На правах рукописи

UC-

Яковлев Дмитрий Олегович

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ДЕФОРМИРОВАНИЯ МНОГОСЛОЙНЫХ ТОНКИХ ТЕРМОУПРУГИХ ПЛАСТИН НА ОСНОВЕ МЕТОДА АСИМПТОТИЧЕСКОЙ ГОМОГЕНИЗАЦИИ

Специальность 01.02.04 - «Механика деформируемого твердого тела»

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Москва - 2016

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Московский государственный технический университет имени Н.Э. Баумана (Национальный исследовательский университет)»

Научный руководитель: доктор физико-математических наук, профессор **Димитриенко Юрий Иванович**.

Официальные оппоненты:

Горбачев Владимир Иванович, доктор физикоматематических наук, профессор кафедры Механики композитов Федерального государственного бюджетного образовательного учреждения высшего образования «Московский государственный университет имени М.В. Ломоносова"», г. Москва.

Волков-Богородский Дмитрий Борисович, кандидат физико-математических наук, ведущий научный сотрудника Федерального государственного бюджетного учреждения науки «Институт прикладной механики Российской академии наук (ИПРИМ РАН)», г. Москва,

Ведущая организация:

Открытое акционерное общество «Композит», Московская область, г. Королёв

Защита диссертации состоится «14» декабря 2016 года в 14⁰⁰ на заседании диссертационного совета Д 212.125.05, созданного на базе Московского авиационного института (национального исследовательского университета), в зале заседаний Ученого совета МАИ по адресу: 125993, г. Москва, Волоколамское шоссе, д. 4.

С диссертацией можно ознакомиться в научно-технической библиотеке ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)» и на сайте: https://www.mai.ru/events/defence/index.php?ELEMENT_ID=72874.

Автореферат разослан «____» октября 2016 г.

Ученый секретарь диссертационного совета

Г.В. Федотенков

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Во многих отраслях промышленности: машиностроении, строительстве, авиа- и космической технике, медицине, и многих других в качестве элементов конструкций широкое применение находят многослойные пластины из композиционных материалов. В связи с этим существует потребность развития математических моделей и методов для расчета точного расчета, которые позволили бы описывать происходящие в них процессы деформирования.

Несмотря на появление в последнее время мощных вычислительных средств, позволяющих решать задачи теории упругости в общей 3мерной постановке для конструкций сложной формы, интерес к решению задач в двумерной постановке (для пластин и оболочек) не пропадает. Очевидные преимущества двумерных постановок задач теории упругости для пластин и оболочек такие, как снижение размерности задачи, отсутствие необходимости детального построения сеток по толщиной координате для достижения приемлемой точности расчета напряжений, сохраняются и в настоящее время, и, по-видимому, будут актуальны и востребованы еще достаточно долго.

В этой связи попытки модификации классических теорий пластин и оболочек, направленные на получение уточненных алгоритмов расчета напряженно-деформированного состояния тонких тел, продолжают быть актуальными.

Однако платой за сокращение размерности является уменьшение точности получаемого решения, главным образом, для напряжений межслойного сдвига и поперечных напряжений, которые для многих задач играют наиболее важную роль при проектировании тонкостенных конструкций.

Расчет этих напряжений в общей трехмерной постановке задачи теории упругости крайне затруднителен, в связи с чем существует потребность в разработке уточненных методов теории тонких пластин и оболочек.

В работе Ю.И.Димитриенко (Асимптотическая теория многослойных тонких пластин// Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки., 2012, №. 3) был предложен вариант метода асимптотического осреднения тонких упругих пластин, позволяющий получить выражения для всех 6 компонент тензора напряжений при обеспечении математической точности, характерного для асимптотического метода.

Диссертационная работа посвящена развитию этого варианта метода асимптотического осреднения для задач термоупругости тонких тел

и задач о собственных и вынужденных колебаниях тонких упругих многослойных анизотропных пластин, исходя из общих трехмерных постановок задач равновесия и колебаний.

Цель проведенных исследований – разработка математического аппарата для решения задач термоупругости и колебаний тонких многослойных анизотропных пластин, на основе асимптотического анализа общей трехмерной теории термоупругости без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине

Для достижения поставленной цели потребовалось решение <u>сле-</u> <u>дующих основных задач:</u>

1. разработка теории термоупругости тонких многослойных анизотропных пластин, на основе асимптотического анализа общей трехмерной теории термоупругости путем введения асимптотических разложений по малому параметру, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине;

2. разработка теории собственных колебаний тонких упругих многослойных анизотропных пластин, на основе асимптотического анализа общих трехмерных уравнений упругих колебаний тел, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине;

3. сравнение расчетов, полученных с помощью разработанных теорий и с помощью конечно-элементного решения трехмерных задач теории упругости и термоупругости на основе конечно-элементного метода.

Методы исследования. В работе использованы:

 метод асимптотической гомогенизации или метод асимптотического осреднения;

– численные конечно-элементные методы решения задачи трехмерной теории термоупругости и задачи о свободных и вынужденных колебаниях упругих тел;

– численные конечно-разностные методы решения дифференциальных уравнений.

<u>Достоверность и обоснованность научных результатов</u> гарантируется строгостью используемого математического аппарата, применением классических математически методов и подтверждается сравнением результатов расчётов с результатами, полученными прямым конечно-элементным решением с помощью программного комплекса ANSYS. Результаты диссертационной работы согласуются с известными результатами других авторов.

Научная новизна. В диссертации получены следующие новые

4

научные результаты, выносимые на защиту:

Разработана теория термоупругости тонких многослойных анизотропных пластин, которая построена из уравнений общей трехмерной теории термоупругости путем введения асимптотических разложений по малому параметру, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине, и позволяет вычислить все 6 компонент тензора напряжений, включая поперечные нормальные напряжений и напряжения межслойного сдвига;

Разработана теория собственных колебаний тонких упругих многослойных анизотропных пластин, которая построена на основе асимптотического анализа общих трехмерных уравнений упругих колебаний тел, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине, и позволяет вычислить все 6 компонент тензора напряжений, включая поперечные нормальные напряжений и напряжения межслойного сдвига.

Практическая значимость диссертационной работы связана с ее прикладной ориентацией, полученные результаты могут быть использованы для исследования процессов деформирования тонких упругих многослойных анизотропных пластин в авиационной, космической, судостроительной областях, а также в других отраслях промышленности, где широко применяются тонкостенные многослойные оболочечные элементы конструкций.

<u>Апробация работы.</u> Результаты диссертационной работы докладывались и обсуждались на научных конференциях, в том числе:

- на научной конференции «Фундаментальные и прикладные задачи механики», посвященная 135-летию кафедры теоретической механики имени профессора Н.Е. Жуковского, февраль 2013;

- на III Международной научно-технической конференции «Аэрокосмические технологии», посвященной 100-летию со дня рождения академика В.Н. Челомея, май 2014;

- на Международной научной конференция "Физикоматематические проблемы создания новой техники (PhysMathTech -2014), посвященной 50-летию Научно-учебного комплекса «Фундаментальные науки» МГТУ им. Н.Э.Баумана 17-19 ноября 2014 года. 2014;

- на XIX Международной конференции по вычислительной механике и современным прикладным программным системам (ВМСППС'2015), май 2015;

- на Международной конференции Multiscale Modeling and Methods: Upscaling in Engineering and Medicine : Abstracts of the Fifth International Conference / Ed. by Yu. Dimitrienko, G. Panasenko ; Bauman Moscow State Technical University, Moscow : BMSTU, June 25-27, 2015.

<u>Публикации</u>. Основные научные результаты диссертации отражены в 12 научных работах, в том числе в 4-х статьях в журналах, включенных в перечень ВАК РФ.

<u>Личный вклад соискателя</u> заключается:

– в непосредственном участии в разработке теории термоупругости и собственных колебаний тонких многослойных анизотропных пластин, которая построена из уравнений общей трехмерной теории путем введения асимптотических разложений по малому параметру, подготовке основных публикаций и выступлений с докладами по выполненной работе;

– в валидации разработанных теорий, путем проведения вычислительных экспериментов и сравнения с результатами, полученными прямым конечно-элементным решением.

<u>Структура и объем работы.</u> Диссертация состоит из введения, 4 глав, выводов и заключения и списка литературы. Работа изложена на 97 страницах, содержит 24 иллюстрации и 6 таблиц. Библиография включает 172 наименования.

СОДЕРЖАНИЕ РАБОТЫ

Во **введении** обоснована актуальность темы, сформулированы цель и задачи исследования, научная новизна, теоретическая и практическая значимость полученных результатов, их достоверность, основные положения, выносимые на защиту, а также приведены данные о структуре и объеме диссертационной работы.

Первая глава посвящена разработке теории термоупругости многослойных тонких пластин на основе метода асимптотической гомогенизации на основе уравнений общей трехмерной теории термоупругости путем введения асимптотических разложений по малому параметру $\kappa = h/L <<1$, как отношение общей толщины пластины h к характерному размеру всей пластины L (например, к ее максимальной длине) [1,3,5-13]. Вводятся прямоугольные декартовы координаты \tilde{x}_k , ориентированные таким образом, что ось $O\tilde{x}_3$ направлена по нормали к внешней и внутренней плоскостям пластины, а оси $O\tilde{x}_1$, $O\tilde{x}_2$ принадлежат срединной поверхности пластины. $\nabla_j = \partial/\partial x_j$ - оператор дифференцирования по декартовым координатам. Рассматривается 3-мерная задача линейной теории термоупругости для многослойной пластины, которая в безразмерном виде записывается следующим образом:

$$\nabla_{j}\sigma_{ij} = 0; \quad \frac{C}{\kappa^{2}}\partial_{i}\theta = -\nabla_{i}q_{i}; \quad \varepsilon_{ij} = \frac{1}{2} \left(\nabla_{j}u_{i} + \nabla_{i}u_{j} \right); \quad g_{j} = \nabla_{j}\theta;$$

$$\sigma_{ij} = C_{ijkl}(\varepsilon_{kl} - \varepsilon_{kl}^{T}); \quad q_{i} = -\lambda_{ij}g_{j}; \quad \Sigma_{3\pm}: \sigma_{i3} = -\kappa^{3}p_{\pm}\delta_{i3}, \quad q_{3} = \pm q_{e\pm};$$

$$\Sigma_{T}: u_{i} = u_{ei}, \quad q_{I}n_{I} = 0; \quad \Sigma_{S}: [\sigma_{i3}] = 0, \quad [u_{3}] = 0, \quad [q_{3}] = 0, \quad [\theta] = 0;$$

$$(1)$$

и состоит из уравнений равновесия, нестационарного уравнения теплопроводности, соотношений Коши, выражения для градиента температуры, определяющих соотношений термоупругости, закона Фурье, граничных условий на внешних поверхностях пластины оболочки - на внешней и внутренней поверхности Σ_{3+} (их уравнение имеет вид $\tilde{x}_3 = \pm h/2$), на торцевой поверхности Σ_{τ} , а также граничных условий идеального контакта на поверхности раздела Σ_s слоев пластины ([u_i] - скачок функций), которые. В системе (1) обозначены: p_{\pm} - давление и $q_{0\pm}$ - тепловой поток на внешних поверхностях пластины, U_{ei} - заданные компоненты вектора перемещений на торцах пластины, \mathcal{E}_{ii} - компоненты тензора малых деформаций, $\varepsilon_{kl}^{T} = \alpha_{kl} \Delta \theta$ - компоненты тензора тепловой деформации, которые являются функциями перепада температуры $\Delta \theta = \theta - \theta_0$, где θ_0 - начальная отсчетная температура, α_{kl} - компоненты тензора теплового расширения. Компоненты тензора модулей упругости C_{iikl}, теплопроводности λ_{ii} , тепловой деформации ε_{kl}^{T} , а также массовая теплоемкость $C = \rho c / Fo_0$ ($Fo = \lambda_0 t_0 / \rho_0 c_0 L^2$ - критерий Фурье), - различны для каждого слоя многослойной пластины. Индекс "0" обозначает характерные значения величины. Малые латинские индексы пробегают значения 1,2,3, а большие : *I, J, К*... - принимают значения 1,2.

В системе (1) приняты 3 основных допущения: 1) давление на внешней и внутренней поверхностях пластины имеет третий порядок малости $O(\kappa^3)$ т.е. $\sigma_{33} = -\kappa^3 p_{\pm}$, 2) продолжительность нагрева не слишком велика, в том смысле, что критерий Фурье $Fo = \lambda_0 t_0 / \rho_0 c_0 L^2$ процесса нагрева имеет один порядок малости с κ^2 , т.е. - $Fo = \kappa^2 Fo_0$,

где Fo_0 число порядка 1: $Fo_0 = O(1)$; 3) давления p_{\pm} и тепловой поток $q_{0\pm}$ - мало изменяются на расстояниях порядка h.

Решение задачи (1) ищем в виде асимптотических разложений по параметру κ :

$$u_{k} = u_{k}^{(0)}(x_{I}) + \kappa u_{k}^{(1)}(x_{I},\xi) + \kappa^{2} u_{k}^{(2)}(x_{I},\xi) + \kappa^{3} u_{k}^{(3)}(x_{I},\xi) + \dots$$

$$\theta = \theta^{(0)}(\xi) + \kappa \theta^{(1)}(x_{I},\xi) + \kappa^{2} \theta^{(2)}(x_{I},\xi) + \kappa^{3} \theta^{(3)}(x_{I},\xi) + \dots$$
(2)

Подставляя разложения (2) в систему уравнений (1), получаем асимптотические разложения для деформаций и градиентов температуры, тепловой деформации, напряжений и теплового потока [1,2-3,5-13]. в результате получаем рекуррентную последовательность локальных задач термоупругости [1,3]. в частности локальная задача термоупругости для нулевого приближения имеет вид:

$$\begin{aligned} \sigma_{i3/3}^{(0)} &= 0, \qquad C\partial_{t}\theta^{(0)} + q_{3/3}^{(-1)} = 0 \\ \sigma_{i3}^{(0)} &= C_{i3KL}\varepsilon_{KL}^{(0)} + \tilde{C}_{i3k3}\varepsilon_{k3}^{(0)}, \quad -q_{3}^{(-1)} = \lambda_{33}g_{3}^{(-1)}, \quad g_{3}^{(-1)} = \theta_{/3}^{(0)} \\ \varepsilon_{IJ}^{(0)} &= \frac{1}{2}(u_{I,J}^{(0)} + u_{J,I}^{(0)}), \qquad \varepsilon_{I3}^{(0)} = \frac{1}{2}(u_{3,I}^{(0)} + u_{I/3}^{(1)}), \qquad \varepsilon_{33}^{(0)} = u_{3/3}^{(1)}, \\ \Sigma_{3\pm} : \sigma_{i3}^{(0)} &= 0; \qquad q_{3}^{(-1)} = \pm q_{e\pm}; \\ \Sigma_{s} : [\sigma_{i3}^{(0)}] = 0, \qquad [u_{i}^{(1)}] = 0, \qquad [q_{i}^{(-1)}] = 0, \qquad [\theta^{(0)}] = 0, \\ < u_{i}^{(1)} >= 0. \end{aligned}$$

$$(3)$$

Вводя обозначения для усилий T_{IJ} , моментов M_{IJ} и перерезывающих сил Q_I в пластине

$$\begin{split} T_{IJ} = & < \sigma_{IJ}^{(0)} > + \kappa < \sigma_{IJ}^{(1)} > + \dots, \ Q_I = \kappa < \sigma_{I3}^{(1)} > + \kappa^2 < \sigma_{I3}^{(2)} > + \dots, \\ M_{IJ} = \kappa < \xi \sigma_{IJ}^{(0)} > + \kappa^2 < \xi \sigma_{IJ}^{(1)} > + \dots. \end{split}$$
(4)

осредненные уравнения равновесия многослойной пластины можно записать в традиционном виде уравнений равновесия и уравнений моментов тонких пластин: $T_{IJ,J} = 0$, $Q_{J,J} = \Delta \overline{p}$, $M_{IJ,J} - Q_I = 0$, здесь обозначено $\Delta \overline{p} = \kappa^2 \Delta p$. При этом **осредненные определяющие** соотношения принимают вид [1]:

$$T_{IJ} = \overline{C}_{IJKL} \varepsilon_{KL}^{(0)} + B_{IJKL} \eta_{KL} + K_{IJKLM} \varepsilon_{KL,M}^{(0)} - T_{IJ}^{T}, \qquad (5)$$

$$\boldsymbol{M}_{IJ} = \boldsymbol{B}_{IJKL} \boldsymbol{\varepsilon}_{KL}^{(0)} + \boldsymbol{D}_{IJKL} \boldsymbol{\eta}_{KL} + \bar{\boldsymbol{K}}_{IJKLM} \boldsymbol{\varepsilon}_{KL,M}^{(0)} - \boldsymbol{M}_{IJ}^{T}, \qquad (6)$$

(7)

где обозначены тензоры осредненных упругих констант пластины $\overline{C}_{IJKL} = < C_{IJKL}^{(0)} >$, $B_{IJKL} = \kappa < \xi C_{IJKL}^{(0)} >$,

$$\begin{split} K_{IJKLM} &= \kappa < \tilde{N}_{IJKLM}^{(0)} >, \ K_{IJKL} = \kappa < \int_{-0.5}^{\xi} (< C_{IJKL}^{(0)} > -C_{IJKL}^{(0)}) d\xi >, \\ \bar{D}_{IJKL} &= \kappa^2 < \xi^2 C_{IJKL}^{(0)} >, \ M_{IJ}^T = \kappa < \xi C_{IJkl}^{(0)} \varepsilon_{kl}^{T(0)} > + \kappa^2 < \xi \tilde{\sigma}_{IJ}^{(1)} >, \\ \bar{K}_{IJKLM} &= \kappa^2 < \xi \tilde{N}_{IJKLM}^{(0)} >, \ T_{IJ}^T = < C_{IJkl}^{(0)} \varepsilon_{kl}^{T(0)} > + \kappa < \tilde{\sigma}_{IJ}^{(1)} >, \\ Q_I^T &= \kappa \int_{-0.5}^{\xi} (< C_{IJkl}^{(0)} \varepsilon_{kl,J}^{T(0)} > - C_{IJkl}^{(0)} \varepsilon_{kl,J}^{T(0)}) d\xi . \end{split}$$

В систему осредненных определяющих соотношений (5)-(7) входят деформации срединной поверхности $\varepsilon_{KL}^{(0)}$, кривизны η_{KL} и градиенты деформаций $\varepsilon_{KL,N}^{(0)}$, которые зависят от 3 функций $u_I^{(0)}$, $u_3^{(0)}$

глобальных переменных x_I : $\mathcal{E}_{IJ}^{(0)} = \frac{1}{2} (u_{I,J}^{(0)} + u_{J,I}^{(0)}), \quad \eta_{KL} = -u_{3,KL}^{(0)},$ $\mathcal{E}_{IJ,K}^{(0)} = \frac{1}{2} (u_{I,JK}^{(0)} + u_{J,IK}^{(0)}).$

Показано, что для моноклинных материалов продольные перемещения u_1 линейно зависят от поперечной координаты ξ , как и в классических теориях Тимошенко и Кирхгофа-Лява:

$$u_{I} = u_{I}^{(0)} - \kappa \xi u_{3,I}^{(0)}, \quad u_{3} = u_{3}^{(0)} + \kappa (\varepsilon_{KL}^{(0)} U_{3KL}^{-}(\xi) - U_{3}^{T}(\xi)),$$

этот факт не является допущением, как это обычно осуществляется в классических теориях пластин, а он представляет собой итог асимптотических разложений уравнений общей трехмерной теории упругости, Для немоноклинных материалов линейного закона распределения продольных перемещений уже может не быть.

Вторая глава посвящена решению задач о расчете напряженнодеформированного состояния многослойных тонких пластин 1) при изгибе равномерным давлением 2) и при равномерном температурном поле. Для данных задач получены явные аналитические формулы для всех 6 компонент напряжений.

Решение осредненных уравнений равновесия вместе с граничными условиями жесткого защемления x = 0 u x = 1: $u_3^{(0)} = 0$, $u_{31}^{(0)} = 0$ - это

классическое решение для прогиба пластины в теории Кирхгофа-Лява: $u_3^{(0)} = -\frac{\Delta p}{24D_{11}} x(x^3 - 2x^2 + x), \quad D_{11} = <\xi^2 C_{1111}^{(0)} >,$ а искомые напряжения

принимают следующий вид:

 $\sigma_{IJ} = \frac{C_{IJ11}^{(0)} \Delta \tilde{p}}{24\kappa^2 D_{11}} x(x-1),$

$$\begin{split} \sigma_{I3} &= \frac{\Delta \tilde{p}}{\kappa D_{11}} (x - 1/2) \int_{-0.5}^{\xi} (\langle \xi C_{I111}^{(0)} \rangle - \xi C_{I111}^{(0)}) d\xi ,\\ \sigma_{33} &= -(\tilde{p}_{-} + \Delta \tilde{p}(\xi + 0.5) - \frac{\Delta \tilde{p}}{D_{11}} \int_{-0.5}^{\xi} (\langle \sigma^{(2)} \rangle - \sigma^{(2)}) d\xi) , \end{split}$$
 где
$$\begin{split} \frac{\Delta \overline{p}}{D_{111}} &= \frac{\Delta p}{D_{11}} = \frac{\Delta \tilde{p}}{\kappa^{3} D_{11}} , \quad \Delta \tilde{p} = \kappa^{3} \Delta p , \quad \tilde{p}_{-} = \kappa^{3} p_{-} . \end{split}$$
 Если пластина однослой-

ная, т.е $C_{ijkl} = const$, то получаем [1] явное выражение для напряжений сдвига $\sigma_{13} = \frac{6\Delta \tilde{p}}{\kappa} \left(x - \frac{1}{2}\right) \left(\xi^2 - \frac{1}{4}\right)$. Отсюда следует, что максимальное

значение касательного напряжения: $\max \sigma_{13} = \frac{3\Delta \tilde{p}}{4\kappa}$ - таково же как и в

классической теории Кирхгофа-Лява. Однако, для многослойной пластины формулы для напряжений отличаются от выражений, получаемых из теории Кирхгофа-Лява с единой деформируемой нормалью, а также от выражений, получаемых с помощью модели Григолюка-Куликова с ломаной линией.

Для анализа точности разработанной теории многослойных пластин было проведено сравнение результатов расчетов напряжений, полученных по с помощью асимптотической теории, с результатами расчетов по точной 3-мерной теории упругости [1]. Для нахождения численного решения по трехмерной теории использовался программный конечно-элементный пакет ANSYS. Пластина в этом случае рассматривалась как 3-мерное тело (параллелепипед), торцы которого x = 0 и x = 1 были жестко защемлены, на одной внешней поверхности $\xi = 0.5$ было задано равномерное давление $\tilde{p}_{-} = \kappa^3 p_{-}$, вторая поверхность $\xi = -$ 0.5 полагалась свободной, а боковые грани $x_2 = \pm b/2$ (b- ширина пластины) были защемлены со свободным скольжением. Пластина состояла из трех слоев с симметричным их расположением относительно срединной плоскости: Материалы слоёв были выбраны ортотропными, с главными осями ортотропии совпадающими с осями симметрии пластины.

В процессе проведения трехмерных конечно-элементных расчетов с помощью пакета ANSYS была отмечена существенная зависимость решения от использованной при расчетах конечно-элементной сетки. Для того, чтобы избежать необходимости применения параллельных вычислений, было создана специальная неравномерная КЭ-сетка, для которой сгущение реализуется только вблизи 9 нормальных сечений пластин, названных "опорными", для остальных частей пластины использовалась более крупная сетка.

В таблице 1 приведено сравнение невязки вычисления скачка поперечного нормального напряжения [σ_{22}] в зависимости от числа N конечных элементов в опорных сечениях. На рисунке 1 приведены соответствующие распределения поперечного напряжения σ_{22} по толщине трехслойной пластины, в окрестности сечения $x_1 = 0,25$ (стык слоев 1 и 2 слоев), полученные с помощью АТ и с помощью пакета AN-SYS для различных КЭ сеток с разным числом N.

Таблица 1

Число КЭ (узлов) по толщине	Невязка в сечении $x_1 = 0,25, \%$
12 (25)	73,7
20 (41)	55,3
80 (161)	18,5

Сравнение распределений остальных напряжений σ_{13} , σ_{11} , σ_{22} , σ_{33} , рассчитанных по AT с ANSYS- решением при N=80 (по 20 элементов на слой), приведено на рисунках 2 - 3 в сечении $x_1 = 0,125$.

Рисунок 1 – Распределение поперечного напряжения σ_{22} по толщине в окрестности стыка слоев 1 и 2

Рисунок 2 – Распределение напряжений по толщине трехслойной пластины, полученное с помощью разработанной теории (АТ) и пакета AN-

Рисунок 3 – Распределение поперечного напряжения по толщине трехслойной пластины, полученное с помощью разработанной теории (AT) и пакета ANSYS в сечении $x_1 = 0,125 : a - \sigma_{33}; 6 - \sigma_{22}$

Рассмотрена задача об изгибе многослойной пластины при неравномерном нагреве [1]. Температурное поле пластины $\theta^{(0)}$ предпола-

гается известным и является неравномерным по толщине, но не зависит от $x_j: \theta^{(0)}(\xi,t)$. Материалы слоёв были выбраны ортотропными, торцы пластины $x_1 = 0$ и $x_1 = 1$ и внешние поверхности пластины $\xi = \pm 0.5$ свободными от нагрузки ($\Delta \overline{p} = 0$), боковые поверхности $x_2 = \pm \overline{b}/2$ стеснёнными, свободно скользящими, в этом случае изгибные напряжения, напряжения межслойного сдвига и поперечные напряжения при сохранении главных членов в асимптотических разложениях, в данной задаче приняли следующий вид

$$\sigma_{IJ} = \sigma_{IJ}^{(0)} + \kappa \sigma_{IJ}^{(1)} = \frac{C_{IJ11}^{(0)}}{\bar{C}_{1111}} T_{11}^{T} - C_{IJkl}^{(0)} \varepsilon_{kl}^{T(0)} - \kappa^{2} \xi C_{IJ11}^{(0)} u_{3,11}^{(0)}, \ \sigma_{I3}^{(1)} = 0,$$

$$\sigma_{I3} = \kappa^{2} \sigma_{I3}^{(2)} = -\kappa^{2} u_{3,111}^{(0)} \int_{-0.5}^{\xi} (\langle \xi C_{I111}^{(0)} \rangle - \xi C_{I111}^{(0)}) d\xi \sigma_{i3}^{(2)} = 0, \ \sigma_{33} = 0.$$

Для нахождения численного решения по трехмерной теории термоупругости также использовался программный пакет ANSYS. Для расчетов использовалась описанная выше неравномерная КЭ-сетка. На рисунке 4 приведено сравнение распределения изгибных напряжений σ_{II} по толщине пластины в сечении $x_1 = 0,125$.

Рисунок 4 – Распределение напряжений по толщине трехслойной пластины: а – σ_{11} ; б – σ_{22}

<u>Третья глава</u> посвящена разработке теории гармонических колебаний многослойных тонких пластин на основе метода асимптотической гомогенизации [4]. Рассматривается задача линейной теории при установившихся колебаниях в 3-мерной постановке:

$$\nabla_{j}\sigma_{ij} + \rho\omega^{2}u_{i} = 0, \ \varepsilon_{ij} = \frac{1}{2} \left(\nabla_{j}u_{i} + \nabla_{i}u_{j} \right), \ \sigma_{ij} = C_{ijkl}\varepsilon_{kl}$$

$$\Sigma_{3\pm} : \sigma_{i3} = -\kappa^{3}p_{\pm}\delta_{i3}, \ \Sigma_{T} : u_{i} = u_{ei}, \ \Sigma_{S} : [\sigma_{i3}] = 0, \ [u_{3}] = 0,$$
(8)

13

где *\omega* - частота колебаний

Решение задачи (8) ищется в виде асимптотических разложений по параметру κ в виде функций, зависящих от глобальных и локальной координат:

$$u_{k} = u_{k}^{(0)}(x_{I}) + \kappa u_{k}^{(1)}(x_{I},\xi) + \kappa^{2} u_{k}^{(2)}(x_{I},\xi) + \kappa^{3} u_{k}^{(3)}(x_{I},\xi) + \dots$$
(9)

Подставляя разложения (9) в уравнения системы (8) и приравнивая в уравнениях равновесия члены при κ^{-1} к нулю, а при остальных степенях от κ к некоторым величинам $h_i^{(0)}, h_i^{(1)}, h_i^{(2)}$, не зависящим от ξ_i , получим рекуррентную последовательность локальных задач, в частности задача для нулевого приближения имеет вид:

$$\sigma_{i3/3}^{(0)} = 0, \ \sigma_{i3}^{(0)} = C_{i3KL} \varepsilon_{KL}^{(0)} + C_{i3k3} \varepsilon_{k3}^{(0)}, \\ \varepsilon_{IJ}^{(0)} = \frac{1}{2} (u_{I,J}^{(0)} + u_{J,I}^{(0)}), \\ \varepsilon_{33}^{(0)} = u_{3/3}^{(1)}, \\ \varepsilon_{I3}^{(0)} = \frac{1}{2} (u_{3,I}^{(0)} + u_{I/3}^{(1)}), \\ \Sigma_{3\pm} : \sigma_{i3}^{(0)} = 0; \\ \Sigma_{S} : [\sigma_{i3}^{(0)}] = 0, \\ [u_{i}^{(1)}] = 0, \\ < u_{i}^{(1)} > = 0; \\ \varepsilon_{I3}^{(1)} = 0, \\ \varepsilon_{I3}^$$

Решая локальные задачи аналитически и подставляя найденные решения в уравнения установившихся колебаний.

Искомые осредненные **уравнения установившихся колебаний многослойной пластины** можно записать в традиционном для теории пластин виде уравнений равновесия и уравнений моментов при установившихся колебаниях [4]:

$$T_{IJ,J} + \overline{\rho}\omega^2 U_I = 0, \ Q_{J,J} + \overline{\rho}\omega^2 U_3 = \Delta \overline{p}, \ M_{IJ,J} - Q_I + \overline{\rho}\omega^2 \Gamma_I = 0,$$
(10)
здесь обозначено $\Delta \overline{p} = \kappa^2 \Delta p$.

а также обозначения для обобщенных перемещений пластины при сохранении только главных членов асимптотических разложений:

$$U_{i} = u_{i}^{(0)}, \ \overline{\rho}\Gamma_{I} = \kappa < \rho u_{I}^{(1)}\xi >= -Ru_{3,I}^{(0)} + \varepsilon_{KL}^{(0)}R_{IKL}, \ R = \kappa < \rho\xi^{2} >$$
(11)
$$R_{IKL} = 2\kappa < \int_{-0.5}^{\xi} C_{I_{3i3}}^{-1}C_{i_{3KL}}d\xi >< \rho\xi > -2\kappa < \rho\xi \int_{-0.5}^{\xi} C_{I_{3i3}}^{-1}C_{i_{3KL}}d\xi >.$$

Эти уравнения отличаются от традиционных уравнений колебаний пластин только наличием слагаемого $\varepsilon_{KL}^{(0)}R_{IKL}$ в коэффициентах Γ_I . При этом осредненные определяющие соотношения примут вид [1]:

$$T_{IJ} = \bar{C}_{IJKL} \varepsilon_{KL}^{(0)} + B_{IJKL} \eta_{KL} + K_{IJKLM} \varepsilon_{KL,M}^{(0)} + \omega^2 \bar{G}_{IJ} u_i^{(0)}$$
(12)

$$M_{IJ} = B_{IJKL} \varepsilon_{KL}^{(0)} + D_{IJKL} \eta_{KL} + \bar{K}_{IJKLM} \varepsilon_{KL,M}^{(0)} + \omega^2 \hat{G}_{IJi} u_i^{(0)}$$
(13)

Где обозначены

$$\bar{G} = \kappa < \int_{-0.5}^{\zeta} (<\rho > -\rho) d\xi >, \quad \bar{G}_{IJi} = \kappa < G_{IJi} >, \quad \hat{G}_{IJi} = \kappa^2 < \xi G_{IJi} >.$$

После того как решены осредненные уравнения (10), и найдены функции $u_1^{(0)}$, $u_3^{(0)}$, можно вычислить деформации, а затем напряжения σ_{IJ} . Выражения для вычисления сдвиговых напряжений σ_{I3} и поперечного напряжения σ_{33} по разработанной теории принимают вид:

$$\begin{split} &\sigma_{33} = \kappa \int_{-0.5}^{\xi} (<\rho > -\rho) \omega^2 u_3^{(0)} d\xi + \kappa^2 \int_{-0.5}^{\xi} (<\sigma_{3J,J}^{(1)} > -\sigma_{3J,J}^{(1)} + (<\rho > -\rho) \omega^2 u_i^{(1)}) d\xi + \\ &+ \kappa^3 (-p_- -\Delta p(\xi + 0.5) + \int_{-0.5}^{\xi} (<\sigma_{3J,J}^{(2)} > -\sigma_{3J,J}^{(2)} + \omega^2 (<\rho u_i^{(2)} > -\rho u_i^{(2)})) d\xi), \\ &\sigma_{I3} = \kappa \int_{-0.5}^{\xi} (<\sigma_{IJ,J}^{(0)} > -\sigma_{IJ,J}^{(0)} + (<\rho > -\rho) \omega^2 u_I^{(0)}) d\xi + \\ &+ \kappa^2 \int_{-0.5}^{\xi} (<\sigma_{IJ,J}^{(1)} > -\sigma_{IJ,J}^{(1)} + \omega^2 (<\rho u_I^{(1)} > -\rho u_I^{(1)})) d\xi \,. \end{split}$$

Таким образом, разработанная теория тонких пластин позволяет найти все шесть компонент тензора напряжений.

<u>Четвертая глава</u> посвящена моделированию гармонических изгибных колебаний симметричной многослойной пластины прямоугольной формы под действием равномерно распределенного давления и сравнению полученных результатов с результатами расчетов по точной 3мерной теории упругости. Слои пластины считаются расположенными симметрично относительно плоскости $\xi = 0$. В этом случае окончательное дифференциальное уравнение колебаний многослойной пластины принимает вид

$$D_{1111}u_{3,1111}^{(0)} + \omega^2 R(1 - \hat{G}_{113} / R)u_{3,11}^{(0)} - \omega^2 \bar{\rho}u_3^{(0)} + \Delta \bar{p} = 0$$
(14)

Это уравнение практически совпадает с классическим уравнением изгибных колебаний пластины Кирхгофа-Лява и отличается от него только членом \hat{G}_{113} / R :

$$\hat{G}_{113} / R = \frac{\kappa}{<\rho \xi^2 >} < C_{11k3} C_{k333}^{-1} \xi \int_{-0.5}^{\xi} (<\rho > -\rho) d\xi >$$

который мал по сравнению с 1. Таким образом, разработанная асимптотическая теория колебаний многослойных пластин в частном

случае колебаний симметричных пластин приводит к хорошо известному уравнению колебаний пластин Кирхгофа-Лява.

Рассматривается решение уравнения (14) вместе с граничными условиями шарнирного закрепления торцов пластины x = 0 u x = 1: $u_3^{(0)} = 0$, $u_{3,11}^{(0)} = 0$. Для случая $\Delta \overline{p} = 0$ решение задачи представляет собой собственные колебания пластины $u_3^{(0)} = W_n \sin(\pi n x)$, где $u_3^{(0)} = W_n \sin(\pi n x)$ - амплитуда, n=1,2,3. Частота ω в данном случае является собственной частой ω_n колебаний пластины и вычисляется по формуле:

 $\omega_n^2 = (\pi n)^4 D_{1111} / (\bar{\rho} + \pi^2 n^2 (R - \hat{G}_{113})).$

Также рассматривается случай вынужденные изгибные колебания симметричной многослойной пластины. Рассматривается пластина из 3-х слоев на внешнюю поверхность $\xi = 0.5$ которой действует давление изменяющееся по гармоническому закону с амплитудой $\Delta \overline{p} = 1$ МПа и частотой 15 Гц. Оставшиеся граничные условия и свойства материалов были такие же как и в задаче о собственных колебаниях пластина

На рисунке 5 представлены распределения напряжений по толщине пластины в сечении $x_1 = 0,25$, для случая вынужденных колебаний под действием внешнего давления с амплитудой $\Delta \overline{p} = 1e6 \,\Pi a$ и частотой 15 Гц.

Рисунок 5 – Распределение напряжений по толщине трехслойной пластины : а – σ_{13} ; б – σ_{22}

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

1. Разработана теория термоупругости тонких многослойных анизотропных пластин, которая построена из уравнений общей трехмерной теории термоупругости путем введения асимптотических разложений по малому параметру, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине, и позволяет вычислить все 6 компонент тензора напряжений, включая поперечные нормальные напряжений и напряжения межслойного сдвига.

2. Разработана теория собственных колебаний тонких упругих многослойных анизотропных пластин, которая построена на основе асимптотического анализа общих трехмерных уравнений упругих колебаний тел, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине, и позволяет вычислить все 6 компонент тензора напряжений, включая поперечные нормальные напряжений и напряжения межслойного сдвига.

3. Приведены примеры решения задачи об изгибе многослойной пластины равномерным давлением и неравномерным температурным полем, а также об изгибных колебаниях многослойной пластины. Сравнение расчетов, полученных с помощью разработанного метода и с помощью конечно-элементного решения трехмерной задач теории упругости и термоупругости на основе программного комплекса ANSYS показало, что предложенный метод позволяет вычислять все 6 напряжения в пластине с очень высокой точностью, приблизится к которому с помощью конечно-элементного трехмерного решения удается только при использовании очень мелких сеток с большим числом КЭ по толщине пластины, что является серьезным ограничением при проведении расчетов тонкостенных пластин и оболочек.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ ОТРАЖЕНЫ В РАБОТАХ

1. Димитриенко Ю. И., Губарева Е. А., Яковлев Д. О. Асимптотическая теория многослойных упругих пластин/Методические указания к выполнению курсовой работы по дисциплине «Методы решения задач МДТТ». М.:Изд-во МГТУ им.Н.Э.Баумана. 2014. 32 с. ISBN: 978-5-7038-3961-4 http://ebooks.bmstu.ru/catalog/96/book39.html

2. Димитриенко Ю.И., Губарева Е.А., Федонюк Н.Н., Яковлев Д.О. Метод расчета рассеяния энергии в конструкциях из гибридных композитов //Известия ВУЗов. Машиностроение.-2014.-№1-С.12-24.

3. Димитриенко Ю.И., Губарева Е.А., Яковлев Д. О. Расчет многослойных пластин на основе асимптотической теории осреднения/ Методические указания к выполнению курсовой работы по дисциплине «Методы решения задач МДТТ». М.:Изд-во МГТУ им.Н.Э.Баумана, 2014. 27 с. 4. Димитриенко Ю.И., Губарева Е.А., Яковлев Д.О. Асимптотическая теория вязкоупругости многослойных тонких композитных пластин// Наука и образование. Электронный журнал. # 10, октябрь 2014 DOI: 10.7463/1014.0730105. С.359-382.

5. Димитриенко Ю.И., Губарева Е.А., Яковлев Д.О. Асимптотическая теория гармонических колебаний многослойных тонких упругих пластин// Вестник МГТУ им.Н.Э.Баумана. Сер. Естественные науки.- 2015.-№ 6.-С.99-120.

6. Димитриенко Ю.И., Губарева Е.А., Яковлев Д.О. Новая теория расчета многослойных композитных пластин, основанная на асимптотическом анализе трехмерных уравнений теории упругости// Аэрокосмические технологии:тезисы докладов Третьей международной научнотехнической конференции, посвященной 100-летию со дня рождения академика В.Н. Челомея. – М.: изд-во МГТУ им. Н.Э. Баумана, 2014.

7. Димитриенко Ю.И., Губарева Е.А., Яковлев Д.О. Теория колебаний многослойных пластин, основанная на асимптотическом анализе трехмерных уравнений// Материалы XIX Международной конференции по вычислительной механике и современным прикладным программным системам (ВМПСППС'2015) 24-31 мая 2015 г.-М.:Изд-во МАИ.-С.255-256.

8. Димитриенко Ю.И., Губарева Е.А., Яковлев Д.О. Теория многослойных тонких композитных пластин, основанная на асимптотическом анализе трехмерных уравнений вязкоупругости//Тезисы докл. Международной научной конференция "Физико-математические проблемы создания новой техники (PhysMathTech - 2014), посвященной 50-летию Научно-учебного комплекса «Фундаментальные науки» МГТУ им. Н.Э.Баумана 17-19 ноября 2014 года. 2014. С.23-24

9. Димитриенко Ю.И., Яковлев Д.О. Асимптотическая теория термоупругости многослойных композитных пластин// Механика композиционных материалов и конструкций. Т.20. № 2. – 2014.-С.260-282.

10. Димитриенко Ю.И., Яковлев Д.О. Сравнительный анализ решений асимптотической теории многослойных тонких пластин и трехмерной теории упругости// Инженерный журнал: наука и инновации, 2013, вып. 7(19). URL: http://engjournal.ru/catalog/mathmodel/technic/899.html

11. Dimitrienko Yu.I., Gubareva E.A., Yakovlev D.O., Yurin Yu.V. Asymptotic homogenization for harmonic vibrations of multilayer thin elastic plates// Multiscale Modeling and Methods: Upscaling in Engineering and Medicine : Abstracts of the Fifth International Conference / Ed. by Yu. Dimitrienko, G. Panasenko ; Bauman Moscow State Technical University, Moscow : BMSTU, June 25-27, 2015. pp.17-18.

12. Dimitrienko Yu.I., Yakovlev D.O. The Asymptotic Theory of Thermoelasticity of Multilayer Composite Plates// Composites: Mechanics, Applications. An International Journal. 2015. v.6. № 1 pp.13-51 DOI: 10.1615/CompMechComputApplIntJ.v6.i1.20