УДК 535.2:535.8:536.3:519.673

Оптические свойства отечественного стеклоуглерода для тепловых приложений^{*}

В.В. Черепанов¹, А.Г. Щурик², Р.А. Миронов³

¹ Московский авиационный институт (национальный исследовательский университет), Москва; ² АО «Уральский научно-исследовательский институт композиционных материалов», Пермь; ³ ОНПП «Технология» им. А. Г. Ромашина, Обнинск; e-mail: bold2010@live.ru

Поступила в редакцию 26.10.2018

Статья посвящена вопросам получения ключевых спектрально-оптических характеристик стеклоуглерода и их использования для определения в вычислительном эксперименте свойств термостойких ультрапористых ссетчатых стеклоуглеродных материалов, производимых в нашей стране. Исходным этапом работы явилось создание технологии и производство макроскопических плотных опытных образцов стеклоуглерода, тождественных по своему составу основе сетчатых материалов. Для получения поверхности образцов, пригодной для спектральных исследований, она дополнительно уплотнялась пиролитическим углеродом, осажденным на нее из газовой фазы. Экспериментальное измерение спектральной полусферической отражательной способности поверхности образцов при ее нормальном освещении позволило определить спектральные значения ключевых оптических постоянных стеклоуглерода - компонент его комплексного показателя преломления, согласованных с фундаментальными соотношениями Крамерса-Кронига, и ряд производных характеристик. Для теоретического исследования и прогнозирования применялась оригинальная имитационная статистическая спектральная математическая модель, некоторые результаты работы которой приводятся. В частности, определены локальные спектры рассеяния и поглощения сетчатого стеклоуглерода, его индикатриса рассеяния, продемонстрирована зависимость последней от степени анизотропии падающего на образец излучения. Такие данные никогда ранее не получались для подобных структур, хотя они и открывают широкие перспективы для определения тех свойств ультрапористых материалов, которые определяют их практическое применение.

Ключевые слова: сетчатый стеклоуглерод, сжатый образец, оптические постоянные, физические свойства, эксперимент, моделирование.

Введение

Ультрапористые сетчатые материалы на основе стеклоуглерода получают путем ретикуляции исходных форм пенополиуретана (ППУ) пропиткой их связующим из шликера, содержащего определенный набор углеродных компонент будущей основы высокопористого материала, и последующей температурной деструкции [1–4]. При этом шликер преобразуется в стеклоуглерод и другие формы углерода, основная часть ППУ выгорает, обеспечивая наличие внутренних скрытых каналов в структуре – сетчатый материал наряду с открытой пористостью обладает также и закрытой.

Собственно стеклоуглерод химически инертен в восстановительной среде, термостоек (может многократно выдерживать быстрый нагрев с последующим охлаждением), обладает упругостью, имеет очень низкую, преимущественно закрытую, пористость и связанную с этим низкую проницаемость для газов и жидкостей. Эти свойства позволяют использовать его в медицине, химической промышленности, машиностроении,

^{*}Работа выполнена при финансовой поддержке РФФИ в рамках гранта 17-08-00057.

Рис. 1. Фрагмент исходной структуры сетчатого стеклоуглерода

в частности, в качестве конструкционного материала для высокотемпературной техники и техники, работающей в агрессивных средах.

Сетчатые материалы на основе стеклоуглерода (рис. 1) могут одновременно иметь низкую плотность и теплопроводность, высокую открытую пористость и удельную поверхность, наследуемую от ППУ, обладают жестким пространственным каркасом. Поэтому такие высокопористые материалы применяются для изготовления фильтров и химических катализаторов, в аккумуляторах и др. Они также отличаются термостойкостью до 3000 К в вакууме, инертной или восстановительной среде, поэтому могут применяться для теплозащиты, тепло- и шумоизоляции.

Для использования таких материалов в кислородосодержащей среде сетчатую структуру защищают специальными покрытиями, например карбидом кремния, осаждаемыми на поверхность основы из газовой фазы [4]. Стеклоуглерод – хрупкий материал, поэтому для повышения прочности сетчатого каркаса в шликер добавляют наночастицы, например углеродные нанотрубки [5]. Поры материала в разных целях могут быть заполнены теми или иными веществами, способными значительно менять свойства всей системы, например, подавлять радиационную теплопроводность [4], которая в ультрапористой структуре доминирует при высоких температурах [6].

Однако исходное сырье, конкретные условия получения заметно влияют на физические характеристики стеклоуглерода и материалов на его основе. Достоверных данных по многим из этих свойств в литературе практически нет. Свойства пористых систем также в значительной степени зависят от особенностей их структуры, применяемых модификаторов – наполнителей. Для ряда приложений ключевое значение имеет взаимодействие поверхности таких материалов с электромагнитным излучением, что требует детального исследования оптических постоянных стеклоуглерода в широкой спектральной области.

Все изложенное выше явилось основной причиной проведения представленного в статье исследования. Оно является составной частью обширного комплекса работ, направленного на создание системы эффективных инструментов определения и/или прогнозирования свойств перспективных высокотемпературных композиционных материалов отечественного производства, имеющих, что важно, в своей основе не только стеклоуглерод, конструкций из них различного функционального назначения, в наибольшей степени приспособленных к эксплуатации в определенных физических условиях [6].

Производство экспериментальных образцов

Для определения физических свойств стеклоуглерода, образующего основу пористых структур, в УНИИКМ (г. Пермь) технология их получения [7] была модифицирована таким образом, чтобы пропитанные шликером образцы первичного ППУ, имеющие форму пластин, можно было бы предварительно сжимать перед их термообработкой, добиваясь необходимой плотности. Материал сжатых образцов, таким образом, оказывался тождественным по составу и структуре материалу основы высокопористых углеродных материалов [1, 3], производимых на основе ППУ (рис. 2).

Существовавшая технология позволяла в зависимости от назначения материала менять в его составе число углеродных компонентов и их количественное соотношение друг с другом. Основные задачи технологии термообработки заключались в необходимости получения настолько плотной поверхности образцов, чтобы можно было бы проводить ее спектральные исследования, и образования как можно большей массовой доли стеклоуглерода по всему объему образцов.

Состав образующих веществ произведенных пластин (см. таблицу) был представлен тремя разновидностями углерода, которые также присутствуют и в основе пористых материалов: стеклоуглерод, коллоидный графит и пироуглерод. При этом коллоидный графит оказался равномерно распределенным в стеклоуглероде, возникшем при карбонизации исходной полимерной заготовки из нанесенного на нее связуюшего (сам материал полимерной заготовки практически не давал углеродного остатка).

Параметры пластин пористого стеклоуглерода, полученных после термообработки сжатых первичных заготовок

N⁰	РЯ ППУ,	ΤΠ,	ОΠ,	МД	МД	ΜД
	MM	MM	г/см ³	ПУ	КГ	СУ
1	2	11	0.227	0.26	0.214	0.526
2	2	6.8	0.314	0.23	0.237	0.533
3	0.7	7.75	0.689	0.26	0.196	0.543
4	0.8	3.5	0.809	0.205	0.208	0.587
5	0.8	2.2	1.014	0.28	0.192	0.528
6	0.8	1.7	1.188	0.218	0.202	0.580

Примечания:

РЯ́ ППУ – размер ячейки исходного пенополиуретана;

ТП – толщина пластины сжатого материала;

ОП – объёмная плотность пластины;

МД ПУ – массовая доля пироуглерода; МД СУ – массовая доля стеклоуглерода;

МД С У – массовая доля стеклоутперода; МД КГ– массовая доля порошка коллоидного графита.

Пироуглерод образует тонкую пленку на всей поверхности образца, осаждаясь на нее из газовой фазы. Поэтому образцы изготавливались в несколько этапов, завершающим из которых было уплотнение их поверхности пиролитическим углеродом. Для этого процесса были сформулированы некоторые оптимизирующие рекомендации [7].

В пластинах, подвергнутых обжатию в состоянии полимерной заготовки, форма ячеек конечного пористого материала напоминает форму зерна чечевицы. Операции карбонизации и пиролитического уплотнения практически не меняют форму фрагментов готовой пластины, которые хорошо просматриваются при увеличении изображений поверхности образца на рис. 2, б. Величины степени обжатия, измеренные на полимеризованной заготовке и на пироуплотненной пластине (в сравнении с исходным ППУ), практически совпадали. Следует также отметить, что материал готовых пластин – это композит, состоящий из смеси мелкодисперсного коллоидного графита с коксом связущего (т.е. стеклоуглеродом), при этом, как видно из приведенной таблицы, суммарное содержание коллоидного графита и пироуглерода сопоставимо, но несколько ниже содержания стеклоуглеродной фазы.

В заключение отметим, что представленные в таблице пластины не имеют совершенной плос-

Рис. 2. Образцы стеклоуглеродных материалов (УНИИКМ, г. Пермь): *а* – сетчатый стеклоуглерод из ППУ; *б* – плотный образец пироуплотненного стеклоуглерода из сжатого ППУ

кой поверхности по технологическим причинам. Кроме того, в качестве полимерного связующего использовался жидкий бакелит марки БЖ-3. Вязкость его суспензии со смесью вводимых углеродных компонентов регулировалась добавлением пропанола. Химическая основа всех этих веществ – бакелит, который и является прекурсором стеклоуглерода [3].

Для исследования спектральных свойств стеклоуглерода были отобраны образцы с наибольшей плотностью поверхности и массовой долей стеклоуглерода.

Спектральные свойства основы сетчатых материалов

Оптические постоянные – спектральные показатели преломления *n* и поглощения *k* не поддаются непосредственному измерению, поэтому они были определены из решения обратной электромагнитной задачи для однородных сред по экспериментально измеренной полусферической монохроматической отражательной способности при нормальном освещении их поверхности. Использовалась методика работ [8, 9],

Рис. 3. Спектральная отражательная способность стеклоуглерода при нормальном освещении: сплошная линия – исходная поверхность; пунктирная линия – предварительно шлифованная

Рис. 5. Компоненты комплексной относительной диэлектрической проницаемости стеклоуглерода $\varepsilon = \varepsilon_1 + i\varepsilon_2$: $1 - \varepsilon_1$, $2 - \varepsilon_2$

основанная на фундаментальных соотношениях Крамерса–Кронига и формуле Френеля [10]

$$r = |r|e^{i\Theta} = (N-1)(N+1), N = n+ik$$

для комплексного коэффициента отражения поверхности образца, нормально освещаемой монохроматической плоской волной. Через полусферическую отражательную способность $R = |r|^2$ и фазу коэффициента отражения Θ нетрудно выразить и оптические постоянные [10]:

$$n = \frac{1 - R}{1 + R + 2\sqrt{R}\cos\Theta}, \ k = \frac{2\sqrt{R}\sin\Theta}{1 + R + 2\sqrt{R}\cos\Theta}.$$

Эти соотношения являются ключевыми в использованном методе, поскольку фаза Θ в них определяется по вытекающему из формул Крамерса–Кронига дисперсионному уравнению для фазы:

Рис. 4. Компоненты комплексного показателя преломления стеклоуглерода, исходная поверхность образца: *l* – *n*, *2* – *k*. Пунктирная линия – интерполяция

Рис. 6. Удельное электрическое сопротивление стеклоуглерода (Ом[•]м)

$$\Theta(\omega_0) = \frac{1}{\pi} P_0^{\tilde{\omega}} \frac{d\ln|r(\omega)|}{d\omega} \ln \left| \frac{\omega + \omega_0}{\omega - \omega_0} \right| d\omega, \qquad (1)$$

где *P* обозначает главную часть интеграла. Соотношение (1) применяется, если отражательная способность поверхности измерена в достаточно широкой спектральной области. Поэтому ее измерения проводились в ближнем и среднем ИК-диапазонах (0.74–20 мкм), которые достаточно надежно перекрывают основную часть – носитель функции Планка при значениях температуры от комнатной и выше.

В исследовании применялся ИК-Фурье спектрометр NicoletiS50 (ThermoScientific, США) с интегрирующей сферой IntegratIR (PIKE). Результаты измерений показаны на рис. 3. В опытах сначала использовался исходный плотный образец с предварительно очищенной поверхностью (сплошная линия на рис. 3). Затем поверхность образца шлифовалась, очищалась и измерения повторялись (пунктирная линия на рис. 3). Однако после шлифовки поверхность образца теряла стеклообразный вид, становилась матовой и визуально более похожей на углеродную фольгу. Оптические коэффициенты, определенные для такой поверхности, имели достаточно сложно интерпретируемые значения (в частности, получались отрицательные значения k для отдельных участков спектра), поэтому далее приводятся результаты, полученные для исходной поверхности образца.

Оптические коэффициенты *n* и *k*, определенные по описанному выше методу, приведены на рис. 4. Рассчитанные по этим значениям компоненты $\varepsilon_1 = n^2 - k^2$, $\varepsilon_2 = 2nk$ комплексной относительной диэлектрической проницаемости $\varepsilon = \varepsilon_1 + i\varepsilon_2$ стеклоуглерода представлены на рис. 5.

Обращает на себя внимание возможность достаточно качественной аппроксимации значений этих спектральных величин сравнительно простыми зависимостями, показанными на рис. 4 и 5 пунктиром.

Для контроля порядка значений получаемых величин спектральные значения удельного электрического сопротивления $\rho_e(\lambda)=2\pi/c\epsilon_2(\lambda)\epsilon_0$ (рис. 6) сравнивались с величиной удельного электрического сопротивления стеклоуглерода постоянному току при комнатной температуре.

Это величина определялась по поверхностному удельному сопротивлению, измеренному методом Ван-дер Пау [11] на омметре Щ-307, и имела значение (63±8) · 10⁻⁶ Ом м, т. е. находилась приблизительно на верхней границе электрического сопротивления графита [12].

Структура и спектральные свойства сетчатых материалов на основе стеклоуглерода

В работах [13–15] описаны основные элементы локально-спектральной модели ультрапористых неметаллических материалов, в работе [16] на примере материалов RVC (ReticulatedVitreousCarbon, США) описана расширенная модель физических свойств сетчатых неметаллических структур. В этой модели спектральные свойства стеклоуглерода основы не использовались, поскольку они были неизвестны, однако применялись аналитические температурные зависимости электрофизических свойств стеклоуглерода, которые строились по относительно неполным косвенным данным, доступным из [6]. В этом разделе представлены отдельные результаты моделирования спектральных свойств сетчатой структуры с использованием приведенных выше спектральных данных, которые демонстрируют возможности разработанных методов и инструментов. В расчетах использовались структурные статистические данные материала RVC ETTI-CF-ERG с эффективной плотностью 59 кг/м³, обладающего наиболее высокой степенью ретикуляции из имеющихся образцов.

В оптической модели представительные элементы сетчатой структуры освещаются с направлений, которые генерируются квазислучайным образом в соответствии анизотропией интенсивности излучения. Рассматривались ортогональные представительные элементы [6, 16], анизотропия излучения моделировалась распределением Хеньи–Гринстейна, параметр *g* которого является удобной мерой анизотропии.

На рис. 7 показан спектральный пробег фотонов $l_{\lambda} = (\alpha_{\lambda} + \beta_{\lambda})^{-1}$ и спектрально-транспортный коэффициент диффузии излучения $D_{\lambda} = 3[\alpha_{\lambda} + (1 - \langle \cos \theta \rangle)\beta_{\lambda}]^{-1}$ одного из сгенерированных представительных элементов. В их выражении α_{λ} , β_{λ} – спектральные показатели поглощения и рассеяния, $\langle \cos \theta \rangle$ – средний спектральный косинус рассеяния излучения представительным элементом.

Рис. 7. Спектральная весовая функция (2), спектрально-транспортный коэффициент диффузии излучения D_{λ} , м, и спектральный пробег фотонов l_{λ} , м, одного из представительных элементов сетчатой структуры. Шаг сканирования $\Delta\lambda$ =0.2 мкм

Рис. 8. Примеры спектральной индикатрисы рассеяния сетчатого стеклоуглерода (полярные координаты): $l - \lambda = 1$ мкм, g=0.35; $2 - \lambda = 4$ мкм, g=0.2

Диаметры фрагментов элемента объема – узла в форме шара и трех пар перемычек, ориентированных вдоль осей глобальной декартовой системы координат, в микронах показаны квадратиками на горизонтальной оси, где также в микронах отложена длина волны. Размеры фрагментов данного элемента объема (в м) следующие:

- диаметр узла $d_b = 6.3406 \cdot 10^{-5}$;

– диаметры и длины перемычек: $d_{x1} = 4.4683 \cdot 10^{-5}, l_{x1} = 2.1641 \cdot 10^{-4};$ $d_{x2} = 5.382 \cdot 10^{-5}, l_{x2} = 1.9807 \cdot 10^{-5};$ $d_{y1} = 4.3867 \cdot 10^{-5}, l_{y1} = 3.3415 \cdot 10^{-5};$ $d_{y2} = 1.8715 \cdot 10^{-5}, l_{y2} = 1.6951 \cdot 10^{-4};$ $d_{z1} = 2.5167 \cdot 10^{-5}, l_{z1} = 1.5524 \cdot 10^{-5};$ $d_{z2} = 3.8645 \cdot 10^{-5}, l_{z2} = 2.5896 \cdot 10^{-4}.$

Объем представительного элемента dV= 2.69640210⁻¹¹ м^{3.} Направление его освещения в сферических координатах $\theta_i = 0.5^\circ$, $\varphi_i = 15^\circ$ (полярная ось Oz).

Также на рис. 7 для *Т*=1000 К показана спектральная весовая функция

$$f_{\lambda}(\tau) = \tau^{-6} e^{-1/\tau} (1 - e^{-1/\tau})^{-3},$$

$$\tau = \frac{\lambda kT}{hc} = \lambda T \cdot 69.48028,$$
 (2)

входящая в выражение [6, 16] для радиационной компоненты теплопроводности

$$\lambda_r(T) = \frac{8\pi k_B^4 T^3}{3c^2 h^3} \int_0^\infty \frac{1}{\alpha_\lambda + \beta_\lambda^*} \frac{u^4 e^{-u}}{\left(1 - e^{-u}\right)^3} du =$$

$$= \frac{8\pi k_{B}^{4}T^{3}}{3c^{2}h^{3}}\int_{0}^{\infty} \frac{1}{\alpha_{\lambda} + \beta_{\lambda}^{*}} \frac{\tau^{-6}e^{-1/\tau}}{\left(1 - e^{-1/\tau}\right)^{3}} d\tau =$$

$$= \frac{1.1640285T^{3}n_{g}^{2}}{10^{8}} \left(\int_{0}^{1} \frac{1}{\alpha_{\lambda} + \beta_{\lambda}^{*}} \frac{u^{4}e^{-u}}{\left(1 - e^{-u}\right)^{3}} du + \int_{0}^{1} \frac{1}{\alpha_{\lambda} + \beta_{\lambda}^{*}} \cdot \frac{\tau^{-6}e^{-1/\tau}}{\left(1 - e^{-1/\tau}\right)^{3}} d\tau\right),$$

в котором $\beta_{\lambda}^* = \beta_{\lambda} (1 - \langle \cos \theta \rangle)$ – спектральный транспортный показатель рассеяния. Ход функции (2) показывает значимую для теплопереноса спектральную область.

Рис. 8 демонстрирует некоторые варианты спектральной индикатрисы рассеяния сетчатого стеклоуглерода – функции, практически не изученной в высокопористых материалах. Эти варианты отвечают различным длинам волн и различной степени анизотропии излучения, падающего на образец.

Заключение

Получены важные фундаментальные данные о спектральных свойствах производимого в нашей стране стеклоуглерода. Эти результаты дополняют информацию, необходимую для адекватного моделирования ультрапористых сетчатых структур на его основе. Разработаны эффективные инструменты исследования, анализа и прогнозирования свойств материалов и изделий на основе сетчатого стеклоуглерода отечественного производства. Они позволяют существенно снизить затраты на разработку новых перспективных материалов и изделий из них. Приведенные примеры моделирования показывают исключительные широкие возможности реализованного подхода.

СПИСОК ЛИТЕРАТУРЫ

- 1. Щурик А.Г. Искусственные углеродные материалы. Пермь, 2009. 342 с.
- 2. **Klett J.W.** Process for making carbon foam. United States Patent 6,033,506, March 2000.
- 3. Щурик А.Г. Способ получения высокопористого ячеистого углеродного материала. Патент РФ № 2089494/заявл. 28.02.95; опубл. 10.09.97, Бюлл. № 25.
- 4. **https:**//ultramet.com/refractory-ope-cee-foams/reticulated-vitreous-carbon-foam
- Щурик А. Г., Рожков А. В., Косматенко А. Е. Экспериментальная проверка прочности ВПЯУМ, содержащих наночастицы. В сб. «Итоги диссертационных исследований. Том 1. Материалы X Всероссийского конгресса

молодых ученых, Миасс, 9–11 октября 2018». М.: РАН, 2018. С. 3–11.

- 6. Алифанов О.М., Черепанов В.В. Методы исследования и прогнозирования свойств высокопористых теплозащитных материалов. М.: Изд-во МАИ, 2014. 264 с.
- Щурик А.Г. Результаты уплотнения изотермическим методом некоторых углеродных материалов // Труды конференции «Актуальные проблемы порошкового материаловедения», Пермь, 26–28 ноября 2018. С. 112–118.
- Jahoda F.C. Fundamental absorption of barium oxide from itsreflectivity spectrum // Physical Review. 1957. V. 107. N 5. P. 1261–1265.
- Musfeldt J. L., Tanner D. B., Paine A. J. Method for the determination of the optical properties of highly conjugated pigments // J. Opt. Soc. Am. A. 1993. V. 10. N 12. P. 2648–2657.
- Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами. М: Мир, 1986. 662 с.
- 11. Van der Pauw L.J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape // Phillips Research Reports. 1958. V. 26. N 8. P. 220–224.

- Кей Дж., Лэби Т. Таблицы физических и химических постоянных. М.: Государственное издательство физико-математической литературы, 1962. 248 с.
- 13. Черепанов В.В. Взаимодействия излучения с фрагментами высокопористого материала. Теория // Тепловые процессы в технике. 2011. Т. З. № 5. С. 215–227.
- 14. Черепанов В. В., Черепанов А. В. Взаимодействие излучения с неортогональными представительными элементами ультрапористых теплозащитных материалов // Тепловые процессы в технике. 2013. Т. 5. № 7. С. 313–320.
- Cherepanov V.V., Alifanov O.M., Morzhukhina A.V., Cherepanov A.V. Interaction of radiation with orthogonal representative elements of highly porous materials // Applied Mathematical Modelling. 2016. V. 40. N 5–6. P. 3459– 3474.
- 16. Алифанов О.М., Черепанов В.В., Моржухина А.В. Математическое моделирование ультрапористых неметаллических сетчатых материалов // Инженерно-физический журнал. 2015. Т. 88. № 1. С. 122–132.

Optical properties of domestic glassy carbon for thermal applications

V.V. Cherepanov¹, A.G. Schurik², R.A. Mironov³

¹Moscow Aviation Institute (National Research University), Moscow ²JSC «Ural Research Institute of Composite Materials», Perm ³ORPE «Technologiya» named after A. G. Romashin, Obninsk e-mail: bold2010@live.ru

The article is devoted to the problem of obtaining the glassy carbon key spectral-optical characteristics and their application for determining the properties of heat-resistant ultraporous reticulated glassy carbon foam materials produced in our country in a computational experiment. The initial stage of the work consisted in creating technology and producing the macroscopic dense samples of glassy carbon, which properties are identical to the basis of reticulated materials. To obtain a sample surface suitable for spectral studies, it was additionally compacted with pyrolytic carbon deposited on it from the gas phase. Experimental measurement of the spectral hemispherical reflectivity of the samples surface with its normal illumination allowed determining the key optical constants of the glassy carbon spectral values such as components of its complex refractive index consistent with the fundamental Kramers-Kronig relations, and a number of derived characteristics. An original statistical spectral mathematical simulation model was employed for theoretical studies and forecasting, and some results their operations are presented. Particularly, the reticulated carbon foam local scattering and absorption spectra, its phase scattering function, and its dependence on the degree of anisotropy of the radiation incident on the sample are demonstrated. This kind of data has never been previously obtained for such structures, although they open up broad prospects for determining these ultraporous materials properties that determine their practical application.

Keywords: reticulated glassy carbon foam, compressed sample, optical constants, physical properties, experiment, modelling.

REFERENCES

- 1. Schurik A. G. *Iskusstvennye uglerodnye materialy* [Artificial carbon materials]. Perm, 2009. 342 p. In Russ.
- 2. Klett J.W. *Process for making carbon foam.* Patent US no. 6033506, 2000.
- Schurik A. G. Sposob polucheniya vysokoporistogo yacheistogo uglerodnogo materiala [The method of obtaining high-porous cellular carbon material]. Patent RF no. 2089494, 1995. In Russ.
- 4. **https:**//ultramet.com/refractory-ope-cee-foams/reticulated-vitreous-carbon-foam
- Schurik A. G., Rozhkov A. V., Kosmentenko A. E. Eksperimental'naya proverka prochnosti VPYaUM, soderzhashhikh nanochastitsy [Experimental verification of the strength of carbon foam materials containing nanoparticles]. *Itogi dissertatsionnykh issledovanij. Tom 1. Materialy X Vserossijskogo kongressa molodykh uchenykh, Miass, 9–11 oktyabrya 2018* [Results of discernational studies. Volume 1. Materials of the X All-Russian Congress of Young

Scientists, Miass, October 9–11, 2018], Moscow: RAS, 2018, pp. 3–11. In Russ.

- 6. Alifanov O. M., Cherepanov V. V. *Metody issledovaniya i prognozirovaniya svojstv vysokoporistykh teplozashhitnykh materialov* [Research methods and prediction of the properties of highly porous heat-shielding materials] Moscow: Publishing House MAI, 2014. 264 p. In Russ.
- Schurik A. G. Rezul'taty uplotneniya izotermicheskim metodom nekotorykh uglerodnykh materialov [Results of compaction of some carbon materials using the isothermal method]. *Trudy konferentsii «Aktual 'nye problem poroshkovogo materialovedeniya»* [Proceedings of the conference "Actual problems of powder material science"], Perm, 2018, pp. 112–118. In Russ.
- Jahoda F.C. Fundamental absorption of barium oxide from itsreflectivity spectrum. *Physical Review*, 1957, vol. 107, no. 5, pp.1261–1265.
- Musfeldt J. L., Tanner D. B., Paine A.J. Method for the determination of the optical properties of highly conjugated pigments. *J. Opt. Soc. Am. A.*, 1993, vol. 10, no. 12, pp. 2648–2657.
- BohrenC.F., Huffman D.P. Absorption and Scattering of Light by Small Particles. New York, Wiley, 1983. 533 p. (Russ. ed. Boren K., Khafmen D. Pogloshhenie i rasseyanie sveta malymi chastitsami. Moscow. Mir, 1986. 662 p.)
- 11. Van der Pauw L.J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape. *Phillips Research Reports*, 1958, vol. 26, no. 8, pp. 220–224.

- 12. Kaye G., Laby T. *Tablitsy fizicheskikh i khimicheskikh postoyannykh* [Tables of physical and chemical constants]. Moscow: Gosudarstvennoe izdatel'stvo fiziko-matematicheskoj literatury, 1962. 248 p. In Russ.
- Cherepanov V.V. Vzaimodejstviya izlucheniya s fragmentami vysokoporistogo materiala. Teoriya [Interaction of radiation with fragments of high-porous material. Theory]. *Teplovye protsessy v tekhnike – Thermal processes in engineering*, 2011, vol. 3, no. 5, pp. 215–227. In Russ.
- Cherepanov V.V., Cherepanov A.V. Vzaimodejstvie izlucheniya s neortogonal'nymi predstavitel'nymi elementami ul'traporistykh teplozashhitnykh materialov [Modeling of ultra-porous heat-protective materials with nonorthogonal representative elements]. *Teplovye protsessy v tekhnike – Thermal processes in engineering*, 2013, vol. 5, no. 7, pp. 313–320. In Russ.
- Cherepanov V.V., Alifanov O.M., Morzhukhina A.V., Cherepanov A.V. Interaction of radiation with orthogonal representative elements of highly porous materials. *Applied Mathematical Modelling*, 2016, vol. 40, no. 5–6, pp. 3459– 3474.
- Alifanov O. M., Cherepanov V. V., Morzhukhina A. V. Matematicheskoe modelirovanie ul'traporistykh nemetallicheskikh setchatykh materialov [Mathematical modeling of ultraporous non-metallic mesh materials]. *Inzhenernofizicheskij zhurnal – Journal of engineering physics and thermophysics*, 2015, vol. 88, no. 1, pp. 122–132. In Russ.