На правах рукописи

ВОРОБЬЁВ ИЛЬЯ НИКОЛАЕВИЧ

НЕЛИНЕЙНЫЕ ТЕРМОУПРУГИЕ КОЛЕБАНИЯ И УСТОЙЧИВОСТЬ ГИБКОГО ТОНКОСТЕННОГО СТЕРЖНЯ КОСМИЧЕСКОГО АППАРАТА ПРИ СОЛНЕЧНОМ НАГРЕВЕ

01. 02. 04 – Механика деформируемого твердого тела

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата физико-математических наук

Москва – 2012

Работа выполнена в Федеральном государственном бюджетном образовательном учреждении высшего профессионального образования «Московский авиационный институт (национальный исследовательский университет)» (МАИ).

Научный руководитель:	доктор физико-математических наук, доцент		
	Гришанина Татьяна Витальевна		
Официальные оппоненты:	Гришанина Татьяна Витальевна Коровайцев Анатолий Васильевич, доктор физико-математических наук, профессор, ФГБОУ ВПО «Московский авиационный институт (национальный исследовательский университет)» (МАИ), профессор. Аринчев Сергей Васильевич, доктор технических наук, доцент, Московский Государственный технический университет им. H.Э. Баумана, профессор		
	Н.Э. Баумана, профессор		

Ведущая организация: Институт прикладной механики Российской Академии Наук (ИПРИМ РАН)

Защита состоится «21» декабря 2012 г. в 15.30 на заседании диссертационного совета Д 212.125.05 в ФГБОУ ВПО «Московский авиационный институт (национальный исследовательский университет)» (МАИ), по адресу: 125 993, г. Москва, А-80, ГСП-3, Волоколамское шоссе, д. 4.

С диссертацией можно ознакомиться в научной библиотеке «Московского авиационного института (национального исследовательского университета)» (МАИ).

Автореферат разослан

«19» ноября 2012 г.

Ученый секретарь диссертационного совета

Г. В. Федотенков

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ПО ТЕМЕ ДИССЕРТАЦИИ

В рецензируемых научных изданиях и журналах:

- 1. Воробьев И. Н., Гришанина Т.В. «Нелинейная задача динамического изгиба стержня после потери устойчивости»// Труды МАИ 2012, №57, http://www.mai.ru/science/trudy/
- 2. Воробьев И. Н., Гришанина Т.В., Шклярчук. Ф. Н. «Нелинейные колебания спутника с упругим тонкостенным стержнем при солнечном нагреве»// Вестник МАИ 2012, т. 19, №3, с. 160-170.
- 3. Воробьев И. Н. «Динамическая неустойчивость тонкостенного трубчатого стержня при солнечном нагреве»// Труды МАИ 2012 № 59, http://www.mai.ru/science/trudy/

В других научных изданиях и журналах:

- Воробьев И. Н., Гришанина Т.В. «Нелинейная динамика упругого стержня после потери устойчивости». В сб. материалов XVIII Международного симпозиума «Динамические и технологические проблемы механики конструкций и сплошных сред» (Ярополец 13-17 февраля 2012 г.). 2012, с. 74.
- Воробьев И. Н. «Нелинейные колебания тонкостенного стержня при солнечном нагреве с учетом лучистого теплообмена». В сб. материалов Московской молодёжной научно – практической конференции «Инновации в авиации и космонавтике – 2012» (Москва, 17 – 20 апреля 2012 г.) 2012, с. 189
- Воробьев И. Н. «Колебания и динамическая устойчивость спутника с упругим стержнем при солнечном нагреве». В сб. материалов XVII Международной научной конференции «Системный анализ, управление и навигация» (Крым, Евпатория 1 – 8 июля 2012 г.) 2012, с 58.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

На космических аппаратах (КА) в качестве удлинителей для различных грузов и приборов, а также штанг гравитационной стабилизации, могут использоваться выдвигаемые тонкостенные стержни, образуемые из предварительно напряженной навитой на барабан металлической ленты. Такие стержни могут иметь большую длину и под воздействием солнечных лучей могут испытывать значительный термоупругий изгиб, вынужденные колебания (при изменении ориентации и освещения) и автоколебания (вследствие динамической неустойчивости, обусловленной влиянием упругих деформаций на углы падения солнечных лучей и приток тепла). Вследствие высокой гибкости таких стержней, они при солнечном нагреве могут испытывать сильный термоупругий изгиб и колебания с большими амплитудами и поэтому для решения этих задач необходимо использовать геометрически нелинейную формулировку. При термоупругом изгибе стержня, ось спутника, к которому присоединен стержень, отклоняется от заданного направления, и при переходных колебаниях и динамической неустойчивости стержня спутник раскачивается, что приводит к нарушению его функционирования и, возможно, к выходу из строя при переворачивании. Поэтому исследование нестационарных колебаний гибких стержней – удлинителей, присоединенных к КА, в геометрически нелинейной постановке и их динамической неустойчивости при солнечном нагреве представляет собой актуальную проблему.

Цель работы

Получение в геометрически нелинейной формулировке численных решений задач термоупругого изгиба и нестационарных колебаний гибкого тонкостенного стержня, прикрепленного к КА, при солнечном нагреве с учетом влияния деформаций на углы падения солнечных лучей; исследование динамической устойчивости нагретого искривленного стержня.

Научная новизна

- получены уравнения нелинейных колебаний гибкого стержня с произвольными большими амплитудами на основе конечно-элементной модели.
- получены численные решения связанной нелинейной задачи колебаний, сильного термоупругого изгиба и теплопроводности тонкостенного стержня с учетом влияния упругих деформаций на углы падения солнечных лучей.

 исследована динамическая устойчивость гибкого нагретого и изогнутого стержня в плоскости и из плоскости падения солнечных лучей с учетом влияния внешнего и внутреннего радиационного излучения, при различных вариантах покрытиях поверхностей стержня.

Практическое значение работы

Полученные в диссертации результаты могут быть использованы для решения практических задач при проектировании КА со стержнями – удлинителями и штангами гравитационной стабилизации с целью обеспечения их функционирования и устойчивости при солнечном нагреве, а также для оптимизации системы на этапе предварительного проектирования.

Достоверность и обоснованность

Достоверность и обоснованность полученных результатов обеспечивается применением строгих уточненных математических моделей и численных решений, а также сравнением результатов с известными точными решениями тестовых задач.

Апробация работы и публикации

Результаты диссертационной работы докладывались на:

- XVIII Международном симпозиуме «Динамические и технологические проблемы механики конструкций и сплошных сред» им. А. Г. Горшкова. (Ярополец 13-17 февраля 2012 г.),
- Московской молодёжной научно-практической конференции «Инновации в авиации и космонавтике – 2012» (Москва, 17 – 20 апреля 2012 г.),
- XVII Международной научной конференции «Системный анализ, управление и навигация» (Крым, Евпатория 1 8 июля 2012 г.).

Основные результаты диссертации опубликованы в шести печатных работах, в том числе трех статьях в журналах, рекомендованных ВАК РФ.

Структура и объем работы

Диссертационная работа состоит из введения, трех глав, заключения, списка литературы и содержит 101 страниц. Список используемой литературы включает 68 наименований (из них 21 на иностранном языке).

СОДЕРЖАНИЕ РАБОТЫ

Во введении приведен краткий обзор литературы, относящейся к теме диссертации. В статье Etkin B., Hughes P. C. объясняются причины возникновения аномальных термоупругих колебаний спутника с длинной упругой антенной при солнечном нагреве и дано приближенное решение задачи. Более подробное описание термоупругих колебаний флаттерного типа спутника OV1-10 со штангой гравитационной стабилизации, вызванных солнечным

ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИОННОЙ РАБОТЫ

- Разработаны два варианта конечно-элементной модели для расчета поперечных колебаний гибкого стержня в геометрически нелинейной постановке:
 - для колебаний с умеренными поперечными перемещениями и углами поворота с учетом продольных сил;
 - для колебаний с произвольными (большими) перемещениями и углами поворота.
- Сформулирована связанная нелинейная задача для колебаний тонкостенного стержня круглого поперечного сечения при солнечном нагреве с использованием нелинейных уравнений термоупругих колебаний и уравнения нестационарной теплопроводности стержня с учетом излучения и зависимости углов падения солнечных лучей от упругих деформаций стержня.
- Получены решения нелинейной статической задачи сильного термоупругого изгиба консольного стержня при солнечном нагреве с использованием конечно-элементной модели.
- 4. Решена задача о нестационарных нелинейных термоупругих колебаниях космического аппарата как абсолютно твердого тела с упругим стержнем (удлинителем) под воздействием солнечных лучей при выходе космического аппарата из тени. Исследовано влияние на реакцию системы её параметров и коэффициентов черноты внешней и внутренней поверхностей тонкостенного стержня.
- 5. Получены линеаризованные уравнения термоупругих колебаний предварительно нагретого и изогнутого стержня в плоскости его кривизны на основе конечно-элементной модели для вариаций перемещений, углов поворота и температуры в узлах. Исследована динамическая неустойчивость нагретого изогнутого стержня в его плоскости.
- 6. Получены линеаризованные уравнения термоупругих колебаний предварительно нагретого и изогнутого стержня на основе конечноэлементной модели для вариаций перемещений и углов поворота в плоскости, перпендикулярной плоскости кривизны, и температуры в узлах. Исследована динамическая неустойчивость нагретого изогнутого стержня из его плоскости.
- 7. Показано, что при определенной ориентации стержня по отношению к солнечным лучам и при его определенных параметрах может возникнуть динамическая неустойчивость нагретого изогнутого стержня с колебаниями в плоскости падения солнечных лучей или в плоскости, перпендикулярной этой плоскости.

 $A_s = 0.5$, $L_0 / L = 1$, $100^{\circ} \lambda = 5 \cdot 10^3 \text{ BT/m}$, $100^{\circ} \alpha = 1.1 \cdot 10^{-3}$, $\varepsilon^e = \varepsilon^i = 0$, l = 100 m.

На рис. 17 показаны границы устойчивости в плоскости параметров Ψ , η по изгибным формам, при различных углах падения солнечных лучей γ в диапазоне $-75^{\circ} \leq \gamma \leq -5^{\circ}$. Кривые $\Psi(\eta)$ практически не зависят от η ; они весьма слабо зависят от η только при малых значениях Ψ , как показано на рис. 18 для $\gamma = -30^{\circ}$. Области динамической неустойчивости лежат справа от кривых $\Psi(\eta)$.

На рис. 19 для $\gamma = -15^{\circ}$, -30° , -45° , -60° , -75° и на рис. 20 для $\gamma = -30^{\circ}$ приведены границы динамической неустойчивости по изгибнокрутильным формам, на плоскости параметров ψ , η . Как видно, в данном случае кривые $\psi(\eta)$ по характеру зависимости от η аналогичны кривым $\psi(\eta)$ для границ устойчивости по изгибным формам (см. рис. 17 - 18). Области динамической неустойчивости лежат справа от кривых $\psi(\eta)$.

нагревом на почти круговой орбите, дано в работе Connel G. M., Chobotov V. (1969).

Приближенные линейные модели и аналитические решения для расчета термоупругих колебаний и флаттера для тонкостенного стержня, соединенного со спутником, рассматривались в работах Yu Y. – Y. (1969, 1971 г.), Graham J. D. (1970 г., 1970 г.), Vigneron F. R (1970 г.), Jordan P. (1971 г.), Augusti G. (1971 г.). Во всех этих работах рассматриваются малые изгибные колебания стержня в плоскости падения солнечных лучей. Потеря тепла за счет излучения внутри кругового тонкостенного стержня учитывалась только в работе Graham J. D.

Наиболее строгая нелинейная формулировка связанной статической задачи сильного термоупругого изгиба и теплопроводности тонкостенного круглого стержня при солнечном нагреве с учетом влияния деформаций на углы падения солнечных лучей и с учетом внешнего и внутреннего излучения рассмотрена в работе Гришаниной Т.В. и Шклярчука Ф.Н. Решение этой нелинейной задачи получено с использованием метода конечных элементов и метода итераций. Эта же формулировка нестационарной задачи используется в данной диссертации.

Численные методы расчета, уравнения нелинейных колебаний стержней при больших перемещениях и углах поворота рассматривались в работах Светлицкого В.А., Левина В.Е. и Пустового Н.В., Данилина А.Н., Гришаниной Т.В. и Шклярчука Ф.Н., и многих других авторов.

В первой главе диссертации в геометрически нелинейной постановке рассматривается плоская стержневая система, совершающая упругие колебания с большими амплитудами в своей плоскости. С каждым конечным эле-

ментом (КЭ) связана своя подвижная система координат $\xi\eta$, начало которой расположено на левом конце упругой оси, а ось η – в плоскости поперечного сечения деформированного стержня (рис. 1.). Упругие перемещения Δu_k , Δv_k и угол поворота $\Delta \vartheta_k$ правого края относительно левого края *k*-го КЭ как консоли при растяжении, изгибе и поперечном

сдвиге на основании рис. 1 выражаются через абсолютные перемещения и угол поворота:

$$\Delta u_{k} = (x_{k} - x_{k-1})\cos\varphi_{k-1} + (y_{k} - y_{k-1})\sin\varphi_{k-1} - l_{k};$$

$$\Delta v_{k} = -(x_{k} - x_{k-1})\sin\varphi_{k-1} + (y_{k} - y_{k-1})\cos\varphi_{k-1};$$
 (1)

$$\Delta \vartheta_{k} = \varphi_{k} - \varphi_{k-1},$$

Потенциальная энергия КЭ записывается через абсолютные перемещения в виде:

$$\Pi_{k} = \frac{1}{2} \frac{12EI_{k}}{l_{k}^{3}} \kappa_{k} \left[\Delta v_{k}^{2} - l_{k} \Delta v_{k} \Delta \vartheta_{k} + \frac{1 + 3\kappa_{k}}{12\kappa_{k}} l_{k}^{2} \Delta \vartheta_{k}^{2} \right] + \frac{1}{2} \frac{N_{k}^{2} l_{k}}{EF_{k}}, \quad (2)$$

где

$$N_{k} = \frac{EF_{k}}{l_{k}} \left[\Delta u_{k} + \frac{1}{2l_{k}} \left(1 + \frac{\kappa_{k}^{2}}{5} \right) \Delta v_{k}^{2} - \frac{\kappa_{k}^{2}}{10} \Delta v_{k} \Delta \vartheta_{k} + \frac{l_{k}}{24} \left(1 + \frac{3}{5} \kappa_{k}^{2} \right) \Delta \vartheta_{k}^{2} \right];$$

$$\kappa_{k} = \left(1 + \frac{12}{l_{k}^{2}} \frac{EI_{k}}{GF_{c,k}} \right)^{-1}.$$
(3)

 EF_k , EI_k , $GF_{c,k}$ – осредненные в пределах длины *k*-го КЭ жесткости на растяжение, изгиб и сдвиг.

Потенциальная энергия системы р КЭ получается путем суммирования

как
$$\Pi = \sum_{k=0}^{p} \Pi_k$$
.

Кинетическую энергию системы и вариацию работы внешних нагрузок будем определять по методу сосредоточенных масс и сил:

$$T = \frac{1}{2} \sum_{k=0}^{p} \left[m_{k} \left(\dot{x}_{k}^{2} + \dot{y}_{k}^{2} \right) + J_{k} \dot{\varphi}_{k}^{2} \right]; \ \delta A_{p} = \sum_{k=0}^{p} \left[P_{x,k} \delta x_{k} + P_{y,k} \delta y_{k} + M_{k} \delta \varphi_{k} \right], (4)$$

где m_k и J_k - сосредоточенная масса и массовый момент инерции, приведенные к *k*-му узлу; $P_{x,k}(t)$, $P_{y,k}(t)$, $M_k(t)$ – внешние силы и момент, приведенные к *k*-му узлу.

Нелинейные уравнения колебаний в обобщенных координатах для больших перемещений и углов поворота x_k , y_k , φ_k (k = 0, 1, ..., p) с учетом (1) – (4) записываются в виде:

$$m_{k}\ddot{x}_{k} + N_{k}\cos\varphi_{k-1} - N_{k+1}\cos\varphi_{k} - Q_{k}\sin\varphi_{k-1} + Q_{k+1}\sin\varphi_{k} = P_{x,k};$$

$$m_{k}\ddot{y}_{k} + N_{k}\sin\varphi_{k-1} - N_{k+1}\sin\varphi_{k} + Q_{k}\cos\varphi_{k-1} - Q_{k+1}\cos\varphi_{k} = P_{y,k};$$

$$J_{k}\ddot{\varphi}_{k} + N_{k+1}v_{k+1} - Q_{k+1}(l_{k+1} + u_{k+1}) + L_{k} - L_{k+1} = M_{k};$$

$$(k = 0, 1, ..., p).$$
(5)

В качестве примера применения МКЭ, была решена задача о термоупругих колебаниях и динамической устойчивости стержня в плоскости и из плоскости падения солнечных лучей (рис. 14). Расчеты проводились при следующих значениях параметров: l = 35 м (длина стержня), r = 0,025 м (радиус поперечного сечения стержня), h = 0.0001 м (толщина стенки стержня), материал стержня алюминиевый сплав, $A_s = 0.5$, $L_0 / L = 1$, $100^\circ \lambda = 5 \cdot 10^3$ Вт/м, $100^\circ \alpha = 1.1 \cdot 10^{-3}$, $\varepsilon^e = \varepsilon^i = 0.025$, $\gamma = -10^\circ$, -30° , -60° , -80° .

Таблица 3

ν	$\gamma = -10^{\circ}$	$\gamma = -30^{\circ}$
1	11654417.53	16175014.97
2	11276832.18	0.035 + 2068i
3	8489056.44	3.06e-06 + 2095i
4	2.9e-07 + 1993i	8.3e-05 + 2107i
5	4.7e-06 + 2038i	1.76e-04 + 2118i

Расчеты на устойчивость колебаний стержня в плоскости падения солнечных лучей показали, что явления динамической неустойчивости возникают при углах падения солнечных лучей $\gamma = -10^{\circ}$ и $\gamma = -30^{\circ}$. При углах падения $\gamma = -60^{\circ}$, -80° колебания стержня устойчивые. В таблице 3 приведены собственные значения соответствующие 5-ти формам колебаний \mathbf{Z}_{v} , по которым происходит потеря устойчивости.

Также были выполнены расчеты границ динамической неустойчивости на основе двухстепенной модели для длинного тонкостенного стержня при солнечном нагреве при следующих параметрах: r = 25 мм, h = 0.1 мм,

$$Q_{k} = b_{k}\Delta v_{k} - c_{k}\Delta\vartheta_{k}; \quad L_{k} = -c_{k}\Delta v_{k} + d_{k}\Delta\vartheta_{k}, \quad (6)$$

$$b_{k} = \frac{12\kappa_{k}EI_{k}}{l_{k}^{3}} + \frac{N_{k}}{l_{k}}\left(1 + \frac{\kappa_{k}^{2}}{5}\right); \quad c_{k} = \frac{6\kappa_{k}EI_{k}}{l_{k}^{2}} + N_{k}\frac{\kappa_{k}^{2}}{10}; \quad (7)$$

$$d_{k} = \frac{(1 + 3\kappa_{k})EI_{k}}{l_{k}} + N_{k}\frac{l_{k}}{12}\left(1 + \frac{3}{5}\kappa_{k}^{2}\right).$$

Для умеренных перемещений и углов поворота в качестве обобщенных координат в *k*-ом узле рассматриваются продольные перемещения u_k , поперечные перемещения v_k и угол поворота ϑ_k в узлах (k = 0, 1, 2, ..., p), при этом угол поворота считается умеренным при $\sin \vartheta_k = \vartheta_k$, $\cos \vartheta_k = 1 - \frac{\vartheta_k^2}{2}$.

В этом случае по сравнению с (1) надо считать: $\varphi_k = 0$, $\sin \varphi_k = 0$, $\cos \varphi_k = 1$; $\dot{x}_k = \dot{u}_k$, $\dot{y}_k = \dot{v}_k$, $\dot{\varphi}_k = \dot{\vartheta}_k$; $\delta x_k = \delta u_k$, $\delta y_k = \delta v_k$, $\delta \varphi_k = \delta \vartheta_k$. $\Delta u_k = u_k - u_{k-1}$; $\Delta v_k = v_k - v_{k-1} - l_k \vartheta_{k-1}$; $\Delta \vartheta_k = \vartheta_k - \vartheta_{k-1}$ (8)

С учетом этих выражений на основании (2) – (4) получаются уравнения

$$m_{k}\ddot{u}_{k} + N_{k} - N_{k+1} = P_{x,k};$$

$$m_{k}\ddot{v}_{k} + Q_{k} - Q_{k+1} = P_{y,k};$$

$$J_{k}\ddot{\vartheta}_{k} + N_{k+1}(v_{k+1} - v_{k}) - Y_{k+1}l_{k+1} + L_{k} - L_{k+1} = M_{k};$$

$$(k = 0,1,...,p).$$
(9)

где

гле

$$Q_{k} = b_{k}(v_{k} - v_{k-1}) - c_{k}\vartheta_{k-1} - c_{k}\vartheta_{k};$$

$$L_{k} = -c_{k}(v_{k} - v_{k-1}) + e_{k}\vartheta_{k-1} + d_{k}\vartheta_{k},$$
(10)

коэффициенты b_k , c_k , d_k определяются по формулам (7), $e_k = c_k l_k - d_k$. Продольное усилие N_k при конечных деформациях свободного КЭ (рис. 2, б) в отличии от (3) для консольного КЭ с учетом (8) определяется как

При $\boldsymbol{\varepsilon}^{e} = \boldsymbol{\varepsilon}^{i} = 0$, $\mathbf{P}_{k} = \mathbf{0}$.

$$\mathbf{N}_{k} = \begin{bmatrix} 0 & \frac{g_{0}q_{*}}{c\rho h 100^{\circ}} \sin(\gamma - \vartheta_{k}^{0}) & \frac{g_{0}q_{*}}{c\rho h 100^{\circ}} \cos(\gamma - \vartheta_{k}^{0}) \\ 0 & \frac{g_{1}q_{*}}{c\rho h 100^{\circ}} \sin(\gamma - \vartheta_{k}^{0}) & \frac{g_{1}q_{*}}{c\rho h 100^{\circ}} \cos(\gamma - \vartheta_{k}^{0}) \end{bmatrix},$$
(45)

Для исследования устойчивости системы однородных дифференциальных уравнений с постоянными коэффициентами (22), (35), они преобразовывались к системе уравнений первого порядка:

$$\mathbf{A} \frac{d\mathbf{z}}{dt} + \mathbf{C}\mathbf{z} = \mathbf{0}, \qquad (46)$$
$$\mathbf{A} = \begin{bmatrix} \mathbf{M} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{E} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{E} \end{bmatrix}; \quad \mathbf{C} = \begin{bmatrix} \mathbf{D} & \mathbf{K} & -\mathbf{S} \\ -\mathbf{E} & \mathbf{0} & \mathbf{0} \\ -\mathbf{N} & \mathbf{0} & \mathbf{P} \end{bmatrix}; \quad \mathbf{z} = \begin{bmatrix} \dot{\mathbf{q}} \\ \mathbf{q} \\ \mathbf{\tau} \end{bmatrix} = \mathbf{Z} \cdot e^{\lambda t}. \quad (47)$$

Здесь Е – единичная матрица.

Решение уравнения (46) имеет вид $\mathbf{z}(t) = \mathbf{Z}e^{\lambda t}$ и сводится к проблеме собственных значений пары матриц $[\lambda \mathbf{A} + \mathbf{C}]\mathbf{Z} = \mathbf{0}$, которая может быть решена с помощью стандартных компьютерных программ.

Собственные значения действительные числа $\lambda_{v} = \alpha_{v}$ или комплексно-

сопряженные $\lambda_v = \alpha_v + i\omega_v$, $\overline{\lambda}_v = \alpha_v - i\omega_v$. Если хотя бы одно собственное значение имеет положительную действительную часть $\alpha_v > 0$, то система неустойчива по форме \mathbf{Z}_v . При $\alpha_v > 0$ и $\omega_v \neq 0$ имеет место динамическая неустойчивость. На границе динамической неустойчивости $\alpha_v = 0$

и $\omega_{\rm v} \neq 0$, т.е. $\lambda_{\rm v} = +i\omega_{\rm v}$, $\overline{\lambda}_{\rm v} = -i\omega_{\rm v}$.

$$N_k \to N_k + \frac{EF_k}{l_k} \left(\left(v_k - v_{k-1} \right) \vartheta_k + \frac{l_k}{2} \vartheta_k^2 \right)$$
(11)

С учетом (3), (7), (8) и (11) в первом уравнении (9) нелинейные члены будут квадратичными, а во втором и третьем – квадратичными и кубическими (третьей степени).

Если продольные силы N_k пренебрежимо малы (например, в случае статически определимого консольного стержня при отсутствии продольных сил $P_{x,k} = 0$) и пренебрежении продольными инерционными силами $m_k \ddot{u}_k \approx 0$, уравнения (9) будут линейными.

В качестве примера рассмотрено динамическое поведение стержня после потери устойчивости, находящегося под действием силы тяжести g (рис. 3). Поперечное сечение стержня имеет прямоугольную форму $b \times h$: b = 0.06 м, h = 0.02 м. Материал стержня алюминий. Длина КЭ стержня l = 1 м, p = 5. В расчетах

принималось $m_1 = m_2 = m_3 = m_4 = 4$ кг, $J_1 = J_2 = J_3 = J_4 = 0.25$ кг^{·м²}, $m_5 = 28$ кг, $J_5 = 1.5$ кг^{·м²}, g = 10 м/с². Расчет выполнен для начального условия, при котором 5-ый КЭ, как консоль, закрепленная в сечении 4, был изогнут без растяжения его оси поперечной силой, приложенной к узлу 5, при различных значениях массы m_5 на конце стержня.

На рис.4-5 приведены графики деформированного состояния стержня при $m_5 = 28$ кг и 35 кг в различные моменты времени t.

где

Матрица жесткости искревленного стержня составляется из матриц **K**_k.

Матрица инерции получается из выражения для кинетической энергии системы записанной в форме метода сосредоточенных масс, учитывая дополнительно приведенные к узлам моменты инерции:

$$T = \frac{1}{2} \sum_{k=0}^{p} \left[m_{k} \dot{w}_{k}^{2} + J_{k,s} \dot{\varphi}_{k}^{2} + J_{k,y} \dot{\psi}_{k}^{2} \right]$$
(42)

где m_k , $J_{k,s}$, $J_{k,y}$ - приведенные к *k*-му сечению сосредоточенная масса, массовые моменты инерции.

Далее были получены линеаризованные уравнения теплопроводности в возмущениях для *k*-го сечения, с учетом приращения теплового потока в возмущенном движении без учета излучения:

$$\dot{\tau}_{n,k}^{1} + \frac{n^{2}\lambda}{r^{2}c\rho}\tau_{n,k}^{1} = \frac{g_{n}q_{*}}{c\rho h 100^{\circ}} \left\langle \Psi^{1}\sin(\gamma - \vartheta^{0}) - \varphi^{1}\cos(\gamma - \vartheta^{0}) \right\rangle$$

$$(n = 0, 1, k = 1, ..., p).$$
(43)

Эти уравнения решались совместно с линеаризованными уравнениями колебаний стержня, которые получаются на основе уравнения Лагранжа в обобщенных координатах.

Также как и для колебаний стержня в плоскости задача сводится к уравнениям (35), но с другими матрицами. В данном случае Эти уравнения решались совместно с линеаризованными уравнениями колебаний стержня, которые получаются на основе уравнения Лагранжа в обобщенных координатах.

Таким образом, связанная задача термоупругих колебаний стержня описывается системой уравнений для векторов $\mathbf{q} = [u_1v_1\vartheta_1u_2v_2\vartheta_2...u_pv_p\vartheta_p]^T$ и

$$\boldsymbol{\tau} = \left[\boldsymbol{\tau}_{0,1}^{1}\boldsymbol{\tau}_{1,1}^{1}\boldsymbol{\tau}_{0,2}^{1}\boldsymbol{\tau}_{1,2}^{1}...\boldsymbol{\tau}_{0,p}^{1}\boldsymbol{\tau}_{1,p}^{1}\right]^{T}:$$

$$\begin{cases} \mathbf{M}\ddot{\mathbf{q}} + \mathbf{D}\dot{\mathbf{q}} + \mathbf{K}\mathbf{q} - \mathbf{S}\boldsymbol{\tau} = \mathbf{0}; \\ \dot{\boldsymbol{\tau}} + \mathbf{P}\boldsymbol{\tau} - \mathbf{N}\mathbf{q} = \mathbf{0}. \end{cases}$$
(35)

где **D** - матрица демпфирования, введена пропорционально матрице жесткости **K**, по теореме Фойхта. Матрицы **M**, **K**, **S**, **P** и **N** формируются из соответствующих матриц для $K \ni M_k$, K_k , S_k , P_k и N_k .

$$\mathbf{S}_{k} = \frac{\alpha 100^{\circ} EI}{r\overline{R}_{k}^{2}} \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{1}{2} \Delta \vartheta_{k}^{0} & 0 & \frac{1}{2} \Delta \vartheta_{k}^{0} \\ 0 & 0 & 0 & 0 \\ 0 & \frac{-2(\Delta \vartheta_{k}^{0} - s_{k})}{\Delta \vartheta_{k}^{0}} & 0 & \frac{-2(c_{c} \Delta \vartheta_{k}^{0} - s_{k})}{\Delta \vartheta_{k}^{0}} \\ 0 & \frac{-2(-1 + c_{k})}{\Delta \vartheta_{k}^{0}} & 0 & \frac{-2(-1 + c_{k} + s_{k} \Delta \vartheta_{k}^{0})}{\Delta \vartheta_{k}^{0}} \end{bmatrix},$$
(36)
$$\mathbf{C}_{k} = \cos(\theta_{k}), s_{k} = \sin(\theta_{k}), \Delta \vartheta_{k}^{0} = \vartheta_{k}^{0} - \vartheta_{k-1}^{0}.$$
$$\mathbf{P}_{k} = \frac{c_{0}}{c\rho h 100^{\circ}} \left[\left(\frac{4\tau_{0,k}^{0.3} + 6\tau_{0,k}^{0.3} \tau_{1,k}^{0.2}}{(\varepsilon^{e} + \frac{4\varepsilon^{i}}{4 - 4\varepsilon^{i}})} \right) (3\tau_{1,k}^{0.3} + 12\tau_{0,k}^{0.2} \tau_{1,k}^{0}) \right] \frac{h\lambda 100^{\circ}}{c_{0}r^{2}} + \left(\varepsilon^{e} + \frac{4\varepsilon^{i}}{4 - 4\varepsilon^{i}} \right) (3\tau_{1,k}^{0.3} + 12\tau_{0,k}^{0.2} \tau_{1,k}^{0}) \right],$$
(37)
$$\mathbf{N}_{k} = \begin{bmatrix} 0 & 0 & \frac{g_{0}q_{*}}{c\rho h 100^{\circ}} \sin(\gamma - \vartheta_{k}^{0}) \\ 0 & 0 & \frac{g_{1}q_{*}}{c\rho h 100^{\circ}} \sin(\gamma - \vartheta_{k}^{0}) \\ 0 & 0 & \frac{g_{1}q_{*}}{c\rho h 100^{\circ}} \sin(\gamma - \vartheta_{k}^{0}) \\ \end{bmatrix},$$
(38)
$$\mathbf{M}_{k} = \begin{bmatrix} 0 & 0 & \frac{g_{0}q_{*}}{c\rho h 100^{\circ}} \sin(\gamma - \vartheta_{k}^{0}) \\ 0 & 0 & \frac{g_{1}q_{*}}{c\rho h 100^{\circ}} \sin(\gamma - \vartheta_{k}^{0}) \\ \end{bmatrix},$$
(38)
$$\mathbf{M}_{k} = \begin{bmatrix} 0 & 0 & \frac{g_{0}q_{*}}{c\rho h 100^{\circ}} \sin(\gamma - \vartheta_{k}^{0}) \\ 0 & 0 & \frac{g_{1}q_{*}}{c\rho h 100^{\circ}} \sin(\gamma - \vartheta_{k}^{0}) \\ \end{bmatrix},$$
(38)

Рис. 13

вается в виде:

$$\mathbf{K}_{k} = \left(\mathbf{B}_{1}^{-1}\right)^{T} \mathbf{K}_{\beta}^{(k)} \mathbf{B}_{1}^{-1}, \qquad (39)$$

математически аналогична задаче колебаний стержня в плоскости (рис. 13).

Матрица жесткости для КЭ записы-

Из графиков видно, что перемещения стержня являются большими (порядка его длины), что соответствует геометрически нелинейной постановке задачи.

Во второй главе диссертации сформулирована связанная задача теплопроводности, термоупругого изгиба и колебаний стержня при солнечном нагреве. Рассматривается тонкостенный стержень кругового поперечного сечения, который неподвижно закреплен на одном конце, и его ось в недеформированном состоянии совпадает с осью x. Под действием солнечного нагрева стержень искривляется в плоскости падения солнечных лучей Oxy и его поперечные сечения поворачиваются на углы $\vartheta(s)$, рис. 6. Искривлением кругового контура поперечных сечений будем пренебрегать.

Рис. 6

Для записи уравнения теплопроводности определялись:

 поток от прямого солнечного излучения на единицу внешней поверхности оболочки, представленный в виде разложения в ряд Фурье

$$q^{s} = \sum_{n=0}^{\infty} q_{n}^{s} \cos n\theta, q_{n}^{s} = g_{n}q_{0} \cos(\gamma - \vartheta),$$

$$g_{0} = \frac{1}{\pi}, \quad g_{1} = \frac{1}{2}, \quad g_{n} = -\frac{2}{(n^{2} - 1)\pi} \cos \frac{n\pi}{2} \qquad \text{при} \quad n \ge 2;$$
(12)

 плотность теплового потока, теряемого за счет внешнего излучения в космическое пространство, представленная в виде разложения в ряд Фурье

$$q^{e} = \sum_{n=0}^{\infty} q_{n}^{e} \cos n\theta ,$$

$$q_{0}^{e} = \frac{\varepsilon^{e}}{2\pi} \int_{0}^{2\pi} E_{0}(\theta) d\theta \qquad q_{n}^{e} = \frac{\varepsilon^{e}}{\pi} \int_{0}^{2\pi} E_{0}(\theta) \cos n\theta d\theta \quad \text{при} \quad n \ge 1, \quad (13)$$

$$E_{0} = c_{0} \tau^{4}, \quad \tau = T/100^{o}.$$

 $c_0 = 5.77$ Вт/м², $T(\theta, s)$ – температура стержня в градусах Кельвина.

• теряемый тепловой поток за счет лучистого теплообмена на внутренней поверхности цилиндрической оболочки при плоской радиации, представ-

ленный в виде разложения в ряд Фурье

$$q^{i} = \sum_{n=0}^{\infty} q_{n}^{i} \cos n\theta ;$$

$$q_{0}^{i} = 0, \quad q_{n}^{i} = \frac{1}{\pi} \frac{4n^{2} \varepsilon^{i}}{4n^{2} - \varepsilon^{i}} \int_{0}^{2\pi} E_{0}(\theta) \cos n\theta \, d\theta \quad \text{при} \quad n \ge 1.$$
(14)

Из уравнения неустановившейся теплопроводности в окружном направлении тонкой круговой оболочки при солнечном нагреве с учетом внешнего и внутреннего излучения, выражений (12)-(14) с учетом разложения температуры в ряд Фурье $\tau = \sum_{n=0}^{N} \tau_n \cos n\theta$, получается система уравнений теплопроводности с учетом внешнего и внутреннего излучения, для коэффициентов τ_0, \dots, τ_N .

$$c\rho h 100^{\circ} \dot{\tau}_{n} + \frac{n^{2}h\lambda 100^{\circ}}{r^{2}} \tau_{n} + c_{0} \bigg(\varepsilon^{\epsilon} + \frac{4n^{2}\varepsilon^{i}}{4n^{2} - \varepsilon^{i}} \bigg) F_{n} = g_{n}q_{*}\cos(\gamma - \vartheta), \qquad (15)$$
$$(n = 0, 1, \dots, N).$$

где F_n – нелинейные функции, зависящие от $\tau_0, ..., \tau_N$; ρ , c, λ – плотность, удельная теплоемкость и коэффициент теплопроводности материала оболочки; r, h – радиус и толщина оболочки; $q_* = A_s S_0 L_0^2 / L^2$, A_s – коэффициент поглощения внешней поверхности стержня; $S_0 = 1400 \text{ Вт/м}^2$; $L_0 = 149 \cdot 10^6 \text{ км}$ – среднее расстояние от Земли до Солнца; L [км] – расстояние от объекта до Солнца.

Уравнения термоупругого изгиба для консольного стержня записывается в виде:

$$\vartheta = -\frac{100^{\circ} \alpha}{r} \int_{0}^{s} \tau_{1} ds \,. \tag{16}$$

Это уравнение совместно с (15) дает замкнутую систему уравнений для связанной статической задачи термоупругого изгиба и теплопроводности тонкостенного стержня при солнечном нагреве с излучением и решается методом итераций.

Также для решения этой задачи на основе МКЭ строилась математическая модель колебаний, термоупругого изгиба и теплопроводности стержня (17) в нелинейной (умеренно-нелинейной и линейной) постановке, которая решалась методом установления (путем интегрирования системы дифференциальных уравнений по времени).

Система уравнений в нелинейной постановке:

Матрица жесткости искревленного стержня составляется из матриц \mathbf{K}_k .

Матрица инерции получается из выражения для кинетической энергии системы записанной в форме метода сосредоточенных масс, учитывая дополнительно приведенные к узлам моменты инерции:

$$T = \frac{1}{2} \sum_{k=0}^{n} \left[m_{k} \left(\dot{u}_{k}^{2} + \dot{v}_{k}^{2} \right) + J_{k} \dot{\vartheta}_{k}^{2} + 2S_{x,k} \dot{u}_{k} \dot{\vartheta}_{k} + 2S_{y,k} \dot{v}_{k} \dot{\vartheta}_{k} \right]$$
(32)

где m_k , $S_{x,k}$, $S_{y,k}$, J_k - приведенные к *k*-му сечению сосредоточенная масса, статические моменты относительно оси *x* и *y* и массовый момент инерции.

Далее были получены линеаризованные уравнения теплопроводности в возмущениях для *k*-го сечения с учетом внутреннего и внешнего теплоизлучения:

$$\dot{\boldsymbol{\tau}}_{n,k}^{1} + \frac{n^{2}\lambda}{r^{2}c\rho}\boldsymbol{\tau}_{n,k}^{1} + \frac{c_{0}}{c\rho h 100^{\circ}} \left(\boldsymbol{\varepsilon}^{e} + \frac{4n^{2}\boldsymbol{\varepsilon}^{i}}{4n^{2} - \boldsymbol{\varepsilon}^{i}}\right) \left(\overline{F}_{n0,k}^{1}\boldsymbol{\tau}_{0,k}^{1} + \overline{F}_{n1,k}^{1}\boldsymbol{\tau}_{1,k}^{1}\right) = \\ = \frac{g_{n}q_{*}}{c\rho h 100^{\circ}} \left\langle \cos(\gamma - \vartheta_{k}^{0}) + \vartheta^{1}\sin(\gamma - \vartheta_{k}^{0}) \right\rangle, (n = 0, 1; k = 1, ..., p).$$

$$(33)$$

где

$$\overline{F}_{00,k}^{1} = 4\tau_{0,k}^{0^{3}} + 6\tau_{0,k}^{0}\tau_{1,k}^{0^{2}}; \quad \overline{F}_{01,k}^{1} = \frac{3}{2}\tau_{1,k}^{0^{3}} + 6\tau_{0,k}^{0^{2}}\tau_{1,k}^{0};$$

$$\overline{F}_{10,k}^{1} = 3\tau_{1,k}^{0^{3}} + 12\tau_{0,k}^{0^{2}}\tau_{1,k}^{0}; \quad \overline{F}_{11,k}^{1} = 4\tau_{0,k}^{0^{3}} + 9\tau_{0,k}^{0}\tau_{1,k}^{0^{2}}.$$
(34)

10

$$q^{s} = q_{*}[\psi^{1}\sin(\gamma - \vartheta^{0}) - \varphi^{1}\cos(\gamma - \vartheta^{0})]\sin\theta \quad \text{при} \quad -\frac{\pi}{2} \le \theta \le \frac{\pi}{2};$$

$$q^{s} = 0 \quad \text{при} \quad -\frac{\pi}{2} > \theta > \frac{\pi}{2}.$$
(23)

Линеаризованное уравнение теплопроводности без учета излучения ($\varepsilon^e = \varepsilon^i = 0$) для гармоники n = 1 с учетом (23) имеет вид

$$c\rho h 100^{\circ} \dot{\tau}_{1}^{1} + \frac{\lambda h}{r^{2}} 100^{\circ} \tau_{1}^{1} = \frac{1}{2} q_{*} [\psi^{1} \sin(\gamma - \vartheta^{0}) - \varphi^{1} \cos(\gamma - \vartheta^{0})]. \quad (24)$$

Принцип возможных перемещений для изгибно-крутильных колебаний искривленного стержня с учетом изменений температуры в возмущенном движении записывается в виде

$$\int_{0}^{l} \left[M^{1}\delta\left(\frac{\partial^{2}w^{1}}{\partial s^{2}}-\kappa^{0}\phi^{1}\right)+H^{1}\delta\left(\frac{\partial\phi^{1}}{\partial s}+\kappa^{0}\frac{\partial w^{1}}{\partial s}\right)+m\ddot{w}^{1}\delta w^{1}+J\ddot{\phi}^{1}\delta\phi^{1}\right]ds=0, \quad (25)$$

где изгибающий и крутящий моменты записываются в виде:

$$M^{1} = EI[(\frac{\partial^{2} w^{1}}{\partial s^{2}} - \kappa^{0} \varphi^{1}) + \frac{100^{\circ} \alpha}{r} \tau_{1}^{1}], \quad H^{1} = GJ_{k}(\frac{\partial \varphi^{1}}{\partial s} + \kappa^{0} \frac{\partial w^{1}}{\partial s}) \quad (26)$$

Перемещение и угол закручивания стержня представим по методу Ритца в виде разложений

$$w^{1}(\bar{s},\bar{t}) = r \sum_{i} q_{i}(\bar{t})\chi_{i}(\bar{s}), \quad \varphi^{1}(\bar{s},\bar{t}) = \sum_{i} q_{i}(\bar{t})\omega_{i}(\bar{s}), \quad (27)$$

где $\overline{s} = s/l$, $\overline{t} = t\sqrt{EI/m_0 l^4}$; $\chi_i(\overline{s})$, $\omega_i(\overline{s})$ – заданные функции, удовлетворяющие граничным условиям $\chi_i = 0$, $\chi'_i = 0$, $\omega_i = 0$ при $\overline{s} = 0$.

Также как и для симметричных колебаний задача сводится к уравнениям (22), но с другими коэффициентами; в данном случае неизвестные параметры *r*_i вводятся как

$$r_{i} = 100^{\circ} \alpha \frac{l}{r} \int_{0}^{1} \tau_{1}^{1} (\chi_{i}'' - l\kappa^{0}\omega_{i}) d\bar{s} . \quad (28)$$

жесткости *k*-го КЭ стержня для задачи плоского изгиба (рис. 12).

$$\mathbf{K}_{k} = \left(\mathbf{A}_{k}^{-1}\right)^{T} \mathbf{K}_{\alpha}^{(k)} \mathbf{A}_{k}^{-1}$$
(29)

$$m_{k}\ddot{x}_{k} + N_{k}\cos\varphi_{k-1} - N_{k+1}\cos\varphi_{k} - Q_{k}\sin\varphi_{k-1} + Q_{k+1}\sin\varphi_{k} = P_{x,k};$$

$$m_{k}\ddot{y}_{k} + N_{k}\sin\varphi_{k-1} - N_{k+1}\sin\varphi_{k} + Q_{k}\cos\varphi_{k-1} - Q_{k+1}\cos\varphi_{k} = P_{y,k};$$

$$J_{k}\ddot{\varphi}_{k} + N_{k+1}v_{k+1} - Q_{k+1}(l_{k+1} + u_{k+1}) + L_{k} - L_{k+1} = M_{k}; \quad (17)$$

$$c\rho h100^{o}\dot{\tau}_{k,n} + \frac{n^{2}h\lambda100^{o}}{r^{2}}\tau_{k,n} + c_{0}\bigg(\varepsilon^{e} + \frac{4n^{2}\varepsilon^{i}}{4n^{2}-\varepsilon^{i}}\bigg)F_{k,n} = g_{n}q_{*}\cos(\gamma-\vartheta);$$

$$(k = 0, 1, ..., p; n = 0, 1, ..., N).$$

Системы уравнений в умеренно-нелинейной и линейной постановке, отличаются от (17) только первыми тремя уравнениями колебаний, которые были получены в первой главе диссертации.

В качестве примера рассмотрен тонкостенный стержень (рис. 7), находящийся под действием теплового потока при выходе КА из тени Земли. Стержень жестко прикреплен к симметричному относительно оси *x* абсолютно жесткому телу (спутнику), которое может поворачиваться относительно своего центра тяжести. Вычисления выполнены при следующих значениях параметров: r = 25 мм, h = 0.1 мм, $A_s = 0.5$, $L_0/L = 1$, $100^\circ \lambda = 5 \cdot 10^3$ Вт/м, $100^\circ \alpha = 1.1 \cdot 10^{-3}$, $\varepsilon^e = \varepsilon^i = 0.56$. В качестве абсолютно жесткого тела рассмотрен шар радиуса $r_0 = 0.5$ м, плотность материала шара равна плотности материала стержня $\rho = 2700$ кг/м³, длина стержня равна L = 30 м, угол ϕ_0 в начальный момент времени равен нулю. Угол падения солнечных лучей $\gamma = -30^\circ$.

Расчет был проведен для двух вариантов масс груза в узле p на конце стержня. В первом варианте $m_p = m$, а во втором $m_p = 20m$. В данном слу-

чае m = 0.0254 кг (p = 50).

На рис. 8 – 10 приведены графики изменения угла поворота ϕ_0 для узла при k = 0, горизонтального перемещения $v_p(t)$, для узла при k = p и изменения температуры $\tau(x)$ по длине стержня, при различных значениях массы m_p . 1 –

сплошная линия, задача решена в нелинейной постановке при $m_p = m$; 2 –

пунктирная линия, задача решена в линейной постановке при $m_p = m$; 3 – сплошная линия, задача решена в нелинейной постановке при $m_p = 20m$; 4 – пунктирная линия, задача решена в линейной постановке при $m_p = 20m$.

Как видно из графиков температурный нагрев оказывает существенное влияние на динамическое поведение штанги гравитационной стабилизации, что приводит к значительным термоупругим колебаниям, большим перемещениям и углам поворота, как штанги, так и самого КА.

В третьей главе диссертации решена задача о динамической устойчивости трубчатого тонкостенного стержня при солнечном нагреве в плоскости и из плоскости падения солнечных лучей. Для построения математических моделей использовался принцип возможных перемещений и МКЭ.

При рассмотрении динамической устойчивости искривленного нагретого стержня относительно невозмущенного положения равновесия, по изгибным формам колебаний в его плоскости с использованием принципа возможных перемещений, линеаризованное уравнение теплопроводности (сначала без учета излучения $\varepsilon^e = \varepsilon^i = 0$) записывалось в виде (верхним индексом «0» и «1» обозначались невозмущенное состояние и возмущенное движение):

$$c\rho h 100^{\circ} \dot{\tau}_{1}^{1} + \frac{h\lambda 100^{\circ}}{r^{2}} \tau_{1}^{1} = \frac{1}{2} q_{*} \sin(\gamma - \vartheta^{0}) \cdot \vartheta^{1}.$$
⁽¹⁸⁾

Принцип возможных перемещений для возмущенного движения:

$$\int_{0} [M^{1} \delta \kappa^{1} + m(\ddot{u}^{1} \delta u^{1} + \ddot{v}^{1} \delta v^{1})] ds = 0, \qquad (19)$$

Перемещения стержня представлялись по методу Ритца в виде разложений:

$$v^{1}(\bar{s},\bar{t}) = r \sum_{i} q_{i}(\bar{t}) \varphi_{i}(\bar{s}), \quad u^{1}(\bar{s},\bar{t}) = r \sum_{i} q_{i}(\bar{t}) \psi_{i}(\bar{s}),$$
 (20)

где $\phi_i(\bar{s})$ – заданные функции, удовлетворяющие граничным условиям

$$\phi_i = 0$$
, $\phi'_i = 0$ при $\overline{s} = 0$, $\overline{s} = \frac{s}{l}$, $\overline{t} = t \sqrt{\frac{EI}{m_0 l^4}}$; функции ψ_i выражаются

через заданные функции $\phi_i(\bar{s})$, считая стержень в возмущенном движении нерастяжимым:

$$\Psi_i(\overline{s}) = -\eta \int_0^s \cos(\gamma - \vartheta^0) \varphi_i d\overline{s} .$$
⁽²¹⁾

где $\eta = q_* \alpha r l / 2\lambda h$, l – длина стержня.

На основании (19) получаем систему обыкновенных дифференциальных уравнений термоупругих колебаний для обобщенных координат $q_i(\bar{t})$. Удовлетворяя уравнение теплопроводности (18) по методу Бубнова – Галеркина на совокупности функций $\theta'_i = (\varphi'_i - \eta \psi_i \cos(\gamma - \vartheta^0))'$ получаем систему обыкновенных дифференциальных уравнений для параметров $r_i(\bar{t})$. Эти две связанные системы уравнений после приведения к безразмерному виду записываются как

$$\begin{cases} \sum_{j} (\mu_{ij} \frac{d^{2} q_{j}}{d\bar{t}^{2}} + \kappa_{ij} q_{j}) + r_{i} = 0, \\ (i = 1, 2, ...). \\ -\sum_{j} \gamma_{ij} q_{j} + \psi \frac{dr_{i}}{d\bar{t}} + r_{i} = 0, \end{cases}$$
 (22)
где $r_{i} = \alpha \frac{l^{2}}{r^{2}} \int_{1}^{1} T_{i}^{1} \theta_{i}' d\bar{s}, \ \psi = \frac{r^{2}}{l^{2}} \frac{c\rho}{\lambda} \sqrt{\frac{EI}{m_{o}}}.$

При исследовании динамической устойчивости искривленного в невозмущенном состоянии стержня по изгибно-крутильным формам,

движениехарактеризуетсяввозмущенномдвиженииперемещением $w^1(s,t)$ внаправленииосиzизакручивания $\phi^1(s,t)$ относительноискривленной оси s, рис. 11.

Приращение теплового потока в возмущенном движении без учета излучения:

