1 Az

Во Ван Дай

ВИБРОПОГЛОЩАЮЩИЕ СВОЙСТВА ОДНОРОДНЫХ ПРЕГРАД РАЗЛИЧНОЙ КОНФИГУРАЦИИ В ГРУНТЕ ПОД ВОЗДЕЙСТВИЕМ ГАРМОНИЧЕСКИХ ВОЛН

Специальность 1.1.8. – «Механика деформируемого твердого тела»

АВТОРЕФЕРАТ

диссертация на соискание ученой степени кандидата технических наук

Работа федеральном государственном бюджетном выполнена В образовательном учреждении высшего образования «Московский авиационный институт (национальный исследовательский университет)».

Научный руководитель: Локтева Наталья Александровна, к.т.н., доцент

Официальные

оппоненты:

Коровайцева Екатерина Анатольевна, д.ф.-м.н., старший научный сотрудник лаборатории динамических испытаний Научно-исследовательского института механики федерального государственного бюджетного образовательного учреждения образования высшего «Московский государственный университет М.В. Ломоносова»

Хомченко Антон Васильевич, к.т.н., ведущий инженерконструктор отдела динамической прочности Общества с ограниченной ответственностью «АУРУС-АЭРО»

Ведущая организация: Федеральное государственное бюджетное образовательное учреждение высшего образования «Напиональный исследовательский Московский государственный строительный университет» г. Москва.

Защита диссертации состоится 24 декабря 2025 г. в 13 часов 00 минут на 24.2.327.07 заседании диссертационного совета при федеральном государственном бюджетном образовательном учреждении высшего образования «Московский авиационный институт (национальный исследовательский университет)» по адресу: 125993, г. Москва, Волоколамское шоссе, д. 4.

С диссертацией можно ознакомиться в научно-технической библиотеке федерального государственного бюджетного образовательного учреждения высшего образования «Московский авиационный институт (национальный исследовательский университет)» по адресу: 125993, г. Москва, Волоколамское шоссе, д. 4 и на сайте:

https://mai.ru/events/defence/?ELEMENT ID=186000 Автореферат разослан « » 2025 г.

Учёный секретарь диссертационного совета

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Актуальность данной работы заключается в получении универсального подхода к решению связанных задач о взаимодействии индуцированных упругой среде, гармонических волн, В cпреградами, закрепленными различным способом. Полученные результаты реализовывать весь спектр граничных условий, соответствующих реальным способам крепления вибропоглощающих преград в грунте.

Данный подход позволяет строить математические модели движения преград в упругой среде, моделирующей грунт, являющиеся более близкими по своим параметрам к реальным физическим объектам, что дает возможность добиваться наибольшей эффективности вибропоглощающих преград в заданных точках грунта. Так как метод компенсирующих нагрузок базируется на определении функций влияния, то он обладает высокой универсальностью.

Цель диссертационной работы. Основной целью данной работы является разработка аналитических способов оценки виброзащитных свойств преград различной геометрии и способов закрепления в грунте.

Для достижения поставленной цели были решены следующие задачи:

Рассмотрено движение упругой среды под воздействием гармонических волн с различной геометрией, индуцированных в одном из полупространств, разделенных вибропоглощающей преградой. Определены перемещения и напряжения в упругой среде, моделирующей грунт, в декартовой и цилиндрической системах координат. Определены стационарные функции влияния для бесконечной пластины и цилиндрической оболочки Кирхгофа - Лява. Решена задача о прохождении волн через однородную бесконечную преграду, в качестве модели которой использована пластина Кирхгофа. На основании метода компенсирующих нагрузок обеспечено выполнение граничных условий в точках, соответствующих креплению преграды. Определены перемещения среды после прохождения преграды.

Решена задача о прохождении цилиндрических волн через преграду в виде сегмента цилиндра в грунте. Также на основании метода компенсирующих

нагрузок обеспечено удовлетворение граничных условий. Определены перемещения среды после прохождения преграды.

Выполнена оценка вибропоглощающих свойств преграды с помощью полученных значений виброускорений и коэффициентов вибропоглощения.

Методы исследования:

Методы, использованные в диссертации, позволяют эффективно решать сложные задачи взаимодействия волн с вибропоглощающими преградами, учитывая как их геометрические параметры, так и свойства упругой среды. Использованы методы разложения в тригонометрические ряды и метод преобразования Фурье для различных постановок задач. Для удовлетворения граничных условий использовался метод компенсирующих совокупности с функциями влияния, что позволило существенно расширить область применения предложенного подхода для различных способов крепления вибропоглощающих экранов. Суперпозиция решений ДЛЯ реальных компенсирующих нагрузок дала возможность учитывать сложное поведение преград различной конфигурации в грунте и описывать влияние их закрепления на свойства вибропоглощения.

Личный вклад соискателя. Основные положения диссертации получены лично автором, либо при непосредственном его участии, что подтверждено публикациями. Личный вклад заключается в разработке подхода, позволяющего определять вибропоглощающие свойства однородных преград различной конфигурации в грунте под воздействием гармонических волн. Также лично получены поверхностные функции влияния для движения упругой среды, моделирующей грунт, для гармонических волн различной конфигурации [1, 2]. Найдены фундаментальные решения уравнений движения оболочки Кирхгофа-Лява [2, 5] и пластины Кирхгофа [1, 3, 4]. Получены решения о движении бесконечной преграды и цилиндра в упругой среде, а далее, на основании принципа суперпозиции и полученных фундаментальных решений для соответствующих видов преград, найдены решения связанных задач о движении ограниченной прямолинейной преграды и сегмента оболочки в грунте при заданных способах их

закрепления [1, 2]. После чего выполнена оценка вибропоглощающих свойств преград на основании коэффициента вибропоглощения и параметрический анализ, где аспирант исследовал зависимости поглощающих свойств преград от материала и толщины вибропоглощающего препятствия. Все решения реализованы в среде Марle, результат визуализирован.

Научная новизна

Впервые разработана связанная математическая модель взаимодействия стационарных волн с преградой в виде пластины и в виде сегмента цилиндрической оболочки с различными граничными условиями в грунте и дана оценка их поглощающих свойств.

Впервые представлен метод определения компенсирующих нагрузок на основании функций влияния.

Впервые получены аналитические методы, позволяющие рассматривать и учитывать различные физические свойства как грунта, так и преграды, а также учитывать ее геометрические характеристики и способы закрепления.

Впервые выполнены параметрические исследования вибропоглощающих свойств преград различной конфигурации под воздействием гармонических волн в грунте в зависимости от их материала и геометрических параметров.

Практическая ценность

В данной работе внимание сосредоточено на снижении уровня вибраций с помощью организации пассивной виброзащиты в виде вибропоглощающих препятствий, моделями которых будут выступать однородные преграды, помещенные в упругую среду, имитирующую грунт. Для решения поставленной задачи использован метод компенсирующих нагрузок, который позволяет решать подобные задачи для любых реальных видов закрепления преград. Выполненные параметрические исследования позволяют давать оценку вибропоглощающим свойствам экранов в зависимости от используемого материала, а также выбирать наиболее оптимальные геометрические параметры.

Обоснованность и достоверность результатов исследований

Достоверность полученных результатов исследований обеспечивается математически и физически корректной постановкой задачи, учитывающей особенности крепления преград различной конфигурации, применением известных математических методов, а также выполнением верификации полученных решений для плоской постановки задачи путем получения аналогичных решений известными методами на основании разложения в тригонометрические ряды Фурье для частного случая шарнирно опертой преграды.

Основные положения, выносимые на защиту

Связанная модель взаимодействия однородной изотропной преграды, помещенной в упругую среду, моделирующую грунт, с индуцированной гармонической волной, учитывающая особенности закрепления преграды.

Стационарные функции влияния для бесконечной пластины и цилиндрической оболочки Кирхгофа, на которых базируется метод определения величин компенсирующих нагрузок.

Результаты решения задачи о прохождении волн через бесконечное препятствие, моделью которого служит пластина Кирхгофа.

Результаты решения задачи о прохождении цилиндрических волн через препятствие, представленное сегментом цилиндра в грунте.

Параметрический анализ вибропоглощающих свойств указанных выше видов преград в зависимости от свойств материала и геометрических параметров экранов.

Примеры расчетов для плоского препятствия и препятствия в виде сегмента оболочки при различных способах их закрепления.

Апробация работы. Основные положения диссертационной работы докладывались и обсуждались на следующих симпозиумах, конференциях и семинарах:

- Конференция «Ломоносовские чтения» (г.Москва, 2023, 2025).
- XXVIII–XXX Международный симпозиум «Динамические и техноло гические проблемы механики конструкций и сплошных сред им. А. Г. Горшкова» (г.Москва, 2022, 2023, 2024, 2025).

- XII Международ. научн.-практ. конф., посвящ. 160-летию Бел. ж. д.: в 2 ч., Гомель, 24–25 ноябр. 2022 г. -Т. 2. М-во трансп. и коммуникаций Респ. Беларусь, Бел. ж. д., Белорус. гос. ун-т трансп Гомель, 2022.
- Инновационное развитие транспортного и строительного комплексов, материалы международной научно практической конференции, посвященной 70 летию Белиижта Белгута (Гомель, 16–17 ноября 2023 г.).
- Механика композиционных материалов и конструкций, сложных и гетерогенных сред им. И. Ф. Образцова и Ю. Г. Яновского (г.Москва, 2022, 2023, 2024).
- ICCMSE 2023, 26 May 2023. 19th international conference of computational Methods in Sciences and Engineering.

Публикации. Основные положения диссертационного исследования достаточно полно отражены в 15 научных работах, из них: 2 научные работы в изданиях, рекомендованных Перечнем ВАК при Министерстве науки и высшего образования Российской Федерации и 3 работы, входящие в мировые базы данных научного цитирования Scopus, остальные 10 – в прочих изданиях.1 (АКТ) свидетельство о применении результатов диссертационного исследования на практике.

Структура и объем работы. Диссертационная работа состоит из введения, 3 глав, заключения и библиографического списка. Общий объём диссертации составляет 130 страницы, в него входят 68 рисунка и 4 таблицы. Библиографический список со стоит из 125 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, показана степень ее разработанности, сформулированы основные цели и задачи, сформулированы научная новизна, теоретическая и практическая значимость работы и положения, описана методология и методы исследования, перечислены полученные автором результаты работы, представлена структура диссертации и апробация работы.

B первой главе выполняется анализ существующих методов виброизоляции фундаментов зданий, конструкций и сооружений в грунте от воздействия различных видов вибраций. Рассматриваются теории движения грунтов и источники вибраций, особое внимание уделяется вибрациям от поездов метро, как одного из самых распространенных и постоянных источников вибрации. Изучаются методы снижения вибраций с использованием вибропоглощающих экранов, таких как пластины и сегменты оболочек. На основании проведенного аналитических анализа отмечается сложность решений, обусловленных невозможностью подбора собственных функций для произвольных граничных условий. В качестве решения данной проблемы автором предлагается использовать метод компенсирующих нагрузок. При этом моделью грунта выступает упругая среда, а роль вибропоглощающих экранов выполняют пластины, описываемые уравнениями Кирхгофа, и сегменты однородных оболочек, описываемые уравнениями Кирхгофа-Лява. Граничные условия обеспечиваются на основании метода компенсирующих нагрузок.

Рассматривается пластина преграды, окруженная с двух сторон грунтом, моделировать который предполагается с помощью уравнений теории упругости, описывающих упругую среду. Среды, окружающие пластину, обозначаются соответственно «1» и «2» (Рисунок 1). На пластину воздействует гармоническая плоская волна с амплитудой давления на фронте p^* и частотой ω .

Основная задача состоит в составлении модели нагружения бесконечной преграды, эквивалентной на выбранном участке преграде ограниченных размеров и находящейся под воздействием волн, индуцированных в одной из сред.

В первую очередь решается задача прохождения гармонической плоской волны через бесконечную пластину и определению перемещения $\omega^{\infty}(x,\omega)$ средней линии пластины под воздействием набегающей волны из первой среды. Далее, находится функция влияния G_{w} для нормальных перемещений бесконечной пластины Кирхгофа и определяются перемещения пластины, как

свертка функции влияния G_w с внешним силовым фактором P_n - компенсационными нагрузками. В силу особенности модели пластины в качестве нагрузки используются только сосредоточенные силы.

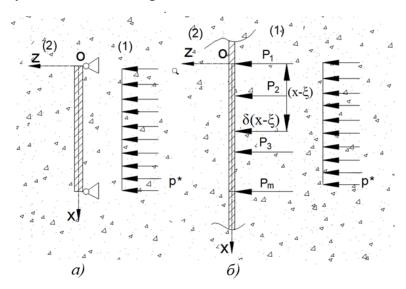


Рисунок 1 - Модель взаимодействия пластины с волнами в грунте: *а)* шарнирно опертая преграда; *б)* эквивалентная шарнирно или жестко закреплённой преграде бесконечная пластина с приложенными к ней компенсирующими нагрузками, обеспечивающими выполнение граничных условий

Величины данных сил определяются из конкретных граничных условий на основании уравнения (2, 3). После чего перемещение пластины с искомыми граничными условиями определяется как (знак «*» означает свертку):

$$w(x,\omega) = w^{\infty}(x,\omega) + \sum_{1}^{j} G_{w}(x-\xi,\omega) * P_{n};$$
(1)

где: $w(x,\omega)$ - нормальные перемещения средней линии преграды; n - порядковый номер граничного условия, j - количество граничных условий на краях ограниченной пластины, P_n - силы приложенные к бесконечной пластине таким образом, чтобы удовлетворялись граничные условия.

Аналогичный подход используется и для решения задачи о взаимодействии цилиндрической волны с преградой в виде цилиндра. Рассматривается сегмент тонкой упругой изотропной оболочки типа Кирхгофа-Лява постоянной толщины h и радиуса r, угол раскрытия сегмента $\alpha = \pi / 6$ (Рисунок 2) в грунте. На него

воздействует гармоническая цилиндрическая волна, источник которой совпадает с центром цилиндра.

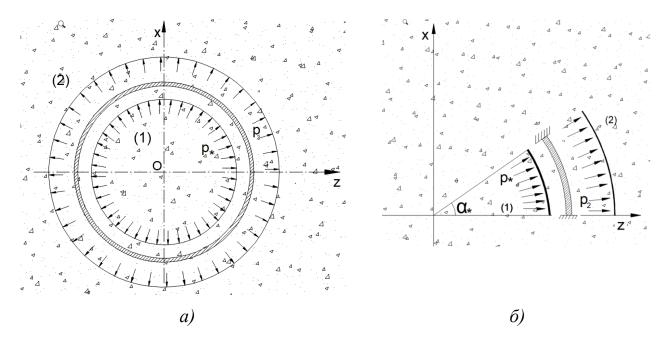


Рисунок 2 - а) взаимодействие оболочки с гармонической цилиндрической волной в грунте; б) взаимодействие жестко закрепленного сегмента оболочки с волной в грунте

Перемещение средней линии оболочки складывается из перемещения под воздействием цилиндрической волны и сил, и моментов, определяемых как свертки их величин с соответствующими функциями влияния (1). Величины сил и моментов определяются из граничных условий.

Условия контакта препятствия и упругих сред записываются следующим образом:

$$p_{1} = \left(-\sigma_{33}^{(1)} + \sigma_{33*}\right)\Big|_{z=0}, \ p_{2} = -\sigma_{33}^{(2)}\Big|_{z=0}; \sigma_{13}^{(1)}\Big|_{z=0} = \sigma_{13}^{(2)}\Big|_{z=0} = 0;$$

$$\left(w^{(1)} + w_{*}\right)\Big|_{z=0} = w^{(2)}\Big|_{z=0} = w_{0}.$$
(2)

Для оценки вибропоглощающих свойств экранов в виде пластины или сегмента оболочки необходимо определить координаты и модуль поля ускорений во втором полупространстве как функции частоты ω и пространственных координат χ и z в зависимости от параметров пластины:

$$a_x = -\omega^2 u^{(2)}, \ a_z = -\omega^2 w^{(2)}, a = \sqrt{a_x^2 + a_z^2}.$$
 (3)

Также находится отношение абсолютных величин ускорений к соответствующим величинам a_{*x} , a_{*z} и $a_* = \sqrt{a_{x*}^2 + a_{z*}^2}$ на фронте набегающей волны на поверхности пластины в момент касания — коэффициенты вибропоглощения:

$$\gamma_{ax} = a_x / a_{*x}, \ \gamma_{az} = a_z / a_{*z}, \ \gamma_a = a / a_{*}$$
 (4)

Вторая глава посвящена решению задачи о взаимодействие гармонической плоской волны с преградами в виде пластины.

Сначала изучается движение грунта, как упругой среды. Задаются волновые уравнения относительно потенциала поля перемещений и уравнения перемещений среды через потенциалы. В качестве граничного условия на бесконечность используется условие Зоммерфельда. Все функции меняются по гармоническому закону в зависимости от времени.

На основании волновых уравнений находятся давления и перемещения в набегающей плоской гармонической волне. Решение ищется с помощью преобразования Фурье.

Для связи кинематических параметров преграды и давления в упругих средах, ее окружающих, решается задача о движении упругого полупространства в результате воздействия единичного поля перемещения, нормального по отношению к границе полупространства. Рассматривается упругое полупространство, на границе которого возникает единичное поле перемещений, меняющееся по гармоническому закону, на границе при z=0 перемещение равно w=1. Далее с помощью преобразования Фурье ищется решение волновых уравнений. Единственность решения обеспечивается условием Зоммерфельда, а константы интегрирования ищутся из граничных условий.

В результате решения данной задачи находятся функции влияния для напряжений в средах «1» $G_{\sigma_{33}^{(1)}}^F(q,0,\omega)$ и «2» $G_{\sigma_{33}^{(2)}}^F(q,0,\omega)$. Тогда, нормальные напряжения в средах «1» и «2» будут определяеться как свертки данных функций влияния с нормальными перемещениями в соответствующих средах (5).

$$p_{1w} = \sigma_{33}^{(1)} = G_{\sigma_{33}}^{(1)} * w; \quad p_2 = -\sigma_{333}^{(2)} = -G_{\sigma_{33}}^{(2)} * w.$$
 (5)

В соответствии с предложенным подходом далее ищется перемещение бесконечной преграды под воздействием плоской гармонической волны. Движение преграды описывается уравнением Кирхгофа.

$$\rho_{\Pi} h \frac{d^2 w(x,t)}{dt^2} = -D\Delta \Delta w(x,t) + p.$$
 (6)

Где: ρ_{Π} — плотность материала пластины; D — цилиндрическая жесткость, E — модуль упругости Юнга; Δ — оператор Лапласа. На пластину действует давление с амплитудой p, которое определяется как сумма давлений p_1 и p_2 в средах «1» и «2».

К уравнению Кирхгофа (6) применяется преобразование Фурье и определяется нормальное перемещение средней линии бесконечной преграды под воздействием плоской гармонической волны, индуцированной в среде «1» (7).

$$w^{\infty}(0,0,\omega) = \frac{\sigma_{33}^{*}}{-\omega^{2}\rho_{gr}h - 2k_{1}(\lambda + 2\mu)}.$$
 (7)

Далее необходимо определить величины компенсирующих нагрузок, которые обеспечат выполнение граничных условий и заданных точках бесконечной пластины.

Рассматривается бесконечная однородная пластина Кирхгофа, на которую воздействует сосредоточенная сила в виде дельта-функции и находится стационарная функция влияния.

$$G_{w}(x,\omega) = \frac{1}{2L} \sum_{n=-\infty}^{\infty} \frac{1}{\left(-\omega^{2} \rho h + D\left(\frac{\pi n}{L}\right)^{4}\right)} e^{-i\frac{\pi n}{L}x} H\left(L - |x|\right). \tag{8}$$

Где параметр преобразования Фурье заменяется следующим образом $q = \pi n/L$, L — большая по отношению к длине исходной конечной пластины величина; H(x) —функция Хэвисайда.

Нормальное перемещение средней линии преграды определяется на основе принципа суперпозиции, как сумма перемещений бесконечной преграды

под воздействием плоской гармонической волны в грунте (7) и перемещений от компенсирующих нагрузок (9).

$$w(x,\omega) = w^{\infty}(\omega) + \sum_{n=1}^{k} G_{w_n}(x - \xi, \omega) * P_n.$$
 (9)

Где k- количество компенсирующих нагрузок, необходимых для удовлетворения граничных условий. Данная величина соответствует числу наложенных на преграду связей.

В качестве примера были взяты следующие параметры грунта и преграды в грунте при частоте воздействия $\omega = 1...100$, амплитуда давления падающей $p^* = 1$, параметры грунта и однородной пластины (Таблица 1)

Таблица 1

Параметры грунта	Параметры грунта Плотность $\rho_{rp} = 1600 \ Kz/m^3$, модуль
	упругости $E_{zp} = 10^9 \text{Kz/} \text{M}^2, \ \nu = 0,29.$
Параметры пластины	Длинна $l=15м$, толщина $h=0.07м$, Материал - сталь
Кирхгофа	12X18H10T: $E=18.10^9 \text{ Ke/m}^2$, $\rho = 7900 \text{ Ke/m}$, $v = 0,29$.

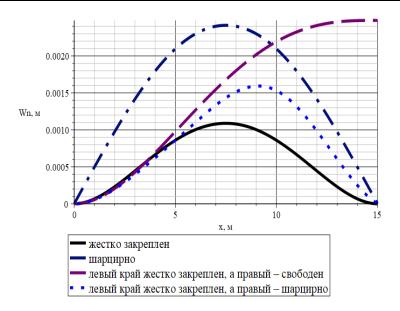


Рисунок 3 — График нормальных перемещений однородной пластины в грунте при частоте воздействия $\omega = 1$, с граничными условиями.

Графики движения участков бесконечной преграды, которые соответствуют движению преград ограниченной длины с заданными

граничными условиями, приведены на Рисунке 3. Границы участка бесконечной пластины, соответствующего конечной преграде, имеют координаты ξ_1 , ξ_4 . Были рассмотрены следующие граничные условия: жестко закрепленная преграда; шарнирно опертая преграда; правый край преграды жестко закреплен, а левый — свободен; правый край преграды жестко закреплен, а левый — шарнирно.

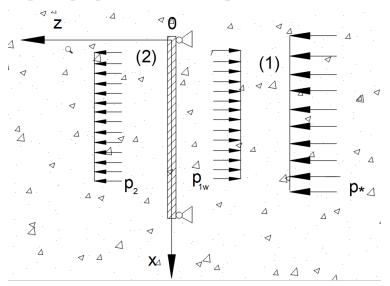


Рисунок 4 — Модель взаимодействия шарнирно опертой пластины с плоской гармонической волной в грунте

Для верификации полученных результатов и метода в целом, была решена аналогичная задача для преграды ограниченной длины, помещенная в грунт и находящаяся под воздействием плоской гармонической волны (Рисунок 4). Была рассмотрена однородная изотропная преграда, моделью которой служит пластина Кирхгофа. Пластина имеет длину l и шарнирно закреплена по краям. Центр O системы координат располагаем в верхнем крае пластины.

Используется уравнение движения в перемещениях для однородной пластины Кирхгофа (6). Все функции раскладываются в тригонометрические ряды, удовлетворяющие граничным условиям:

$$w = \sum_{n=1}^{\infty} w_n \sin(\lambda_n x), p = \sum_{n=1}^{\infty} p_n \sin(\lambda_n x); \quad \lambda_n = \frac{\pi n}{l}.$$
 (10)

Аналогично бесконечной задаче, ищутся решения волновых уравнений в потенциалах и значения перемещений и напряжений. Все функции также раскладываются в тригонометрические ряды. На основании граничных условий

и условий контакта преграды и грунта (2), определяются нормальные перемещения среды «2». При z=0, данные перемещения соответствуют перемещениям средней линии преграды в грунте, что позволяет сравнивать их с полученными методом компенсирующих нагрузок перемещениями.

$$w(x,z,\omega)_{(2)} = \sum_{n=1}^{\infty} \frac{\sigma_{33}^* - \sigma_{33}^{(1)}(z,\omega)_{(2)} - \sigma_{33}^{(2)}(z,\omega)_{(2)}}{-\omega^2 \rho_{\Pi} h + D\lambda_n^4} \sin(\lambda_n x).$$
(11)

Для верификации полученных результатов выполняется сравнительный анализ результатов двух методов решения поставленной задачи.

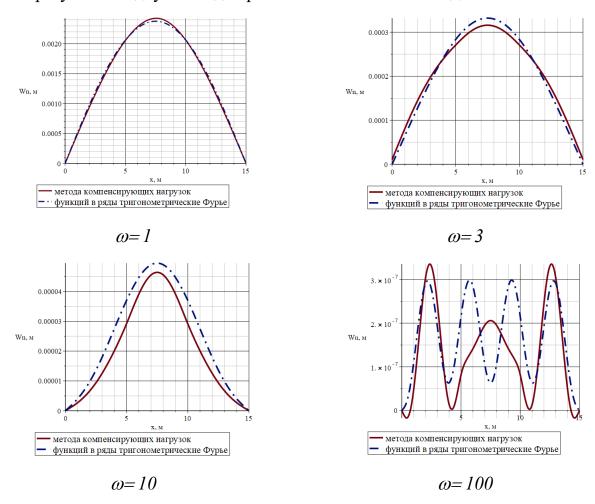


Рисунок 5 - График нормальных перемещений однородной пластины в грунте, полученные различными методами

Была выполнена оценка расхождения полученных результатов при различных частотах: $\Delta(\omega=1)=1.65\%$, $\Delta(\omega=3)=4.45\%$, $\Delta(\omega=10)=4.16\%$, $\Delta(\omega=100)=9.58\%$.

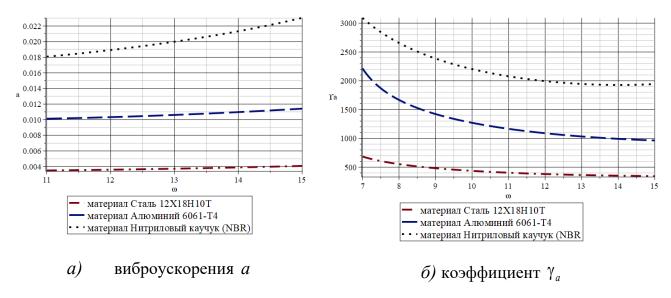


Рисунок 6 - График зависимости виброускорения a и коэффициента вибропоглощения γ_a при z=0 от частоты в диапазоне $\omega=7....15$

Оценка вибропоглощающих свойств осуществляется на виброускорения (3) основании коэффициента вибропоглощения (4). На Рисунках 6 и 7 приведены результаты параметрических исследований. На Рисунке 6 изучается поведение преград, изготовленных из различных материалов. На Рисунке 7 — зависимость от толщины преграды при использовании в качестве материала преграды стали 12X18H10T.

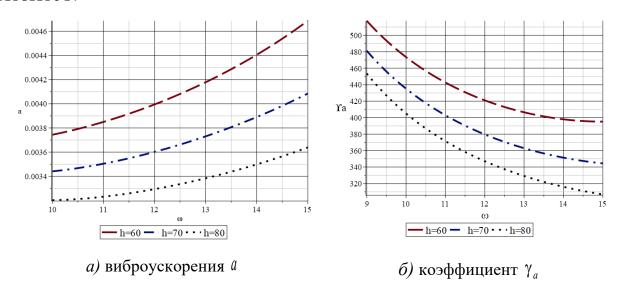


Рисунок 7 - График зависимости виброускорения a и коэффициента вибропоглощения γ_a при z=0, $\omega=10....15$ при различных толщинах преграды

В главе 3 приведено решение задачи о взаимодействие гармонической цилиндрической волны с преградами в виде сегмента оболочки.

Учитывая то, что коэффициент вибропоглощения показывает отношения виброускорения прошедшей волны к виброускорению набегающей, а также отсутствие учета демпфирования, можно сделать вывод, что преграда, изготовленная из стали, поглощает вибрации лучше, чем, например, преграда, изготовленная из алюминиевого сплава (Рисунок 5, 6)). Подобным же образом можно сделать вывод о зависимости вибропоглощающих свойств от толщины преграды на основании графика виброускорения (Рисунок 7, 6)). Чем толще преграда, тем лучше она поглощает вибрации.

Аналогично Главе 2, сначала задаются уравнения движения грунта как упругой среды в цилиндрической системе координат, записываются соотношения Коши и физический закон. Также в цилиндрической системе координат записываются волновые уравнения в потенциалах и зависимость перемещений от потенциалов.

Таким же образом, как и в задаче о бесконечной преграде, ищется решение волновых уравнений и определяются давления и перемещения в набегающей волне. Ко всем уравнениям применяется разложение в тригонометрические ряды по углу α . Исходя из граничных условий, которыми являются условия излучения Зоммерфельда и единичное поле перемещений на границе упругого полупространства в цилиндрической системе координат.

$$p_{1wn} = \sigma_{rrn}^{(1)} = G_{\sigma_{rr}n}^{(1)} * w_n; \quad p_{2n} = -\sigma_{rrn}^{(2)} = -G_{\sigma_{rr}n}^{(2)} * w_n$$
 (12)

Для решения задачи о движении бесконечного цилиндра под воздействием цилиндрической волны в окружающем его упругом пространстве, используется уравнение цилиндрической оболочки Кирхгофа-Лява. С учетом бесконечности осевой координаты и однородности препятствия система уравнений в перемещениях запишется как (13). Оболочка как внутри, так и снаружи окружена упругой средой, моделирующей грунт. Источник колебаний совпадает с центром цилиндрической оболочки. На цилиндр действует давление с амплитудой p, которое определяется как сумма давлений p_1 и p_2 в средах «1» и «2». Величины давлений и перемещений связаны через выражения (12).

$$\rho h \frac{\partial^{2} u_{\alpha}}{\partial t^{2}} = h(\lambda + 2\mu) \frac{1}{R^{2}} u_{\alpha,\alpha\alpha} + \frac{h(\lambda + 2\mu)}{R^{2}} w_{,\alpha} + q_{\alpha};$$

$$\rho h \frac{\partial^{2} w}{\partial t^{2}} = \left(\frac{-h(\lambda + 2\mu)}{R^{2}} + \frac{I(\lambda + 2\mu)}{R^{4}}\right) w + \frac{2I(\lambda + 2\mu)}{R^{4}} w_{,\alpha\alpha} - \frac{1}{R^{2}} u_{\alpha,\alpha} + \frac{I(\lambda + 2\mu)}{R^{4}} w_{,\alpha\alpha\alpha\alpha} + p.$$

$$(13)$$

Все функции являются гармоническими, раскладываются в тригонометрические ряды по углу α . В результате решения данной задачи определяются значения коэффициентов ряда нормальных перемещений (14), после чего находится сумма ряда.

$$w_{n} = \left[B_{n}(\omega) + L_{n}\right]^{-1} p_{*n},$$

$$B_{n}(\omega) = -\omega^{2} \rho h + \frac{hc_{3}^{2}}{R^{2}} - \frac{Ic_{3}^{2}}{R^{4}} (n^{2} - 1)^{2} - \frac{hn^{3}c_{3}^{4}}{R^{2} (c_{3}^{2}n^{2} - \rho\omega^{2}R^{2})},$$

$$L_{n} = G_{\sigma_{n},n}^{(1)} + G_{\sigma_{n},n}^{(2)}.$$
(14)

Для решения поставленной задачи необходимо определить функции влияния от силы в виде дельта-функции, приложенной по нормали к оболочке.

Для этого рассматривается воздействие сосредоточенной силы в виде дельта-функции на оболочку в точке с координатой α_i . Тогда функции влияния для нормальных перемещений в коэффициентах ряда по отношению к оболочке определяется как:

$$G_{wn}^{v} = \frac{-\delta_{1n}(\alpha - \alpha_{i})}{K_{2}(\omega, n) - hc_{3}^{2} \frac{n^{2}}{R^{2}} K_{1}(\omega, n)}$$
(15)

где:
$$K_1(\omega,n) = \frac{nhc_3^2}{R^2} \bigg/ -\omega^2 \rho h + hc_3^2 \frac{n^2}{R^2}$$
; $K_2(\omega,n) = -\omega^2 \rho h + \frac{hc_3^2}{R^2} + \frac{Ic_3^2}{R^4} \Big(2n^2 - n^4 - 1 \Big)$

Далее находится сумма ряда и определяются нормальные перемещения от воздействия силы в виде дельта-функции G_w^v . На основании полученных результатов движения цилиндрической оболочки в упругой среде и значений функций влияния G_w^v , как суммы ряда (15), становится возможным определение

движения оболочки, которое будет эквивалентно движению сегмента оболочки с заданными условиями закрепления его краев.

Количество компенсирующих нагрузок определяется количеством связей, наложенных на сегмент. Перемещение средней линии оболочки складывается из перемещения под воздействием цилиндрической волны и сил, и моментов, определяемых как свертки их величин с соответствующими функциями влияния.

Для определения неизвестных величин P_i используются граничные условия, соответствующие конкретному способу закрепления преграды. В качестве примера были взяты физические параметры грунта и сегмента оболочки, совпадающие со значениями в Таблице 1, толщина оболочки h = 0.03 M, R = 1 M.

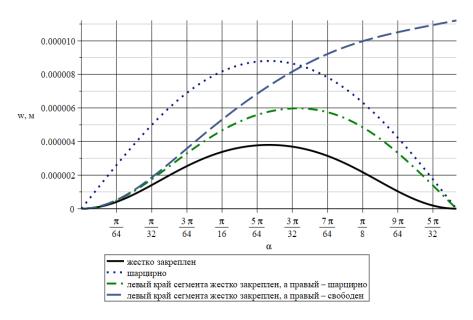


Рисунок 8 - График нормальных перемещений сегмента с углом раскрытия $\alpha = 0....\pi/6$, $\omega = 1$, n = 200 с разными граничными условиями

В качестве примера были рассмотрены следующие способы закрепления краев сегмента оболочки: края сегмента жестко закреплены; края сегмента шарнирно оперты; левый край сегмента жестко закреплен, а правый – свободен; левый край сегмента жестко закреплен, а правый оперт шарнирно. В каждом конкретном случае граничных условий формируется система линейно независимых уравнений на основании уравнения (1), решая которую определяем

значения искомых $P_1; P_2; P_3; P_4$. Найденные значения сил подставляются в уравнение (1) и в результате на искомом участке оболочки достигаются граничные условия, соответствующие искомому способу закреплению сегмента.

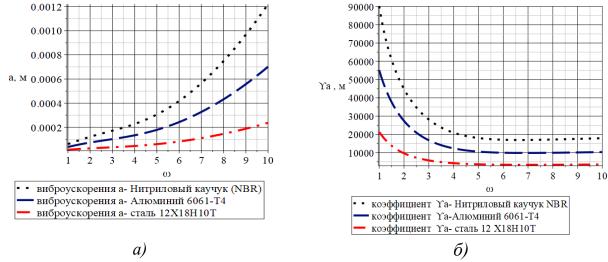


Рисунок 9- *а)* график зависимости виброускорения; *б)* коэффициента вибропоглощения γ_a . Сегмент закреплён шарнирно, угол раскрытия сегмента $\alpha=\pi/12$, диапазон рассматриваемых частот $\omega=1...10$. Рассмотрены сегменты, выполненные из различных материалов

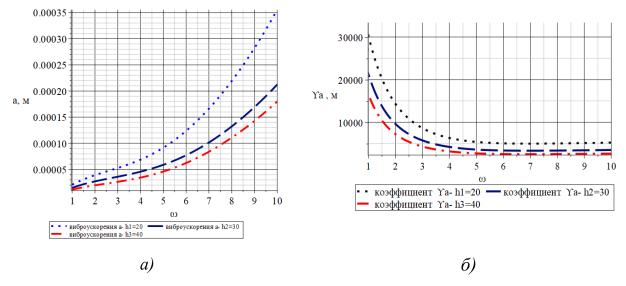


Рисунок 10 - a) график зависимости виброускорения; δ) коэффициента вибропоглозения γ_a . Сегмент закреплён шарнирно, угол раскрытия сегмента $\alpha=\pi/12$, диапазон рассматриваемых частот $\omega=1...10$. Рассмотрены сегменты различной толщины

Далее для оценки вибропоглощающих способностей сегмента

выполняется расчет виброускорения a и коэффициента вибропоглощения γ_a на границе сегмента оболочки при z=0 на основании выражений (3) и (4).

На основании полученных коэффициентов выполнен параметрический анализ вибропоглощающих свойств, где рассматриваются разные материалы и разные толщины вибропоглощающего сегмента. Аналогично бесконечной задаче, наилучшие вибропоглощающие свойства продемонстрировал экран, выполненный из стали. (Рисунок 9, δ)). Также, на основании графика коэффициента вибропоглощения (Рисунок 10, δ)) очевидно, что увеличение толщины сегмента также улучшает его вибропоглощающие свойства.

ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ РАБОТЫ

- 1. Разработан метод оценки вибропоглощающих свойств экранов различной конфигурации как решение связанных задач o взаимодействии вибропоглощающих преград грунте гармоническими волнами, индуцированными в нем. Предложенный подход учитывает особенности закрепления вибропоглощающих экранов, что позволяет создавать более реалистичные математические модели ДЛЯ данного класса задач И, соответственно, получать более достоверные результаты.
- 2. Построена модель движения упругой среды и определены ее перемещения и напряжения под воздействием плоских гармонических волн, индуцированных в одном из полупространств. Задача решена в декартовой и цилиндрической системах координат.
- 3. Найдены стационарные функции влияния для бесконечной пластины и цилиндрической оболочки Кирхгофа-Лява.
- 4. Решена задача о прохождении волн через бесконечное препятствие, моделью которого служит пластина Кирхгофа. С использованием метода компенсирующих нагрузок выполнены граничные условия в точках, соответствующих креплению препятствия. Получены значения перемещений среды после прохождения волн. Проведена верификация предложенного метода путём сравнения результатов, полученных при решении с помощью метода

компенсирующих нагрузок и методом разложения в тригонометрические ряды для шарнирно закреплённой пластины. Аналогичным образом выполнено решение задачи о движении сегмента цилиндрической оболочки в грунте.

- 5. Выполнены параметрические исследования вибропоглощающих свойств преград в зависимости от материала и геометрии.
- 6. Приведены примеры расчётов для плоского препятствия и препятствия в виде сегмента оболочки при различных способах их закрепления.

СПИСОК ОПУБЛИКОВАННЫХ РАБОТ ТЕМЕ ДИССЕРТАЦИИ

Статьи в журналах из перечня ВАК:

- 1. Во, Ван Дай. Использование метода компенсированной нагрузки для решения задачи взаимодействия плоской гармонической волны с плоской пластиной в упругой грунтовой среде при различных граничных условиях/ Ван Дай Во, Н.А. Локтева // Экологический вестник научных центров Черноморского экономического сотрудничества. 2025. Т. 22, No 2. C. 31–44. EDN: WHIFJS. DOI: 10.31429/vestnik-22-2-31-44.
- 2. Локтева, Н.А. Стационарная задача о взаимодействии цилиндрической волны с сегментом оболочки, расположенной в грунте, на основании метода компенсирующих нагрузок / Н.А. Локтева, Ван Дай Во // Механика композиционных материалов и конструкций. Т. 30. № 3, 2024. С. 305–322. DOI: http://doi.org/10.33113/mkmk.ras.2024.30.03.02.

Публикации, индексируемые в Scopus:

- 3. Lokteva, N.A. Stationary Interaction of a Plane Wave with a Vibration-Absorbing Screen in the Ground Using Various Methods of Its Fastening / N.A. Lokteva, V. Van Dai // Russian Engineering Research. 2024. Vol. 44. No. 3. P. 389–394. DOI: https://doi.org/10.3103/S1068798X24700035.
- 4. Lokteva, N.A. The novel method to investigate the interaction between plane harmonic waves and plates under arbitrary boundary conditions in elastic soil environments / N.A. Lokteva, Vo Van Dai, Hong Nguyen Thi, Nguyen Thi Hai Van //Noise & Vibration Worldwide. June 2025- DOI:10.1177/09574565251348888.
 - 5. Lokteva, N.A. The problem of the interaction of a Kirchhoff-Love shell

segment with a cylindrical wave in an elastic medium / N.A. Lokteva, V. Van Dai. // AIP Conference Proceedings. – 2025. – Vol. 3269. – Issue 1. – DOI: https://doi.org/10.1063/5.0248077.

Публикации в других изданиях и журналах:

- 6. Van Dai, Vo. Problem on the interaction between plane harmonic waves and a uniform steel plate in soil elastic environment / Vo. Van Dai, N.A. Lokteva, N. Minh Tuan, N.D. Phung, N.T. Cam Nhung. // HaUI Journal of Science and Technology. 2024. Vol. 60. No. 8. P. 73–79. DOI: http://doi.org/10.57001/huih5804.2024.267.
- 7. Локтева, Н.А. Вибропоглощающие свойства однородных преград различной конфигурации в грунте под воздействием гармонических волн / Н.А. Локтева, Ван Дай Во // Механика композиционных материалов и конструкций, сложных и гетерогенных сред. им. И.Ф. Образцова и Ю.Г. Яновского. Москва, 23–25 октября 2024 г. С. 113–120. DOI: 10.33113/conf.mkmk.ras.2024.13.
- 8. Локтева, Н.А. Стационарная задача о взаимодействии упругой среды и однородной пластины в ней при различных граничных условиях / Н.А. Локтева, Ван Дай Во // Механика композиционных материалов и конструкций, сложных и гетерогенных сред им. И.Ф. Образцова и Ю.Г. Яновского. Москва, 14–16 ноября 2023 г. С. 106–112. DOI: 10.33113/conf.mkmk.ras.2023.14.
- 9. Во, Ван Дай. Взаимодействие преграды с плоской гармонической волной в грунте при различных граничных условиях / Ван Дай Во, Н.А. Локтева // Механика композиционных материалов и конструкций, сложных и гетерогенных сред. Сборник трудов 12-й Всероссийской научной конференции с международным участием. Москва, 15–17 ноября 2022 г. С. 448–467.
- 10. Во, В.Д. Взаимодействие преграды с произвольными граничными условиями с плоской гармонической волной в грунте / В.Д. Во, Н.А. Локтева // Динамические и технологические проблемы механики конструкций и сплошных сред. Материалы XXVIII Международного симпозиума им. А.Г. Горшкова, Кремёнки, 16–20 мая 2022 г. Т. 2. Общество с ограниченной ответственностью ТРП, Москва, 2022. С. 29–30.
- 11. Во, Ван Дай. Взаимодействие однородной преграды, закрепленной произвольным образом, с плоской гармонической волной в грунте / Ван Дай Во,

- Н.А. Локтева // Проблемы безопасности на транспорте: матер. XII Международ. научн.-практ. конф., посвящ. 160-летию Бел. ж. д.: в 2 ч., Гомель, 24–25 ноябр. 2022 г. Т. 2. М-во трансп. и коммуникаций Респ. Беларусь, Бел. ж. д., Белорус. гос. унт трансп., Гомель, 2022. С. 174–175.
- 12. Во, Ван Дай. Решение и верификация стационарной задачи о взаимодействии пластины с плоской волной в упругой среде / Ван Дай Во, Н.А. Локтева, Д.О. Сердюк // Ломоносовские чтения. Научная конференция. Секция механики. 4—23 апреля 2023 года. Тезисы докладов. Москва: Издательство Московского университета, 2023. С. 181.
- 13. Во, Ван Дай. Взаимодействие преграды с произвольными граничными условиями с плоской гармонической волной в грунте / Ван Дай Во, Н.А. Локтева // Динамические и технологические проблемы механики конструкций и сплошных сред. Материалы XXIX Международного симпозиума им. А.Г. Горшкова, Кремёнки, 15–19 мая 2023 г. Т. 2. Общество с ограниченной ответственностью ТРП, Москва, 2023. С. 10–11.
- 14. Во, Ван Дай. Стационарная задача о движении жестко закрепленного сегмента оболочки Кирхгофа Лява в упругой среде / Ван Дай Во, Н.А. Локтева // Инновационное развитие транспортного и строительного комплексов, материалы международной научно—практической конференции, посвященной 70—летию БелИИЖТа БелГУТа (Гомель, 16—17 ноября 2023 г.). С. 82.
- 15. Во, Ван Дай. Стационарное взаимодействие волн в грунте с сегментом оболочки при различных граничных условиях / Ван Дай Во, Н.А. Локтева // Динамические и технологические проблемы механики конструкций и сплошных сред. Материалы XXX Международного симпозиума им. А.Г. Горшкова, Кремёнки, 20–24 мая 2024 г. Т. 2. Общество с ограниченной ответственностью ТРП, Москва, 2024. С. 14–16.