УДК 629.735.33.015

Методики оценок вращательных производных сил и моментов, действующих на модель самолета

Головкин М.А.*, Ефремов А.А.*, Махнев М.С.*

Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского, ул. Жуковского, 1, Жуковский, Московская область, 140180, Россия *<u>spintest@tsagi.ru</u>

Аннотация

Приведены методики оценок производных от коэффициентов аэродинамических сил и моментов по компонентам угловой скорости на основе экспериментов на установке, осуществляющей вращение модели самолета с постоянной угловой скоростью, коллинеарной вектору скорости набегающего потока аэродинамической трубы. Даны примеры определения вращательных производных для модели пассажирского самолёта в широком диапазоне углов атаки.

Ключевые слова: силы и моменты аэродинамические, компоненты угловой скорости, вращательные производные.

Введение

Для построения простейшей линейной математической модели аэродинамики, а также определения устойчивости движения самолёта и применения некоторых

[1] критериев устойчивости необходимо знание первых производных коэффициентов аэродинамических сил и моментов по компонентам угловой скорости в связанной с самолётом прямоугольной декартовой системе координат. Результаты экспериментов подвижными С моделями, проводимых В аэродинамических трубах (АДТ), не позволяют определять такие производные [2-9],непосредственно. Имеется работ посвященных ряд определению вращательных производных на основе расчетных И экспериментальных исследований. Однако работ, позволяющих проводить оценку первых производных от коэффициентов сил и моментов по компонентам угловой скорости на основе экспериментов в аэродинамической трубе с моделью самолета на установке, осуществляющей ее вращение с постоянной угловой скоростью, коллинеарной скорости набегающего потока, неизвестно. Решению этой проблемы и посвящена данная статья.

Здесь не учитывается такой эффект, как «аэродинамическая несимметрия», которая может возникать из-за несимметричного развития отрывных явлений на симметричном крыле или фюзеляже [1, 10–14], поскольку на реальном летательном аппарате (ЛА) она может существенно отличаться.

Поэтому в представленных ниже выкладках и результатах предполагается, что аэродинамические характеристики модели симметричны относительно плоскости симметрии модели, а их производные не терпят разрыва. Для реализации этого исходные данные экспериментальных исследований предварительно выглаживаются и симметризуются, в том числе с использованием работы [15].

В методике учитываются наиболее данной значительные эффекты интерференции, в том числе на больших углах атаки, вертикального и горизонтального оперения с полной аэродинамической компоновкой, для чего полной без проводятся испытания модели И модели вертикального И горизонтального оперения.

В целом методика оценки вращательных производных построена таким образом, чтобы максимально использовать экспериментальные данные и лишь при необходимости привлекать упрощенные расчеты аэродинамических характеристик элементов модели самолета. Это позволяет, в рамках представленного подхода, максимально полно учитывать интерференцию элементов.

Представленные ниже результаты не претендуют на решение проблемы создания полной модели аэродинамики самолета на больших углах атаки. Уточнение оценок вращательных производных возможно с привлечением дополнительных видов испытаний в АДТ и с учетом аэродинамических характеристик ЛА, полученных в реальных условиях полета.

1. Постановка задачи и некоторые исходные соотношения

По результатам испытаний на вращающейся установке [1] определяются значения проекций главных векторов силы и момента на оси связанной с моделью системы координат *охуz*, с началом, расположенным в точке, соответствующей

центру масс самолёта: $F_i(\alpha, \beta, \omega), M_i(\alpha, \beta, \omega), i = x, y, z,$ и находятся соответствующие коэффициенты:

$$c_i(\alpha,\beta,\overline{\omega}) = F_i/(qS), \quad m_i(\alpha,\beta,\overline{\omega}) = M_i/(qSL),$$
 (1.1)

где α – угол атаки модели; β – её угол скольжения; S – площадь крыла; L – характерный размер, за который при i = x, y принимается размах крыла l, при i = z – средняя аэродинамическая хорда крыла b_a ; $q = \rho V^2/2$ – скоростной напор, ρ – плотность воздуха; V – скорость потока; $\overline{\omega} = \omega \cdot l/(2V)$ – «приведенный» вектор угловой скорости вращения, $\overline{\omega} = \pm |\overline{\omega}|$, $\overline{\omega} > 0$ – соответствует вращению по часовой стрелке при виде навстречу набегающему потоку.

В предположении малости и линейности приращений коэффициентов c_i , m_i (i = x, y, z) при малом изменении $\overline{\omega}$ с точностью до малых более высокого порядка определяются вращательные производные от (1.1) по полной безразмерной угловой скорости по формуле:

$$\partial f_i / \partial \overline{\omega} = f_i^{\overline{\omega}} (\alpha, \beta) \approx \left[f_i (\alpha, \beta, +\overline{\omega}_0) - f_i (\alpha, \beta, -\overline{\omega}_0) \right] / (2\overline{\omega}_0), \tag{1.2}$$

где $f_i = c_i$ или $f_i = m_i$, (i = x, y, z); $\overline{\omega}_0$ – некоторая величина $\overline{\omega}$ в эксперименте на вращающейся установке (как правило, $\overline{\omega}_0 \le 0.2$).

Введем безразмерные проекции угловых скоростей следующим образом:

$$\overline{\omega}_x = \omega_x l/(2V), \quad \overline{\omega}_y = \omega_y l/(2V), \quad \overline{\omega}_z = \omega_z b_a/V.$$
 (1.3)

Для производных (1.2) от функций (1.1) по полной безразмерной угловой скорости запишем в соответствии с правилами дифференцирования уравнения:

$$f_i^{\varpi_x} \cos\alpha \cos\beta - f_i^{\varpi_y} \sin\alpha \cos\beta + 2\overline{b}_a f_i^{\varpi_z} \sin\beta = f_i^{\varpi}, \quad i = x, y, z, \quad (1.4)$$

незамкнутые относительно искомых величин производных, где $\overline{b}_a = b_{\alpha}/l$.

Для нахождения этих производных вводятся и используются дополнительные соотношения, предположения и экспериментальные или расчетные материалы, специфические для каждого компонента.

Итак, задача состоит в том, чтобы, зная производные c_i^{ϖ} , m_i^{ϖ} (i = x, y, z), определить производные $c_i^{\varpi_j}$, $m_i^{\varpi_j}$ (i, j = x, y, z).

Так как в рассматриваемом нами случае $\beta=0$ и, ограничиваясь рассмотрением симметричного относительно плоскости *хоу* самолета, можно положить: $m_x^{\overline{\omega}_z} = m_y^{\overline{\omega}_z} = 0$. Как показывает опыт со многими моделями для $|\beta| < 10 \div 20^\circ$ при любых углах атаки величины $m_z^{\overline{\omega}_x}$ и $m_z^{\overline{\omega}_y}$ также очень малы.

Производная $m_z^{\overline{\omega}_z}$ оценивается на основе формулы (1.4), если имеются результаты испытаний при некоторых $\beta \neq 0$, в предположении, что $m_z^{\overline{\omega}_x} \approx m_z^{\overline{\omega}_y} \approx 0$:

$$m_{z}^{\overline{\omega}_{z}} = m_{z}^{\overline{\omega}}(\alpha,\beta)/(2\overline{b}_{a}\sin\beta), \text{ или } m_{z}^{\overline{\omega}_{z}} = [m_{z}^{\overline{\omega}}(\alpha,+\beta) - m_{z}^{\overline{\omega}}(\alpha,-\beta)]/(4\overline{b}_{a}\sin\beta).$$
(1.5)

Производные от коэффициента продольной силы, как показывают элементарные оценки, являются малыми: $c_x^{\overline{\omega}_x} \approx c_x^{\overline{\omega}_y} \approx c_x^{\overline{\omega}_z} \approx 0$, они для оценки устойчивости движения самолёта не используются и поэтому в дальнейшем не рассматриваются. Для симметричной модели, и на это указывают многочисленные экспериментальные данные, также можно считать, что при любых α в пределах $|\beta| < 15 \div 20^\circ$: $c_y^{\overline{\omega}_x} \approx c_y^{\overline{\omega}_y} \approx c_z^{\overline{\omega}_z} = 0$.

Аналогично (1.5) оценивается производная $c_{y}^{\varpi_{z}}$:

$$c_{y}^{\overline{\omega}_{z}} = c_{y}^{\overline{\omega}}(\alpha,\beta) / (2\overline{b}_{a}\sin\beta), \text{ или } c_{y}^{\overline{\omega}_{z}} = [c_{y}^{\overline{\omega}}(\alpha,+\beta) - c_{y}^{\omega}(\alpha,-\beta)] / (4\overline{b}_{a}\sin\beta).$$
(1.6)

Итак, осталось определить производные: $c_z^{\overline{\omega}_x}$, $c_z^{\overline{\omega}_y}$, $m_x^{\overline{\omega}_x}$, $m_x^{\overline{\omega}_y}$, $m_y^{\overline{\omega}_x}$, $m_y^{\overline{\omega}_y}$.

Заметим, что угловая скорость вращения на вращающейся установке совпадает с продольной компонентой угловой скорости в скоростной системе координат: $\omega \equiv \omega_{xa}$. При $\beta = 0$ связь между компонентами угловой скорости и производными по этим компонентам в скоростной и связанной системах координат выражается соотношениями:

$$\begin{cases} \overline{\omega}_{xa} = \overline{\omega}_{x} \cos \alpha - \overline{\omega}_{y} \sin \alpha, \\ \overline{\omega}_{ya} = \overline{\omega}_{x} \sin \alpha + \overline{\omega}_{y} \cos \alpha, \end{cases} \begin{cases} f^{\overline{\omega}_{xa}} = f^{\overline{\omega}_{x}} \cos \alpha - f^{\overline{\omega}_{y}} \sin \alpha, \\ f^{\overline{\omega}_{ya}} = f^{\overline{\omega}_{x}} \sin \alpha + f^{\overline{\omega}_{y}} \cos \alpha, \end{cases} \begin{cases} f^{\overline{\omega}_{ya}} = f^{\overline{\omega}_{x}} \sin \alpha + f^{\overline{\omega}_{y}} \cos \alpha, \\ f^{\overline{\omega}_{y}} = -\overline{\omega}_{xa} \cos \alpha + \overline{\omega}_{ya} \sin \alpha, \\ \overline{\omega}_{y} = -\overline{\omega}_{xa} \sin \alpha + \overline{\omega}_{ya} \cos \alpha, \end{cases} \begin{cases} f^{\overline{\omega}_{x}} = f^{\overline{\omega}_{xa}} \cos \alpha + f^{\overline{\omega}_{ya}} \sin \alpha, \\ f^{\overline{\omega}_{y}} = -f^{\overline{\omega}_{xa}} \sin \alpha + f^{\overline{\omega}_{ya}} \cos \alpha, \end{cases} \end{cases}$$
(1.7)

где f – любой из рассматриваемых параметров (например, m_x , m_y , c_z).

Последние два соотношения в (1.7) указывают на способ оценки искомых производных: $c_z^{\overline{\omega}_s}$, $c_z^{\overline{\omega}_y}$, $m_x^{\overline{\omega}_s}$, $m_y^{\overline{\omega}_y}$, $m_y^{\overline{\omega}_y}$. Входящие в первые слагаемые в правой части этих соотношений производные $m_x^{\overline{\omega}_{sn}}$, $m_y^{\overline{\omega}_{sn}}$, $c_z^{\overline{\omega}_{sn}}$ определяется по результатам испытаний на вращающейся установке. Таким образом, задача сводится к оценке производных $m_x^{\overline{\omega}_{yn}}$, $m_y^{\overline{\omega}_{yn}}$, $c_z^{\overline{\omega}_{yn}}$, для чего необходимо привлечь дополнительные экспериментальные, теоретические или расчетные данные. Оценку этих производных будем проводить для отдельных элементов самолета, таких как: крыло, вертикальное оперение (ВО), горизонтальное оперение (ГО), фюзеляж, мотогондолы, с последующим их суммированием и, по-возможности, с учетом интерференции элементов.

2. Общие выражения для боковых аэродинамических коэффициентов

демпфирования вращения ла или его элемента в отсутствии скольжения

Вращение самолета относительно центра масс с угловой скоростью $\boldsymbol{\omega} = (\omega_x, \omega_y, \omega_z)$ приводит к появлению дополнительной скорости $\Delta \boldsymbol{V} = (\Delta V_x, \Delta V_y, \Delta V_z)$ движения его элемента, условный центр которого относительно центра масс самолета задан радиус-вектором $\boldsymbol{R} = (x, y, z): \Delta \boldsymbol{V} = [\boldsymbol{\omega} \times \boldsymbol{R}],$ или в проекциях:

$$\Delta V_x = \omega_y z - \omega_z y, \quad \Delta V_y = \omega_z x - \omega_x z, \quad \Delta V_z = \omega_x y - \omega_y x. \tag{2.1}$$

Условный центр элемента – это точка, относительно которой определяются моментные аэродинамические характеристики элемента.

Будем считать, что выражения (2.1) записаны в связанной с самолетом системе координат с центром в точке расположения центра масс. Компоненты суммарной местной скорости в центре рассматриваемого элемента будут равны:

$$V_{1x} = V \cos\alpha \cos\beta + \omega_{y} z - \omega_{z} y,$$

$$V_{1y} = -V \sin\alpha \cos\beta + \omega_{z} x - \omega_{x} z,$$

$$V_{1z} = V \sin\beta + \omega_{x} y - \omega_{y} x.$$
(2.2)

Местные значения углов атаки α_1 и скольжения β_1 , модуля скорости V_1 и скоростного напора q_1 выражаются следующим образом:

$$\alpha_1 = -\operatorname{arctg} \frac{V_{1y}}{V_{1x}}, \quad \beta_1 = \operatorname{arcsin} \frac{V_{1z}}{V_1}, \quad V_1 = \sqrt{\frac{2q_1}{\rho}}, \quad q_1 = \frac{\rho}{2} \left(V_{1x}^2 + V_{1y}^2 + V_{1z}^2 \right).$$
(2.3)

В интересах рассматриваемой задачи выполним линеаризацию полученных выражений по компонентам угловой скорости ω_x и ω_y при $\omega_x \rightarrow 0$, $\omega_y \rightarrow 0$,

произвольных фиксированных значениях угла атаки α и скорости набегающего потока V и при нулевых значениях угла скольжения и продольной компоненты угловой скорости $\beta = \omega_z = 0$:

$$\alpha_{1} = \alpha + \alpha^{\overline{\omega}_{x}} \overline{\omega}_{x} + \alpha^{\overline{\omega}_{y}} \overline{\omega}_{y}, \quad \beta_{1} = \beta^{\overline{\omega}_{x}} \overline{\omega}_{x} + \beta^{\overline{\omega}_{y}} \overline{\omega}_{y}, \quad \overline{q}_{1} = 1 + \overline{q}^{\overline{\omega}_{x}} \overline{\omega}_{x} + \overline{q}^{\overline{\omega}_{y}} \overline{\omega}_{y}, \quad (2.4)$$

$$\overline{\omega}_x = \frac{\omega_x \quad b_e}{V}, \ \overline{\omega}_y = \frac{\omega_y \quad b_e}{V}, \ \overline{q}_1 = \frac{q_1}{q}, \ \overline{q}^{\overline{\omega}_x} = \frac{q_1^{\overline{\omega}_x}}{q}, \ \overline{q}^{\overline{\omega}_y} = \frac{q_1^{\overline{\omega}_y}}{q}, \ q = \frac{\rho}{2} \left(V_x^2 + V_y^2 + V_z^2 \right),$$

где b_e – характерный линейный размер элемента самолета. Значения частных производных в (2.4) при заданных ограничениях определятся простыми выражениями, полученными дифференцированием (2.3) с учетом (2.2):

$$\alpha^{\overline{\omega}_{x}} = \overline{z}\cos\alpha, \quad \alpha^{\overline{\omega}_{y}} = -\overline{z}\sin\alpha, \quad \beta^{\overline{\omega}_{x}} = \overline{y}, \quad \beta^{\overline{\omega}_{y}} = -\overline{x}, \quad \overline{q}^{\overline{\omega}_{x}} = 2\overline{z}\sin\alpha, \quad \overline{q}^{\overline{\omega}_{y}} = 2\overline{z}\cos\alpha, \quad (2.5)$$

rge $\overline{x} = x/b_{e}, \quad \overline{y} = y/b_{e}, \quad \overline{z} = z/b_{e}.$

Перепишем соотношения (2.4), (2.5) в скоростной системе координат, связь которой со связанной системой координат описывается соотношениями (1.7):

$$\alpha_{1} = \alpha + \alpha^{\overline{\omega}_{xa}} \overline{\omega}_{xa} + \alpha^{\overline{\omega}_{ya}} \overline{\omega}_{ya}, \ \beta_{1} = \beta^{\overline{\omega}_{xa}} \overline{\omega}_{xa} + \beta^{\overline{\omega}_{ya}} \overline{\omega}_{ya}, \ \overline{q}_{1} = 1 + \overline{q}^{\overline{\omega}_{xa}} \overline{\omega}_{xa} + \overline{q}^{\overline{\omega}_{ya}} \overline{\omega}_{ya}, \ (2.6)$$

$$\alpha^{\overline{\omega}_{xu}} = \overline{z}, \quad \alpha^{\overline{\omega}_{yu}} = 0, \quad \beta^{\overline{\omega}_{xu}} = \overline{y}\cos\alpha + \overline{x}\sin\alpha, \quad \beta^{\overline{\omega}_{yu}} = \overline{y}\sin\alpha - \overline{x}\cos\alpha, \quad (2.7)$$
$$\overline{q}^{\overline{\omega}_{yu}} = 0, \qquad \overline{q}^{\overline{\omega}_{yu}} = 2\overline{z}.$$

Отметим, что в (2.7) \bar{x} , \bar{y} , \bar{z} – по-прежнему безразмерные координаты центра рассматриваемого элемента в связанной системе координат.

Запишем теперь в скоростной системе координат линеаризованные выражения для компонент аэродинамической силы, действующей на элемент самолета при произвольном фиксированном значении угла атаки:

$$F = F_{0} + F_{0}^{\overline{\omega}_{xa}} \overline{\omega}_{xa} + F_{0}^{\overline{\omega}_{ya}} \overline{\omega}_{ya} + F^{\alpha} \left(\alpha^{\overline{\omega}_{xa}} \overline{\omega}_{xa} + \alpha^{\overline{\omega}_{ya}} \overline{\omega}_{ya} \right) + F^{\beta} \left(\beta^{\overline{\omega}_{xa}} \overline{\omega}_{xa} + \beta^{\overline{\omega}_{ya}} \overline{\omega}_{ya} \right) + F^{\overline{q}} \left(\overline{q}^{\overline{\omega}_{xa}} \overline{\omega}_{xa} + \overline{q}^{\overline{\omega}_{ya}} \overline{\omega}_{ya} \right).$$

$$(2.8)$$

Здесь F_0 – значение компоненты силы при фиксированном значения угла атаки без вращения; $F_0^{\overline{\omega}_{xa}}$, $F_0^{\overline{\omega}_{ya}}$ – производные при вращении элемента вокруг его центра (при $|\mathbf{R}|=0$), *F* может принимать значения *X*, *Y*, *Z*.

Так как $F = q_1 S_e c_F$ (S_e – площадь элемента, c_F – безразмерный коэффициент), то $F^{\overline{q}_1} = F_0$, и выражение для силы (2.8) может быть переписано в виде:

$$F = F_0 + [F_0^{\overline{\omega}_{xa}} + F^{\alpha} \overline{z} + F^{\beta} (\overline{y} \cos \alpha + \overline{x} \sin \alpha)] \overline{\omega}_{xa} + [F_0^{\overline{\omega}_{ya}} + F^{\beta} (\overline{y} \sin \alpha - \overline{x} \cos \alpha) + 2F_0 \overline{z}] \overline{\omega}_{ya}.$$
(2.9)

Таким образом, из (2.9) следует, что частные производные компонент силы по компонентам угловой скорости в скоростной системе координат будут равны:

$$F^{\overline{\omega}_{xa}} = F_0^{\overline{\omega}_{xa}} + F^{\alpha} \overline{z} + F^{\beta} (\overline{y} \cos \alpha + \overline{x} \sin \alpha),$$

$$F^{\overline{\omega}_{ya}} = F_0^{\overline{\omega}_{ya}} + F^{\beta} (\overline{y} \sin \alpha - \overline{x} \cos \alpha) + 2F_0 \overline{z}.$$
(2.10)

Заметим, что эти выражения справедливы также и для коэффициентов компонент аэродинамической силы c_x , c_y , c_z .

Если считать ЛА симметричным, то можно положить $c_x^{\beta} = c_{x0}^{\overline{\omega}_{xa}} = c_y^{\beta} = c_{y0}^{\overline{\omega}_{xa}} = c_{z0} = c_z^{\alpha} = 0$, и тогда из (2.10) следует, что:

$$c_{x}^{\overline{\omega}_{xa}} = c_{x}^{\alpha} \overline{z}, \quad c_{x}^{\overline{\omega}_{ya}} = 2c_{x0}\overline{z}, \quad c_{y}^{\overline{\omega}_{xa}} = c_{y}^{\alpha}\overline{z}, \quad c_{y}^{\overline{\omega}_{ya}} = 2c_{y0}\overline{z},$$

$$c_{z}^{\overline{\omega}_{xa}} = c_{z0}^{\overline{\omega}_{xa}} + c_{z}^{\beta}(\overline{y}\cos\alpha + \overline{x}\sin\alpha), \quad c_{z}^{\overline{\omega}_{ya}} = c_{z0}^{\overline{\omega}_{ya}} + c_{z}^{\beta}(\overline{y}\sin\alpha - \overline{x}\cos\alpha),$$

$$(2.11)$$

подстрочный индекс «0» у производных от коэффициентов здесь и далее означает, что они взяты при вращении элемента вокруг его центра.

$$m_{x}^{\overline{\omega}_{xx}} = m_{x0}^{\overline{\omega}_{xx}} + m_{x}^{\beta} (\overline{y} \cos\alpha + \overline{x} \sin\alpha) + c_{z}^{\overline{\omega}_{xx}} \overline{y} - c_{y}^{\overline{\omega}_{xx}} \overline{z},$$

$$m_{x}^{\overline{\omega}_{yx}} = m_{x0}^{\overline{\omega}_{yx}} + m_{x}^{\beta} (\overline{y} \sin\alpha - \overline{x} \cos\alpha) + c_{z}^{\overline{\omega}_{yx}} \overline{y} - c_{y}^{\overline{\omega}_{yx}} \overline{z},$$

$$m_{y}^{\overline{\omega}_{xx}} = m_{y0}^{\overline{\omega}_{xx}} + m_{y}^{\beta} (\overline{y} \cos\alpha + \overline{x} \sin\alpha) + c_{x}^{\overline{\omega}_{xx}} \overline{z} - c_{z}^{\overline{\omega}_{xx}} \overline{x},$$

$$m_{y}^{\overline{\omega}_{yx}} = m_{y0}^{\overline{\omega}_{yx}} + m_{y}^{\beta} (\overline{y} \sin\alpha - \overline{x} \cos\alpha) + c_{x}^{\overline{\omega}_{yx}} \overline{z} - c_{z}^{\overline{\omega}_{yx}} \overline{x},$$

$$m_{z}^{\overline{\omega}_{yx}} = m_{z}^{\alpha} \overline{z} + c_{y}^{\overline{\omega}_{xx}} \overline{x} - c_{x}^{\overline{\omega}_{xx}} \overline{y}, \quad m_{z}^{\overline{\omega}_{yx}} = 2m_{z0}\overline{z} + c_{y}^{\overline{\omega}_{yx}} \overline{x} - c_{x}^{\overline{\omega}_{yx}} \overline{y}.$$
(2.12)

Выражения для интересующих нас производных по $\overline{\omega}_{ya}$ после подстановки (2.11) в (2.12) примут вид:

$$c_{z}^{\overline{\omega}_{ya}} = c_{z0}^{\overline{\omega}_{ya}} + c_{z}^{\beta} (\overline{y} \sin \alpha - \overline{x} \cos \alpha),$$

$$m_{x}^{\overline{\omega}_{ya}} = m_{x0}^{\overline{\omega}_{ya}} + m_{x}^{\beta} (\overline{y} \sin \alpha - \overline{x} \cos \alpha) + c_{z0}^{\overline{\omega}_{ya}} \overline{y} - 2c_{y0} \overline{z}^{2},$$

$$m_{y}^{\overline{\omega}_{ya}} = m_{y0}^{\overline{\omega}_{ya}} + m_{y}^{\beta} (\overline{y} \sin \alpha - \overline{x} \cos \alpha) + 2c_{x0} \overline{z}^{2} - c_{z}^{\overline{\omega}_{ya}} \overline{x}.$$
(2.13)

Из (2.13) следует, что для расчета $c_z^{\overline{\omega}_{ya}}, m_x^{\overline{\omega}_{ya}}, m_y^{\overline{\omega}_{ya}}$ для каждого элемента самолета необходимо определить следующие коэффициенты:

$$- c_{x0}, c_{y0}, m_x^{\beta}, m_y^{\beta}, c_z^{\beta} \text{ при } | \boldsymbol{\omega} | = 0, - m_{x0}^{\overline{\omega}_{ya}}, m_{y0}^{\overline{\omega}_{ya}}, c_z^{\overline{\omega}_{ya}} \text{ при вращении относ итель но центра элемента.}$$

$$(2.14)$$

Назовем эти восемь параметров базовыми аэродинамическими параметрами элемента. Методики оценки зависимостей базовых параметров от угла атаки для различных элементов самолета описаны в соответствующих разделах. Кроме этого, для каждого элемента должен быть задан радиус-вектор его условного центра в связанной с самолетом системе координат. Можно отметить, что полученные результаты для элемента модели самолета применимы и к модели самолета в целом.

Формулы пересчета значений аэродинамических коэффициентов и их производных, обезразмеренных параметрами элемента, в величины, соответствующие параметрам самолета, с учетом (1.1) – (1.3) следующие: $c_i = c_{ei}K_S, m_i = m_{ei}K_SK_l, c_i^{\beta} = c_{ei}^{\beta}K_S, m_i^{\beta} = m_{ei}^{\beta}K_sK_l, c_i^{\overline{\omega}_{ya}} = c_{ei}^{\overline{\omega}_{ya}}K_SK_{\omega}/K_l,$ $m_i^{\overline{\omega}_{ya}} = m_{ei}^{\overline{\omega}_{ya}}K_SK_{\omega},$ где i = x, y, z; $K_S = S_e/S, K_l = b_e/l;$ $K_{\omega} = 1$, если b_e – хорда, $K_{\omega}=1/2$, если b_e – полуразмах.

При оценках аэродинамических параметров некоторых элементов самолета они могут быть приближенно рассмотрены как несущие поверхности малого или умеренного удлинения λ , обтекаемые под малым углом атаки. В [3] приведены выражения для производных подъёмной силы и продольного момента крыла для двух предельных случаев $\lambda \rightarrow 0$ и $\lambda = \infty$. Эти выражения для $\bar{x} = 0.5$ представлены ниже в таблице, они могут быть использованы для оценок производных подъёмной силы и продольного момента элемента при фактических значениях удлинения.

$\lambda = \infty$	$\lambda \rightarrow 0$
$c_y^{\alpha} = 2\pi$	$c_y^{lpha} = \pi \lambda/2$
$c_y^{\overline{\omega}_z} = \pi/2$	$c_{y}^{\overline{\omega}_{z}}=\pi\lambda/4$
$m_z^{lpha} = \pi/2$	$m_z^{lpha} = \pi \lambda/4$

$$m_z^{\overline{\omega}_z} = 0$$
 $m_z^{\overline{\omega}_z} = -\pi \lambda/8$

Итак, задача состоит в том, чтобы для

модели

самолета

ПО

элемента

соотношениям (2.13) оценить производные $c_z^{\overline{\omega}_{ya}}, m_x^{\overline{\omega}_{ya}}, m_y^{\overline{\omega}_{ya}}$, которые, в свою очередь, определяются базовыми параметрами (2.14). Эти базовые параметры (2.14), повозможности, находятся из эксперимента, с учетом интерференции отдельного аэродинамической компоновкой элемента с полной модели, или, если экспериментальные данные отсутствуют, расчетным путем (без учета интерференции). Затем производные $c_z^{\overline{\omega}_{ya}}, m_x^{\overline{\omega}_{ya}}$ для каждого из элементов модели самолета (крыло, фюзеляж, ГО, ВО, мотогондолы) суммируются, и по последним двум соотношениям в (1.7) находятся производные для данной модели

каждого

3. Аэродинамические параметры крыла

За центр крыла примем точку $x_{KP} = x_A$, $y_{KP} = y_A$, $z_{KP} = 0$, где x_A и y_A – координаты точки, лежащей на ¹/₄ средней аэродинамической хорды (САХ) крыла, в связанной с самолетом системе координат. В [5] для крыла достаточно большого удлинения в приближении гипотезы плоских сечений показано, что производные от моментов крена и рыскания, обусловленные соответственно нормальными и продольными распределенными силами, определяются выражениями

$$m_{x0\text{KP}}^{\overline{\omega}_{yu}} = -8\lambda \int_{0}^{1/2} \int_{0}^{1/2} c_{y}(\alpha_{*0}, \bar{z}) \,\bar{b}(\bar{z}) \bar{z}^{2} d\bar{z}, \quad m_{y0\text{KP}}^{\overline{\omega}_{yu}} = -8\lambda \int_{0}^{1/2} \int_{0}^{1/2} c_{x}(\alpha_{*0}, \bar{z}) \,\bar{b}(\bar{z}) \bar{z}^{2} d\bar{z}, \quad (3.1)$$

где $\alpha_{*0} = \alpha + \alpha_{\psi} + \alpha_i$ – местный угол атаки, α – угол атаки крыла, α_{ψ} – угол геометрической крутки, α_i – угла индуктивного скоса.

Распределение коэффициента подъёмной силы по размаху при различных углах атаки может быть определено по результатам выполненных ранее в ЦАГИ измерений распределения давления на изолированных крыльях различной стреловидности. Результаты этих измерений сведены в базу данных, которая включает в себя данные для ряда изолированных крыльев.

Следует иметь ввиду, что распределение коэффициента подъёмной силы по размаху получены на крыльях конечного удлинения в зависимости от угла атаки крыла. Это означает, что наличие индуктивного скоса α_i автоматически учтено и не требуется его оценка и подстановка в представленную выше формулу для α_{*0} .

Удлинение крыла исследуемого ЛА может отличаться от удлинения изолированных крыльев, включенных в базы данных. Для учета этого выполняется нормировка определенной по базе данных зависимости $c_{yEd}(\alpha, \bar{z})$ таким образом, чтобы рассчитанная по ней нормальная сила крыла была равна нормальной силе крыла исследуемой модели, оцененной экспериментально $c_{yKP}(\alpha)$: $c_y(\alpha, \bar{z}) = c_{yEd}(\alpha - \alpha_{0KP}, \bar{z})K_{Cy}(\alpha), \quad K_{Cy}(\alpha) = c_{y0KP}(\alpha)/(2\int_{\alpha}^{0.5} c_{yEd}(\alpha - \alpha_{0KP}, \bar{z})\bar{b}(\bar{z})d\bar{z}).$

$$c_{y0\text{KP}}(\alpha) = c_{y0\text{MOJ}}(\alpha) - c_{y0\Phi\text{HO3}}(\alpha) - c_{y0\Gamma\text{O}}(\alpha), \qquad (3.2)$$

где $c_{y0MOQ}(\alpha)$ – результат испытаний модели, $c_{y0\Phi HO3}(\alpha)$ – оценка коэффициента нормальной силы фюзеляжа, $c_{y0FO}(\alpha)$ – коэффициент нормальной силы горизонтального оперения. Величину $c_{y0\Phi HO3}(\alpha)$ трудно вычленить из результатов испытаний модели, ее оценка производится расчетным путем (см. раздел 5). Значение $c_{y0FO}(\alpha)$ может быть определено с учетом интерференции путем проведения испытаний полной модели и модели без ГО:

$$c_{y0\Gamma O}(\alpha) = c_{y0MO \Pi}(\alpha) - c_{y06e_3\Gamma O}(\alpha), \qquad (3.3)$$

где $c_{y06e3\GammaO}(\alpha)$ – нормальная сила на модели без ГО.

Коэффициент продольной силы крыла определяется аналогично (3.2) с использованием результатов весовых испытаний полной модели:

$$c_{x0\text{KP}}(\alpha) = c_{x0\text{MOJ}}(\alpha) - c_{x0\Phi\text{IO3}}(\alpha) - c_{x0\text{FO}}(\alpha) - c_{x0\text{BO}}(\alpha), \qquad (3.4)$$

где $c_{x0MOQ}(\alpha)$ – результат испытаний модели, $c_{x0\Phi O3}(\alpha)$ – оценка коэффициента продольной силы фюзеляжа, $c_{x0\Gamma O}(\alpha)$ и $c_{x0BO}(\alpha)$ – коэффициенты продольных сил горизонтального и вертикального оперения. Величины $c_{x0\Gamma O}(\alpha)$ и $c_{x0BO}(\alpha)$ в (3.4) определяются с учетом интерференции путем проведения испытаний полной модели и модели без ГО и ВО, соответственно, по формулам:

$$c_{x0\Gamma O}(\alpha) = c_{x0MO \square}(\alpha) - c_{x0\delta e_3\Gamma O}(\alpha), \quad c_{x0BO}(\alpha) = c_{x0MO \square}(\alpha) - c_{x0\delta e_3BO}(\alpha), \quad (3.5)$$

где $c_{x06e_3\Gamma O}(\alpha)$, $c_{x06e_3BO}(\alpha)$ – коэффициенты продольной силы модели без ГО и ВО.

При вычислении $m_{y_0 \text{KP}}^{\overline{\omega}_{ya}}$ по формуле (3.1) можно пренебречь зависимостью коэффициента продольной силы от координаты сечения крыла: $c_x(\alpha, \bar{z}) = c_{x_0 \text{KP}}(\alpha)$.

Производная m_x^{β} полной модели определяется в основном крылом и вертикальным оперением. Вклад остальных элементов существенно меньше. Для

нахождения m_{xKP}^{β} можно воспользоваться результатами испытаний без вращения полной модели и модели без ВО и ГО:

$$\begin{split} m_{x\mathrm{KP}}^{\beta}(\alpha) &= m_{x\mathrm{MOJ}}^{\beta}(\alpha) - m_{x\mathrm{BO}}^{\beta}(\alpha) - m_{x\mathrm{\GammaO}}^{\beta}(\alpha) - m_{x\Phi\mathrm{HO3}}^{\beta}(\alpha),\\ m_{x\mathrm{BO}}^{\beta}(\alpha) &= m_{x\mathrm{MOJ}}^{\beta}(\alpha) - m_{x\mathrm{\overline{fesBO}}}^{\beta}(\alpha), \quad m_{x\mathrm{\GammaO}}^{\beta}(\alpha) = m_{x\mathrm{MOJ}}^{\beta}(\alpha) - m_{x\mathrm{\overline{fesTO}}}^{\beta}(\alpha), \end{split}$$

где m_{xMOQ}^{β} , $m_{x\delta e_3BO}^{\beta}$, $m_{x\delta e_3FO}^{\beta}$ – определены по результатам испытаний полной модели, модели без ВО, модели без ГО, а $m_{x\Phi HO3}^{\beta}$ – расчетная оценка для фюзеляжа, к которому отнесены и мотогондолы (см. ниже). Следует отметить, что вклад m_{xKP}^{β} во вращательную производную $m_{xKP}^{\overline{\omega}_{ya}}$ в соответствии с (2.13), как правило, не велик, так как центр крыла расположен близко к центру масс самолета и \overline{x}_{KP} , \overline{y}_{KP} малы.

Остальные базовые аэродинамические параметры, входящие в (2.13), для крыла с умеренным углом поперечного V малы: $m_{y \text{KP}}^{\beta} \approx 0, c_{z \text{C} \text{KP}}^{\overline{\omega}_{ya}} \approx 0.$

4. Параметры горизонтального оперения

Оценка аэродинамических характеристик горизонтального оперения с учетом его взаимодействия с остальными элементами модели может быть проведена на основе испытаний полной модели и модели без ГО для $c_{x0\Gamma O}(\alpha)$ и $c_{y0\Gamma O}(\alpha)$ по формулам (3.3), (3.5), а для $m_{x\Gamma O}^{\beta}$, $m_{y\Gamma O}^{\beta}$, $c_{z\Gamma O}^{\beta}(\alpha)$ по совершенно аналогичным соотношениям. При этом базовый параметр $c_{z0\Gamma O}^{\overline{\omega}_{ya}}$, входящий в (2.13), как и для крыла с малым углом поперечного V, также мал: $c_{z0\Gamma O}^{\overline{\omega}_{ya}} \approx 0$. Входящие в (2.13) величины $m_{x0\Gamma O}^{\overline{\omega}_{ya}}$, определяются по формулам (3.1). Далее расчетные оценки для ГО проводятся аналогично крылу.

5. Параметры вертикального оперения

Из соотношений (2.13) и того факта, что ВО, как правило, расположено на значительном удалении от центра масс самолета, следует вывод, что вклад ВО в характеристики демпфирования вращения определяется в первую очередь производными боковых силы и момента по углу скольжения c_{zBO}^{β} , m_{yBO}^{β} . Эти характеристики, а также c_{x0BO} , c_{y0BO} , m_{xBO}^{β} (две последние малы при любых α), могут быть непосредственно определены по результатам статических испытаний полной модели и модели без ВО. По результатам испытаний для ВО невозможно определить значения трех производных $m_{x0BO}^{\overline{\omega}_{BO}}$, $m_{z0BO}^{\overline{\omega}_{BO}}$, входящих в число базовых параметров (2.14), для их оценки используется следующая расчетная методика.

Для расчетной оценки сил и моментов, действующих на ВО, заменим его прямоугольной поверхностью той же площади S_{BO} и того же удлинения λ_{BO} . Центр прямоугольной поверхности поместим в центр средней аэродинамической хорды ВО. Для такой поверхности в таблице, представленной в разделе 2, определены производные аэродинамических коэффициентов. Чтобы пользоваться этой таблицей применительно к ВО в ней в коэффициентах необходимо заменить индексы α на β , а у поменять на z, z на y, при этом в соответствии с правилом знаков величинам в первых двух строках придать знак минус. Тогда значения производных $c_{z0BO}^{\overline{\omega}_{ya}}$, $m_{y0BO}^{\overline{\omega}_{ya}}$ при малых углах атаки, когда ВО не затенено фюзеляжем, оцениваются с использованием упомянутой таблицы и формул приведения, указанных в разделе 2.

Следует отметить, что вертикальное оперение (или его часть), расположенное над фюзеляжем, с ростом угла атаки попадает в аэродинамическую тень фюзеляжа, и его демпфирующие свойства ослабевают. Для учета такого ослабления (интерференции) в расчетной методике предлагается воспользоваться коэффициентом $K_{\rm BO}(\alpha)$, построенным на основе экспериментальной зависимости эффективности руля направления от угла атаки $\Delta m_{yu}(\alpha)$: $K_{\rm BO}(\alpha) = \Delta m_{y\rm H}(\alpha)/\Delta m_{y\rm H}(0)$. Для частей вертикального оперения, находящихся под фюзеляжем, можно положить $K_{\rm BO}=1$ при $\alpha = 0.90^{\circ}$. Значения параметров $c_{z0BO}^{\overline{\omega}}$, $m_{y0BO}^{\overline{\omega}}(\alpha) = m_{y0BO}^{\overline{\omega}}(0)K_{\rm BO}(\alpha)$.

6. Аэродинамические параметры фюзеляжа

Для определения производных (2.13) как и в случае других элементов модели самолета, необходимо найти восемь базовых параметров (2.14). Поскольку боковая сила и путевой момент, действующие на самолет, создаются в основном фюзеляжем и ВО, то производные $c^{\beta}_{z\Phi DO3}$, $m^{\beta}_{y\Phi DO3}$ определяются на основе экспериментов с полной моделью и моделью без вертикального оперения. Как показывает опыт испытаний многих моделей гражданских самолетов классической компоновки, влияние крыла и ГО на эти производные пренебрежимо мало. В качестве упрощенной геометрической модели фюзеляжа примем эллиптический цилиндр с закругленными торцами.

Коэффициент продольной силы фюзеляжа в связанной с моделью самолёта системе координат при любых углах атаки может быть представлен в соответствии с [16–18], в следующем виде:

$$c_{x0\Phi IO3}(\alpha) = c_{x\phi 0} \cdot (S_x/S) \cos^2 \alpha, \qquad (6.1)$$

где $c_{x\phi0}$ – коэффициент сопротивления фюзеляжа при продольном обтекании (α =0), отнесенный к площади миделевого сечения фюзеляжа S_x .

Оценки коэффициента нормальной силы фюзеляжа и её производной по углу атаки можно получить исходя из того, что при малых углах атаки фюзеляж может рассматриваться как крыло малого удлинения, а при $\alpha \approx 90^{\circ}$ нормальная сила равна силе сопротивления $c_{x\phi90}$ эллиптического цилиндра, установленного поперёк потока:

$$c_{y\phi} = 0, \qquad c_{y\phi}^{\alpha} = \pi \lambda_{y} \cdot (S_{y}/S)/2, \qquad \lambda_{y} = S_{y}/L_{\phi}^{2} \quad \text{при } \alpha = 0, \\ c_{y\phi} = c_{x\phi90} \cdot S_{y}/S, \quad c_{y\phi}^{\alpha} = 0 \qquad \qquad \text{при } \alpha = 90^{\circ}, \end{cases}$$
(6.2)

где *S_y* – площадь проекции фюзеляжа на плоскость *хог*, *L*_ф – длина фюзеляжа, *S* – площадь крыла. Гладкая функция, удовлетворяющая условиям (6.2), может быть представлена в следующем виде:

$$c_{y0\Phi HO3}(\alpha) = A_1 \sin \alpha + A_2 \sin^2 \alpha,$$

$$A_1 = (\pi \lambda_y) (S_y/S)/2, \quad A_2 = (c_{x\Phi 90} - \pi \lambda_y/2) \cdot (S_y/S).$$
(6.3)

Коэффициент сопротивления эллиптического цилиндра с закругленными торцами, установленного поперек потока, определяется в соответствии с [7]:

$$c_{x\varphi 90} = c_{x\infty} (w/h) \cdot K_{\lambda y} (\lambda_y) \cdot K_R (\lambda_y), \qquad (6.4)$$

где $c_{xx}(w/h)$ – коэффициент сопротивления бесконечного эллиптического цилиндра с отношением поперечного размера к продольному размеру, равным w/h; $K_{\lambda y}(\lambda_y)$ – коэффициент уменьшения сопротивления для цилиндра с удлинением λ_y с плоскими торцами; $K_R(\lambda_y)$ – коэффициент уменьшения сопротивления при закруглении торцов цилиндра с удлинением λ_y . Значения указанных коэффициентов брались при числах Рейнольдса Re~10⁵, соответствующих условиям поперечного обтекания фюзеляжей моделей в аэродинамической трубе при $V\approx25$ м/с. Соотношения (6.1), (6.4) могут быть использованы для оценки вклада фюзеляжа в коэффициенты продольной и нормальной сил модели самолёта в целом в широком диапазоне углов атаки.

Для оценки вклада фюзеляжа в характеристики демпфирования вращения рассмотрим сначала продольное (α =0) и поперечное (α =90°) обтекание фюзеляжа при нулевом скольжении внешнего набегающего потока при малых вращениях относительно связанных осей *ох* и *оу*.

При малых углах атаки фюзеляж может рассматриваться как крыло малого удлинения, и производные аэродинамических коэффициентов относительно центра фюзеляжа в первом приближении можно определить по правому столбцу таблицы представленной в разделе 2, если в ней поменять индексы: α на β , y на z, z на y, а величинам c_z^{β} и $c_z^{\overline{\omega}}$, придать знак минус, при этом нужно считать, что $\lambda = \lambda_z = S_z / L_{\phi}^2$, S_z аналогично S_y в (6.2). Значения производных момента крена относительно центра фюзеляжа малы, поэтому принимается, что $m_{x\phi HO3}^{\beta} = m_{x\phi HO3}^{\overline{\omega}_{ya}} = 0$.

При углах атаки $\alpha \approx 90^{\circ}$ фюзеляж может рассматриваться как эллиптический цилиндр, обтекаемый поперёк. Производная по углу скольжения коэффициента боковой силы $c_{z\Phi03}^{\beta}(w/h)$, действующей в сечении фюзеляжа, зависит от формы поперечного сечения, где w – размер эллипса по оси 0z, h – по оси 0y. Эта зависимость определялась в соответствии с экспериментальными результатами [18 – 20]. Остальные коэффициенты, входящие в (2.13), при этом малы: $m_{x\Phi03}^{\beta} = m_{x0\Phi03}^{\overline{w}_{ya}} = m_{y0\Phi03}^{\overline{w}_{ya}} = c_{z0\Phi03}^{\overline{w}_{ya}} = 0.$

Для оценки шести (за исключением описанных выше $c_{x0\Phi103}$ и $c_{y0\Phi103}$) базовых параметров фюзеляжа (2.14) $c_{z\Phi103}^{\beta}$, $m_{x\Phi103}^{\beta}$, $m_{y\Phi103}^{\beta}$, $c_{z0\Phi103}^{\varpi_{ya}}$, $m_{y0\Phi103}^{\varpi_{ya}}$, $m_{z0\Phi103}^{\varpi_{ya}}$, $m_{z0\Phi103}^{\varpi_{z0}}$, $m_{z0\Phi2}^{\varpi_{z0}}$, $m_{z0\Phi2}^{\varpi_{z0$

Аналогичный подход может быть применен к крупным элементам самолета типа гондол двигателей.

7. Примеры оценок

По описанной методике были выполнены оценки вращательных производных модели пассажирского самолета с крылом умеренной стреловидности, при этом использовались результаты испытаний полной модели и модели без ВО и ГО. В приведенных ниже результатах максимально учитывались экспериментальные данные. Расчетные оценки использовались лишь для определения производных

 $c_{z0}^{\overline{\omega}_{m}}, m_{x0}^{\overline{\omega}_{m}}, m_{y0}^{\overline{\omega}_{m}}$ отдельных элементов при их вращении относительно собственного условного центра, а также для определения коэффициентов нормальной и продольной сил, действующих на фюзеляж и мотогондолы при малых α . Расчетные оценки опираются на эмпирические данные и результаты расчетных исследований более высокого уровня сложности, представленные в библиографии.

Рис. 1. Вращательные производные по компоненте $\overline{\omega}_{ya}$ безразмерной угловой скорости в скоростной системе координат для элементов модели

Ha рис. 1 приведены рассчитанные по формулам (2.13) производные вертикальной ПО компоненте угловой скорости в скоростной системе координат коэффициентов боковой силы (рис. 1,a), момента крена (рис. 1, δ), путевого момента (рис. 1,в), И действующих различные на элементы модели и модель в целом. Производные для модели получены суммированием производных для элементов.

Следует отметить, что производная $m_x^{\omega_{y\alpha}}$ крыла, представленная на рис. 1,6, определялась на основе имеющийся базы данных для крыльев различных конфигураций. Для сравнения этих результатов с точным решением (3.1), полученным в [5], были проведены расчеты модели этого самолета на основе решения осредненных по Рейнольдсу уравнений Навье-Стокса [21].

Рис. 2. Вращательные производные по компонентам безразмерной угловой скорости в скоростной и связанной системе координат для модели в целом

Из рис. 1,б можно видеть, что результаты, полученные по базе на основе указанных данных и расчетов, до углов атаки $\alpha \approx 20^{\circ}$ Ha бо́льших достаточно близки. углах атаки расчетные значения $m_x^{\omega_{y\alpha}}$ по абсолютной величине заметно ниже полученных на основе базы хотя для приближенных данных, оценок ЭТИ результаты можно считать удовлетворительными.

2

рис.

приведены

скорости в скоростной и связанной системе производные коэффициентов координат для модели в целом боковой силы, момента крена и путевого момента полной модели по компонентам угловой скорости в скоростной и связанной системах координат. Производные по $\overline{\omega}_{xa}$ определены по результатам испытаний на вращающейся установке с использованием формулы (1.2), производные по $\overline{\omega}_{ya}$ – по формулам (2.13), а искомые производные по $\overline{\omega}_{x}$ и $\overline{\omega}_{y}$ рассчитаны по формулам (1.7).

Ha

Рис. 3. Производные нормальной силы и продольного момента по компоненте $\overline{\omega}_z$ безразмерной угловой скорости в связанной системе координат

использованием формул (1.5) и (1.6).

Ha рис. 3 приведены производные по $\overline{\omega}_z$ коэффициентов нормальной силы и продольного момента полной модели, рассчитанные по результатам испытаний при $\beta = \pm 20^{\circ}$ с

Заключение

Разработанная методика может быть использована для приближенной оценки вращательных производных компонент сил и моментов, действующих на модель летательного аппарата, в широком диапазоне углов атаки.

Библиографический список

Микеладзе В.Г. Авиация общего назначения. Рекомендации для конструкторов. – М.: Изд-во ЦАГИ, 1996. - 299 с.

 Долженко Н.Н. Оценка вращательных производных моделей самолётов на закритических углах атаки. Сер. Труды Центрального аэрогидродинамического института им. Н.Е. Жуковского. Вып. 8820. – М.: Издательский отдел ЦАГИ, 1968. С. 1-12.

3. Белоцерковский С.М., Скрипач Б.К., Табачников В.Г. Крыло в нестационарном потоке газа. - М.: Наука, 1971. - 768 с.

4. Захаров М.А. Исследование условий измерения вращательных и нестационарных производных бокового движения летательных аппаратов // Труды МАИ. 2004. № 15. URL: <u>http://trudymai.ru/published.php?ID=34236</u>

5. Головкин М.А. Соотношения для вращательных производных от коэффициентов моментов крена и рысканья крыла // Труды МАИ. 2012. № 55. URL: <u>http://trudymai.ru/published.php?ID=30020</u>

 Жук А.Н., Колинько К.А., Храбров А.Н. Исследование нестационарных аэродинамических производных треугольного крыла на установке плоско параллельных колебаний // Ученые записки ЦАГИ. 2005. Т. XXXVI. № 1 - 2. С. 9 -16.

7. Виноградов Ю.А., Жук А.Н., Колинько К.А., Миатов О.Л., Храбров А.Н. Установившееся вращение модели самолета в аэродинамической трубе относительно оси, наклоненной к вектору скорости набегающего потока // Ученые записки ЦАГИ. 2003. Т. XXXIV. № 1-2, С. 89 - 96.

 Виноградов Ю.А., Жук А.Н., Колинько К.А., Миатов О.Л., Храбров А.Н. К вопросу о разделении нестационарных и вращательных аэродинамических производных по результатам динамических испытаний // Ученые записки ЦАГИ.
 2003. Т. XXXIV. № 3-4. С. 84 - 90.

 Храбров А.Н. Оценка вращательных производных крыла большого удлинения при начале отрыва потока для натурных чисел Рейнольдса // Ученые записки ЦАГИ. 2007. Т. XXXVIII. № 3–4. С. 128 – 134.

 Головатюк Г.И., Тетерюков Я.И. Вихревая система моделим фюзеляжа на закритических углах атаки // Ученые записки ЦАГИ. 1971. Т. П. № 5. С. 112 – 115. Головатюк Г.И., Тетерюков Я.И. Спектры обтекания модели комбинации фюзеляж-крыло на закритических углах атаки // Ученые записки ЦАГИ. 1973. Т. IV. № 1. С. 93 – 107.

 Головкин М.А., Горбань В.П., Симусева Е.В., Стратонович А.Н. Обтекание прямого крыла при стационарных и квазистационарных внешних условиях // Ученые записки ЦАГИ. 1987. Т. XVIII. № 3. С. 1 – 12.

Захаров С.Б., Зубцов А.В. Экспериментальные исследования отрывного обтекания треугольного крыла малого удлинения // Ученые записки ЦАГИ. 1988. Т. XIX. № 1. С. 8 – 12.

14. Гоман М.Г., Задорожний А.И., Храбров А.Н. Несимметричное разрушение вихрей и аэродинамический гистерезис при обтекании крыла малого удлинения с фюзеляжем // Ученые записки ЦАГИ. 1988. Т. XIX, № 1. С. 1 – 7.

 Долженко Н.Н. Устранение погрешностей в коэффициентах аэродинамических сил и моментов, полученных методом установившегося вращения // Ученые записки ЦАГИ. 1987. Т. XVIII. № 1. С. 1 – 8.

16. Краснов Н.Ф. Аэродинамика в вопросах и задачах. – М.: Высшая школа, 1985.
- 759 с.

17. Петров К.П. Аэродинамика тел простейших форм. – М.: Факториал, 1998. 432 с.

Девнин С.И. Аэрогидродинамический расчет плохообтекаемых судовых конструкций. – Л.: Судостроение, 1967. - 225 с.

Wiland E. Unsteady Aerodynamics of Stationary Elliptic Cylinders in Subcritical
 Flow, The University of Strathclyde, 1965, 72 p.

20. Hoerner S.F., Borst H.V. Fluid-Dynamic Lift, Hoerner Fluid Dynamics, Vancouver, WA 98665, 1975, 507 p.

 Махнев М.С., Павленко О.В. Численное исследование обтекания пассажирского самолета на больших углах атаки // Материалы XVII международной школы-семинара «Модели и методы аэродинамики», Евпатория, 4–11 июня 2017.
 112 с.