использовалось несколько сеток, различающихся степенью разрешения вихревых структур в ядре потока. Показана близость значений коэффициента потерь давления, полученных при расчетах на разных сетках.

Проведен сопоставительный анализ осредненных картин течения и потерь давления в канале, предсказываемых по двум расчетным подходам. Установлено, что URANS-расчеты с применением *k*- ω SST модели турбулентности дают на 20% меньшие значения потерь, чем LES–WALE-расчеты, в то время как последние приводят к результатам, практически совпадающим с данными измерений.

СПИСОК ОБОЗНАЧЕНИЙ

H – высота канала;

- *K*_{skew} коэффициент скошенности ячеек;
- N_{cell} количество ячеек сетки;
- ΔP перепад давления в канале;
- *U* осредненная по времени полная скорость;
- *U_z* осредненная по времени продольная компонента скорости;
- U_b среднерасходная скорость;
- $\operatorname{Re} = \rho U_b H/\mu$ число Рейнольдса;
- δX⁺, δY⁺ и δZ⁺ максимальные размеры ячеек расчетной сетки в поперечных и продольном направлениях, отнесенные к масштабу координаты «закона стенки»;
- ζ коэффициент гидравлического сопротивления;
- µ коэффициент динамической вязкости;

 ρ – плотность.

СПИСОК ЛИТЕРАТУРЫ

- 1. Веревкин Н. Н. Гидравлические сопротивления изолированных и составных колен прямоугольного сечения // Промышленная аэродинамика. Москва, ЦАГИ, 1956. № 7. С. 25–51.
- Cheah S. C., Iacovides H., Jackson D. C., Ji H., Launder B. E. LDA investigation of the flow development through a rotating U-bend of strong curvature // Proc. of 5th Int. Symp. on Refined Flow Modelling and Turbulence Measurements, Paris. 1993. P. 269–276.
- Cheah S. C., Iacovides H., Jackson D. C., Ji H., Launder B. E. LDA investigation of the flow development through rotating U-ducts // Journal of Turbomachinery. 1996. V. 118. Iss. 3. P. 590–596. DOI:10.1115/1.2836706
- Bo T., Iacovides H., Launder B. E. Convective discretization schemes for the turbulence transport equations in flow predictions through sharp U-bends // Int. J. Num. Methods for Heat and Fluid Flow. 1995. V. 5. Iss. 1. P. 33–48.
- Левченя А.М., Липницкая С.Н. Оптимизация формы канала квадратного сечения с поворотом на 180° с целью снижения потерь: численное моделирование трехмерного турбулентного течения // Тепловые процессы в технике. 2011. Т. З. № 12. С. 537–544.
- Guleren K. M., Turan A. Validation of large-eddy simulation of strongly curved stationary and rotating U-duct flows // Int. J. Heat and Fluid Flow. 2007. V. 28. P. 909–921.
- ANSYS Fluent Theory Guide. Release 16.2. ANSYS, Inc. 2015.

Pressure loss in a 180-degree sharp bend: Results of URANS and LES computations compared with experimental data

D.O. Panov, A.D. Yukhnev

Peter the Great St. Petersburg Polytechnic University, St.Petersburg, e-mail: dopanov@gmail.com; a.yukhnev@mail.ru,

Numerical simulation of turbulent flow in a square sectioned 180-degree strong bend has been performed at $\text{Re} = 2.1 \cdot 10^4$, $4 \cdot 10^4$ and $6 \cdot 10^4$ employing URANS and LES approaches. Experimental data for Re-sensitive pressure losses has been obtained for the Reynolds number ranging from $3.5 \cdot 10^3$ to $6 \cdot 10^4$. This data is in a good agreement with the well-known measurement results ob-

tained for a higher Re range, $\text{Re} > 5 \cdot 10^4$, where the pressure loss coefficient is practically Re-independent. Mean flow patterns and pressure losses predicted with the two simulation approaches are compared. The URANS based computations, performed with the *k*-w SST turbulence model, give considerably underrated values of the pressure loss coefficient, by about 20%. Results of computations performed with the LES-WALE model practically coincide with the measurement data. Keywords: U-duct, turbulent flow, numerical simulation, LES

REFERENCES

- Verevkin N.N. Gidravlicheskie soprotivleniya izolirovannykh i sostavnykh kolen pryamougol'nogo secheniya [Hydraulic resistances of isolated and composite rectangular bends]. *Promyshlennaya aehrodinamika – Industrial aerodynamics*, Moscow, Central Aerohydrodynamic Institute, 1956, no. 7, pp. 25–51. In Russ.
- Cheah S. C., Iacovides H., Jackson D. C., Ji H., Launder B. E. LDA investigation of the flow development through a rotating U-bend of strong curvature. *Proc. of* 5th Int. Symp. on Refined Flow Modelling and Turbulence Measurements, Paris, 1993, pp. 269–276.
- Cheah S. C., Iacovides H., Jackson D. C., Ji H., Launder B. E. LDA investigation of the flow development through rotating U-ducts. *Journal of Turbomachinery*, 1996, vol. 118, no. 3, pp. 590–596. DOI:10.1115/1.2836706.

- Bo T., Iacovides H., Launder B.E. Convective discretization schemes for the turbulence transport equations in flow predictions through sharp U-bends. *Int. J. Num. Methods for Heat and Fluid Flow*, 1995, vol. 5, no. 1, pp. 33–48.
- Levchenya A. M., Lipnitskaya S. N. Optimizatsiya formy kanala kvadratnogo secheniya s povorotom na 180° s tsel'yu snizheniya poter': chislennoe modelirovanie trekhmernogo turbulentnogo techeniya [Optimization of a shape of a square-sectioned u-bend for the loss reduction: 3D numerical simulation of turbulent flow]. *Teplovye protsessy v tekhnike – Thermal processes in engineering*, 2011, vol. 3, no. 12, pp. 537–544.
- Guleren K. M., Turan A. Validation of large-eddy simulation of strongly curved stationary and rotating U-duct flows. *Int. J. Heat and Fluid Flow*, 2007, vol. 28, pp. 909–921.
- ANSYS Fluent Theory Guide. Release 16.2. ANSYS, Inc. 2015.