ЗАКЛЮЧЕНИЕ ДИССЕРТАЦИОННОГО СОВЕТА Д 212.125.04 НА БАЗЕ ФЕДЕРАЛЬНОГО ГОСУДАРСТВЕННОГО БЮДЖЕТНОГО ОБРАЗОВАТЕЛЬНОГО УЧРЕЖДЕНИЯ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)» ПО ДИССЕРТАЦИИ НА СОИСКАНИЕ УЧЕНОЙ СТЕПЕНИ КАНДИДАТА НАУК

аттестационное дело №	-						
решение диссертационного	совета	ОТ	19.	12.2014	4 J	Vο	27

о присуждении Казаковой Анастасии Олеговне, гражданке РФ,

ученой степени кандидата физико-математических наук.

Диссертация «Математическое моделирование в задачах механики сплошных сред с использованием полигармонических уравнений и численные методы их решения» по специальности 05.13.18 — «Математическое моделирование, численные методы и комплексы программ» принята к защите «15» октября 2014 года, протокол № 24 диссертационным советом Д 212.125.04 на базе Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)», Министерство образования и науки РФ, 125993, г. Москва, А-80, ГСП-3, Волоколамское шоссе, 4, создан 02.11.2012, приказ № 714/нк.

Соискатель Казакова Анастасия Олеговна 1988 года рождения, в 2010 году с отличием окончила Федеральное государственное образовательное учреждение высшего профессионального образования «Чувашский государственный университет имени И.Н. Ульянова». В период подготовки диссертации соискатель обучалась в очной аспирантуре кафедры теоретической механики Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Чувашский государственный университет имени И.Н. Ульянова», которую окончила в 2013 году. В настоящее время соискатель работает ассистентом кафедры теоретической механики Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Чувашский государственный университет имени И.Н. Ульянова».

Диссертация выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Чувашский государственный университет имени И.Н. Ульянова» на кафедре теоретической механики.

Научный руководитель — доктор физико-математических наук, профессор, заслуженный деятель науки РФ Терентьев Алексей Григорьевич, профессор кафедры теоретической механики Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Чувашский государственный университет имени И.Н. Ульянова».

Официальные оппоненты:

- 1. Петров Александр Георгиевич, гражданин Российской Федерации, доктор физико-математических наук, профессор, ведущий научный сотрудник Федерального государственного бюджетного учреждения науки «Институт проблем механики имени А.Ю. Ишлинского Российской академии наук»;
- 2. Сильвестров Василий Васильевич, гражданин Российской Федерации, доктор физико-математических наук, профессор, профессор кафедры высшей математики Федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Российский государственный университет нефти и газа имени И.М. Губкина»

дали положительные отзывы на диссертацию.

Ведущая Федеральное бюджетное организация государственное образовательное учреждение высшего профессионального образования «Уфимский государственный авиационный технический университет» (УГАТУ), г. Уфа, в своем заключении, положительном подписанном Булгаковой Гузелью Талгатовной, физико-математических наук, профессором, профессором кафедры Житниковым Владимиром Павловичем, физикоматематики доктором математических наук, профессором, профессором кафедры высокопроизводительных вычислительных технологий и систем, указала, что рассмотренные в диссертации математические модели механики сплошных сред имеют множество приложений в таких значимых отраслях как авиационная и ракетно-космическая промышленность, кораблестроение, конструирование глубоководных объектов. Полученные диссертации результаты имеют теоретическое значение в теории полигармонических функций и математического моделирования. Диссертация содержит новые научные результаты, имеющие теоретическое и практическое значение, и является законченной научно-квалификационной работой.

Следует отметить следующие недостатки представленной работы:

- 1) Большинство рассмотренных автором математических моделей механики сплошных сред (кроме задачи изгиба тонкой пластинки) описываются гармоническим и бигармоническим уравнением, методы решения которых, в том числе численные, достаточно хорошо изучены. В диссертации лишь упоминается о возможности применения предлагаемых методов к решению задач теории оболочек, которые приводят к полигармоническим уравнениям порядка выше второго.
- 2) Хотя предложенный в третьей главе численный метод описан для плоских и осесимметричных пространственных задач, в качестве приложений в механике сплошных сред рассмотрены только плоские задачи.
- 3) В диссертации и автореферате много раз встречается термин «точность», но не дано его определения.
- 4) На рис. 4 автореферата (и на соответствующем ему рис. 3.7 диссертации) не указано, что результаты даны в процентах, а в автореферате этого нет и в тексте. Получается, что относительная погрешность достигает 20. Непонятно также, как автор практически оценивает погрешность при численном решении задач, не имеющих аналитического решения. Установление качественной зависимости погрешности от числа элементов $1/N^2$ позволяет применить, например, правило Рунге. Правда, эту зависимость более наглядно можно было бы проиллюстрировать в логарифмическом масштабе.

Отзыв обсужден и одобрен на расширенном заседании кафедры математики (протокол № 2 от 18.11.2014), утвержден исполняющим обязанности ректора УГАТУ, доктором экономических наук, профессором Дегтяревым Александром Николаевичем.

Соискатель имеет 11 опубликованных научных работ по теме диссертации, из них 4 работы опубликовано в научных изданиях, которые включены в перечень российских рецензируемых научных журналов и изданий для публикации основных научных результатов диссертаций. Соискателем опубликовано 7 работ в материалах всероссийских и международных конференций.

Наиболее значимые научные работы по теме диссертации:

Статьи, опубликованные в периодических изданиях, рекомендованных ВАК РФ

- 1. Казакова А.О., Терентьев А.Г. Численное решение краевых задач для полигармонического уравнения // Журнал вычислительной математики и математической физики. 2012. Т. 52, № 11. С. 2050–2059.
- 2. Казакова А.О. Применение метода коллокации к решению основной краевой задачи для полигармонического уравнения // Вестник Чувашского университета. 2013. № 3. С. 12–19.
- 3. Казакова А.О. Численное моделирование изгиба тонкой пластинки произвольной формы // Научно-технический вестник Поволжья. 2013. № 6. С. 301–304.
- 4. Казакова А.О., Терентьев А.Г. Численное моделирование плоской задачи о напряженном состоянии трубы, погруженной в жидкость // Прикладная математика и механика. 2014. Т. 78, № 5. С. 721 727.

На диссертацию и автореферат поступили отзывы:

Петров Александр Георгиевич (официальный оппонент)

Отзыв заверен ученым секретарем ФГБУН «Институт проблем механики им. А.Ю. Ишлинского Российской академии наук», к.ф.-м.н. Сысоевой Е.Я.

По содержанию диссертации Казаковой А.О. имею следующие замечания:

- 1. В приложениях полигармонического уравнения к механике: кручение стержня, плоские задачи теории упругости, задача об изгибе, течение вязкой жидкости в приближении Стокса и других отсутствуют ссылки на авторов, которые разработали и применяли для этих задач метод граничных элементов.
- 2. На стр. 75 в перечислении авторов метода граничных элементов оценка вклада учёных в это направление не объективна. Некоторые из перечисленных учёных вообще не занимались разработкой этого метода, а некоторые, внёсшие значительный вклад в развитие этого метода, вообще проигнорированы.
- 3. Нет оценки погрешности применяемой квадратурной формулы для интегралов с логарифмической особенностью.
- 4. Желательно провести сравнение метода коллокации с методом граничных элементов и обсудить вопрос, какой из методов более эффективен.
- 5. Оценка (3.35) сравнивает точные решения краевых задач для гладкой границы и для многоугольника. Однако, оценка приближения интегралов интегральными суммами отсутствует. Автор судит о том, что погрешность убывает обратно пропорционально квадрату числа элементов, по результатам тестовых примеров.

6. Некоторые из перечисленных результатов в заключении на стр. 131 имеют некоторое преувеличение. Например, в п.2. "получено представление п-гармонической вещественной функции через п аналитических функций", следовало бы заменить на "использование результата Векуа о представлении..."; В п. 3 слово "установлено" следует заменить на "показано на тестовых примерах", "высокую точность" следует заменить на "квадратичную оценку погрешности"

Сильвестров Василий Васильевич (официальный оппонент)

Отзыв заверен начальником отдела кадров ФГБОУ ВПО «Уфимский государственный университет нефти и газа имени И.М. Губкина» Лопатиной Н.С.

Замечаний принципиального характера по диссертации у меня нет. Есть несколько замечаний, которые на ценность диссертации не влияют:

- 1. Крайне сжатый обзор литературы по изучаемой проблеме. Стоило более подробно описать хотя бы бигармоническую проблему или сослаться на какую-нибудь работу, где это сделано. Например, на обзор Мелешко В.В. [Meleshko V.V. Selected topics in the theory of the two-dimensional biharmonic problem. –Applied Mechanics Reviews. 2003. V. 56], который содержит более 700 работ на наиболее существенные результаты за последние два века.
- 2. Отсутствие исследований по сходимости рядов, используемых для решения рассматриваемых задач в главе 2. На каком месте можно обрывать эти ряды для получения решения с требуемой точностью?
- 3. Для подтверждения эффективности применяемых в диссертации методов результаты численных решений большинства примеров сравниваются с выбранными самим автором эталонными аналитическими решениями. Было бы хорошо сравнить эти результаты с результатами других авторов.
- 4. Не совсем понятен смысл приложений А и Б, ибо приведенные в них свойства интеграла Стилтьеса и биполярных координат практически не применятся в диссертации? Если это сделано для увеличения объема диссертации, то зря. Диссертация и без того сильно перегружена как теоретическим материалом, так и решениями большого числа разнообразных задач.
- 5. Можно ли обобщить предложенные в работе методы решения краевых задач с условиями одного типа вдоль всей границы области на случай смешанных краевых задач для полигармонических функций?

ФГУП «Крыловский государственный научный центр»

Отзыв составлен ученым секретарем при ФГУП «Крыловский государственный научный центр», д.т.н., профессором Вишневским Л.И.

<u>Несмотря на высокую оценку представленной работы, нельзя не высказать автору</u> некоторые замечания:

- 1. Автор ограничился поиском решений плоских задач, представляющих интерес главным образом лишь с точки зрения совершенствования образовательного процесса, пригодными для включения в курсы, связанные с методами вычислений. Представляло бы интерес распространить указанную методологию поиска решений на трехмерные задачи (хотя бы на осесимметричные)
- 2. Не безынтересно было бы рассмотреть вопрос о получении решения полигармонических уравнений для случая негладких границ.

Институт математики им. С.Л. Соболева СО РАН (Омский филиал)

Отзыв составлен главным научным сотрудником, д.т.н., профессором Гореловым Д.H.

Замечаний нет.

Замечаний нет.

НИИ Механики МГУ им. М.В. Ломоносова

Отзыв составлен заведующим лабораторией нестационарной гидродинамики, к.ф.-м.н. Прокофьевым В.В.

Отметим, что в подборе примеров применения разработанных методов основное внимание уделено задачам теории упругости. Из гидромеханических задач интересна задача о поступательном стоксовом движении эллиптического цилиндра в вязкой жидкости, ограниченной круглой цилиндрической областью. Интересно было бы рассмотреть еще и вращение внутреннего цилиндра. В случае вращающегося кругового внутреннего цилиндра это моделировало бы актуальную задачу о подшипнике скольжения.

Институт гидродинамики им. М.А. Лаврентьева СО РАН

Отзыв составлен главным научным сотрудником, д.ф.-м.н. Стуровой И.В.

НИИ прикладной математики и механики Томского государственного университета

Отзыв подписан профессором кафедры математической физики, д.ф.-м.н. Тимченко С.В. и ведущим научным сотрудником отдела газовой динамики и физики взрыва, д.ф.-м.н. Жаровой И.К.

В качестве замечаний следует отметить:

- 1. Достоверность полученных результатов надо было также подтвердить сравнениями с результатами других авторов.
- 2. Важной особенностью специальности 05.13.18 является то, что в паспорте специальности требуется присутствие оригинальных результатов, в том числе, в области разработки комплексов программ. Однако этой части работы в автореферате делено недостаточно внимания.

Выбор официальных оппонентов и ведущей организации обосновывается наличием публикаций в соответствующей сфере исследования, их компетентностью по специальности 05.13.18 — «Математическое моделирование, численные методы и комплексы программ».

Диссертационный совет отмечает, что на основании выполненных соискателем исследований:

- **исследованы** вопросы математического моделирования в механике сплошных ред с использованием общей теории полигармонических функций, что позволяет применить один и тот же подход для решения различных задач механики;
- **предложено** решение основной краевой задачи для полигармонического уравнения, основанное на методах конформного отображения и коллокации, которое позволяет рассмотреть произвольные односвязные и двусвязные плоские области;
- **введены** в рассмотрение новые функции, составляющие ядра интегральных соотношений для системы полигармонических функций;
- разработан эффективный численный алгоритм решения краевых задач для полигармонического уравнения в произвольной плоской и осесимметричной пространственной области на основе интегральных соотношений Грина и метода граничных элементов, обоснована корректность предлагаемого метода;
 - создан комплекс программ, реализующий предложенные модели и алгоритмы;

- доказана перспективность использования разработанных методов посредством проведенного с их применением численного моделирования некоторых актуальных задач механики сплошных сред.

Теоретическая значимость исследования обоснована тем, что:

- изложена классификация математических моделей механики сплошных сред,
 описываемых полигармоническим уравнением;
- проведена модернизация модели изгиба тонкой пластинки, что позволило развить математический аппарат решения краевых задач для уравнения Пуассона с произвольной правой частью;
- **доказаны** теоремы об особенностях функций Грина для полигармонического равнения и их нормальных производных;
- применительно к проблематике диссертации результативно использованы метод граничных элементов и методы теории функций комплексного переменного.

Значение полученных соискателем результатов исследования для практики подтверждается тем, что:

- разработаны методы численного моделирования кручения призматического стержня, изгиба тонкой пластинки, движения цилиндра в вязкой жидкости и плоской задачи теории упругости;
- **решены** актуальные задачи о движении эллиптического цилиндра в вязкой жидкости, о плосконапряженном состоянии трубы, погруженной в жидкость и др.

Оценка достоверности результатов исследования выявила:

- теория построена на известном и апробированном математическом аппарате;
- использовано обоснованное сравнение авторских данных и данных,
 полученных ранее по рассматриваемой тематике;
 - установлено совпадение авторских результатов с результатами других авторов.

Личный вклад соискателя состоит в модернизации математических моделей, разработке алгоритмов и программного комплекса, составляющих содержание диссертации. Лично автором и при участии автора выполнена подготовка публикаций по представленной работе.

На заседании «19» декабря 2014 года диссертационный совет принял решение присудить Казаковой А.О. ученую степень кандидата физико-математических наук.

При проведении тайного голосования диссертационный совет в количестве 22 человек, из них 6 докторов наук по специальности 05.13.18 - «Математическое моделирование, численные методы и комплексы программ», участвовавших в заседании, из 30 человек, входящих в состав совета, проголосовали: за 22, против 0, недействительных бюллетеней 0.

Председатель диссертационного совета

Председатель диссертационного советь
Д 212.125.04, д.т.н., профессор, чл.-корр. РАН

Учёный секретарь диссертационного совета

Д 212.125.04, к.ф.-м.н.

Северина Н.С.

Ученый секретарь МАИ (НИУ), к.т.н.

Ульяшина А.Н.

19.12.2014