Справочные данные сечений фотоионизации ксенона

Скороход Е.П.

Московский авиационный институт (национальный исследовательский университет), Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия e-mail: <u>e.p.skorohod@mail.ru</u>

Аннотация

Физико-химическая радиационная плазмодинамика стремительно развивающая область науки, находящая применение при решении задач двигателестроения ракетно-космической отрасли. При проведении математического моделирования процессов в установках и устройствах, где "рабочим телом" является плазма, необходимы справочные данные констант различных плазмохимических реакций. В кулоновском приближении рассчитаны фотоионизации возбужденных состояний атома Хе сечения.

Ключевые слова: плазма ксенона, сечения фотоионизации Xe, метод квантового дефекта.

Введение

В [1-9,14-16] большое внимание уделяется построению оптических моделей газов и плазмы, предназначенных для решения задач радиационной плазмодинамики. Такие построения основываются на квантовомеханических расчётах (в тех или иных приближениях) и квазиклассических обобщениях элементарных радиационных процессов. В этом кроется некоторое противоречие. С одной стороны расчётные модели должны быть универсальными и достаточно теоретически обоснованными, чтобы можно было создавать алгоритмы любой сложности для произвольных компонентов и их смесей. С другой стороны, должна присутствовать спектральная адекватность, соответствующая достоверности теоретических построений при изучении оптических свойств.

Классификация оптических моделей подробно рассмотрена в [2]. В работе [3] для массовых расчётов была сформулирована так называемая оптическая модель среды. Следует подчеркнуть, что в этой трактовке температура среды и излучения предполагается общей, и тем самым заведомо используется локальное термодинамическое равновесие (ЛТР) Саха–Больцмана [6]. В наших работах [7,8,14-16] была предпринята попытка по возможности максимально учесть в расчётах коэффициента поглощения все механизмы, влияющие на его величину.

1. Плазмохимические реакции с участием фотонов

Фотоионизация атома из возбуждённого *i*-го состояния X_i (*i*-го уровня) в континуум представляется как

$$X_i + h\nu \to X^+ + e \,. \tag{1}$$

Здесь hv – энергия фотона, X^+ – концентрация ионов. Формально скорость процесса следовало бы записать с учётом концентрации фотонов N_{hv}

2

$$\frac{dN_i}{dt} = -FO_i N_i N_{h\nu}.$$
⁽²⁾

Согласно [10] для скорости фотоионизации используется запись

$$\frac{dN_i}{dt} = -\beta_i N_i \tag{3}$$

Вероятность фотоионизации в единицу времени (частота) $\beta_i = \sigma_i c N_{h\nu}$ зависит от сечения фотоионизации $\sigma_i(\nu)$, скорости света и концентрации фотонов $N_{h\nu}$. С учётом того, что энергия всех фотонов

$$h v N_{hv} = \frac{4\pi}{c} \mathfrak{I}_{v} \tag{4}$$

вероятность в единицу времени (частота) будет

$$\beta_i = 4\pi \int_{\nu_i}^{\infty} \Im_{\nu} \sigma_i(\nu) \frac{d\nu}{h\nu} \quad .$$
 (5)

В ряде случаев, чтобы избежать вычисления плотности излучения $u_v = \frac{4\pi}{c} \Im_v$, фотоионизацию представляют в виде отрицательной спонтанной рекомбинации, скорость которой будет равна

$$\frac{dN_i}{dt} = -F_i N_e N^+ (1 - \theta_i).$$
(6)

Величина $1-\theta_i = \mu$ в (6) является множителем, учитывающим поглощение фотонов атомами на уровне *i* (параметр θ -показатель пленения излучения, параметр Бибермана -Холстейна) [4,14]. Когда $\mu = 1$, ($\theta_i = 0$), фотоионизацией можно пренебречь; при $\mu = 0$ ($\theta_i = 1$) плазма становится оптически плотной (излучательная рекомбинация сбалансирована фотоионизацией).

2. Дифференциальное сечение фотоионизации

Начнём рассмотрение с водородоподобного атома.

Воспользуемся общей формулой теории возмущений для вероятности перехода W электрона из состояния дискретного спектра f_0 (в результате поглощения фотона) в состояние непрерывного спектра [f, f + df].

$$dW = \frac{2\pi}{\hbar} \left| M_{f_{0if}} \right|^2 \delta \left(E_{f_0} - E_{f_i} \right) df , \qquad (7)$$

где $\left|M_{f_{0,f}}\right|^2$ - дипольный матричный элемент рассматриваемого перехода.

Дифференциальное сечение фотоионизации пропорционально этой вероятности, и для кванта энергии $\hbar \omega$ с переходом из дискретного (n_1, ℓ_1) –в состояние (f, ℓ_2) непрерывного спектра определяется формулой

$$\sigma_{n_1 l_1 \to f}(\hbar \omega) = a_0^2 \left(\frac{e^2}{\hbar c}\right) \frac{(2\pi)^2}{3} \left(\frac{\hbar \omega}{2Ry}\right) \sum_{l_2} \left|C_{l_1 0 1 0}^{l_2 0}\right| \cdot \left|< R_{f l_2} \mid r \mid R_{n_1 l_1} >\right|^2.$$
(8)

Здесь n_1 – главное квантовое число начального состояния; ℓ_1, ℓ_2 – орбитальные квантовые числа в начальном и конечном состояниях соответственно; a_0 – радиус Бора; $Ry = \frac{me^4}{2\hbar^2} = 13,6 \ _3B$ – потенциал ионизации атома водорода; $C_{l_1010}^{l_20}$ – коэффициент Клебша-Гордана; $< R_{fl_2} |r| R_{n_1l_1} > -$ радиальный матричный элемент перехода (в атомных единицах); $R_{n_1l_1}(r)$ -радиальная функция начального состояния атома водорода, выражаемая через гипергеометрическую функцию, а безразмерный параметр есть

$$k = +\sqrt{\frac{\hbar\omega}{Ry} - \frac{1}{n_1^2}}.$$
(9)

Расчёты сечений фотоионизации атома водорода рассмотрены в малоизвестной работе [11]. Отдельные значения сечений фотопоглощения атома водорода для энергий фотона $\hbar \omega$, выраженных в электронвольтах, приведены в табл.1. Сечения даны в атомных единицах πa_0^2 ($\sigma_{cw^2} = 0.88 \cdot 10^{-16} \sigma_{a.e.}$); n, ℓ - главное квантовое число и орбитальный момент соответственно. Энергия освободившегося электрона указывается в таблице в безразмерных единицах k, согласно (9).

Таблица 1

ћω,эВ;		$\sigma_{}$	$\sigma_{}$	σ_{\dots}	σ_{\dots}	σ_{\dots}	$\sigma_{}$	$\sigma_{}$
k	n	<i>a.e.</i> γ	- a.e. ,	- a.e. , 0 ว	<i>a.e.</i> ,	- a.e. '	- a.e. '	а.е. , Л. — Б
		$\ell = 0$	$\ell = 1$	$\ell = \Delta$	$\ell = 5$	$\ell = 4$	$\ell = J$	$\ell = 0$
$\hbar\omega = 13.6$								
<i>k</i> =0	1	0.72(-1)	-	-	-	-	-	-
k=0.2		0.64(-1)	-	-	-	-	-	-
<i>k</i> =0.4		0.48(-1)	-	-	-	-	-	-
<i>k</i> =0.6		0.31(-1)	-	-	-	-	-	-
k=0.8		0.19(-1)	-	-	-	-	-	-
<i>k</i> =1		0.11(-1)	-	-	-	-	-	-
$\hbar\omega = 3.396$								
<i>k</i> =0	2	0.17(+0)	0.15(+0)	-	-	-	-	-
<i>k</i> =0.2		0.12(+0)	0.97(-1)	-	-	-	-	-
<i>k</i> =0.4		0.57(-1)	0.33(-1)	-	-	-	-	-
<i>k</i> =0.6		0.23(-1)	0.88(-2)	-	-	-	-	-
<i>k</i> =0.8		0.91(-2)	0.24(-2)	-	-	-	-	-
k=1		0.38(-2)	0.73(-3)	-	-	-	-	-
$\hbar\omega = 1.507$								
k=0	3	0.29(+0)	0.30(+0)	0.21+0)	-	-	-	-
<i>k</i> =0.2		0.15(+0)	0.14(+0)	0.70(-1)	-	-	-	-
<i>k</i> =0.4		0.43(-1)	0.28(-1)	0.80(-2)	-	-	-	-
<i>k</i> =0.6		0.12(-1)	0.55(-2)	0.90(-3)	-	-	-	-

Сечения фотоионизации атома водорода в единицах πa_0^2 .

k=0.8		0.40(-2)	0.13(-2)	0.13(-3)	-	-	-	-
k=1		0.15(-2)	0.34(-3)	0.23(-4)	-	-	-	-
$h\omega = 0.846$								
	4	0.42(+0)	0.45(+0)	0.41+0)	0.22(+0)	-	-	-
<i>k</i> =0		0.15(+0)	0.14(+0)	0.95(-1)	0.31(-1)	-	-	-
<i>k</i> =0.2		0.29(-1)	0.19(-1)	0.74(-2)	0.11(-2)	-	-	-
<i>k</i> =0.4		0.66(-2)	0.31(-2)	0.68(-3)	0.54(-4)	-	-	-
<i>k</i> =0.6		0.20(-2)	0.65(-3)	0.89(-4)	0.42(-5)	-	-	-
<i>k</i> =0.8		0.70(-3)	0.17(-3)	0.15(-4)	0.48(-6)	-	-	-
<u>k=1</u>								
$\hbar\omega = 0.54$								
<i>k</i> =0	5	0.58(+0)	0.61(+0)	0.61(+0)	0.47(+0)	0.20(+0)	-	-
k=0.2		0.14(+0)	0.13(+0)	0.95(-1)	0.45(-1)	0.96(-2)	-	-
<i>k</i> =0.4		0.19(-1)	0.13(-1)	0.54(-2)	0.12(-2)	0.10(-3)	-	-
<i>k</i> =0.6		0.38(-2)	0.19(-2)	0.45(-3)	0.52(-4)	0.22(-5)	-	-
<i>k</i> =0.8		0.11(-2)	0.37(-3)	0.56(-4)	0.39(-5)	0.98(-7)	-	-
k=1		0.38(-3)	0.91(-4)	0.94(-5)	0.43(-6)	0.71(-8)	-	-
$\hbar\omega = 0.374$								
<i>k</i> =0	6	0.75(+0)	0.79(+0)	0.82(+0)	0.72(+0)	0.47(+0)	0.17(+0)	-
<i>k</i> =0.2		0.11(+0)	0.11(+0)	0.84(-1)	0.46(-1)	0.15(-1)	0.22(-2)	-
<i>k</i> =0.4		0.12(-1)	0.78(-2)	0.39(-2)	0.99(-3)	0.13(-3)	0.69(-5)	-
<i>k</i> =0.6		0.24(-2)	0.12(-2)	0.30(-3)	0.40(-4)	0.27(-5)	0.68(-7)	-
<i>k</i> =0.8		0.65(-3)	0.22(-3)	0.36(-4)	0.29(-5)	0.11(-6)	0.17(-8)	-
k=1		0.22(-3)	0.55(-4)	0.60(-5)	0.32(-6)	0.82(-8)	0.79(-10)	-
$\hbar\omega = 0.274$								
<i>k</i> =0	7	0.94(+0)	0.99(+0)	0.10(+1)	0.98(+0)	0.77(+0)	0.43(+0)	0.13(+0)
k=0.2		0.94(-1)	0.89(-1)	0.71(-1)	0.42(-1)	0.17(-1)	0.39(-2)	0.40(-3)
<i>k</i> =0.4		0.36(-2)	0.61(-2)	0.28(-2)	0.77(-3)	0.12(-3)	0.10(-4)	0.35(-6)
<i>k</i> =0.6		0.16(-2)	0.77(-3)	0.20(-3)	0.30(-4)	0.24(-5)	0.98(-7)	0.16(-8)
<i>k</i> =0.8		0.42(-3)	0.15(-3)	0.24(-4)	0.21(-5)	0.10(-6)	0.24(-8)	0.22(-10)
<i>k</i> =1		0.14(-3)	0.35(-4)	0.40(-5)	0.23(-6)	0.72(-8)	0.11(-9)	0.67(-12)

3. Сечение фотоионизации для неводородоподбных атомов

Обычно для приближенных расчётов сечений фотоионизации используют полуклассическую формулу Крамерса [12]

$$\sigma_n^{\scriptscriptstyle KHAC}(\nu) = \frac{64\alpha}{3\sqrt{3}} \ \frac{\pi a_0^2}{z^2} \frac{1}{n^5} \left(\frac{z^2 R y}{\hbar \omega}\right)^3, \tag{10}$$

где *n* - главное квантовое число, *z* - заряд атомного остатка (для атома *z* = 1), $\hbar \omega$ -энергия поглощающего фотона, α - постоянная тонкой структуры. Для неводородоподбных атомов главное квантовое число в формуле (10) *n* заменяют на эффективное квантовое число *n*^{*}

$$n_i^* = \sqrt{\frac{Ry}{I - E_i}} \tag{11}$$

где *Ry*=13,6 эВ, *I* - потенциал ионизации атома. Для атома Хе значения эффективного квантового числа *n*^{*} согласно (11) приведены в табл.2.

Таблица 2.

$2s^2 2p$	$p^{\circ} 3s^{2} 3p^{\circ} 3d^{\circ}$	$4s^2 4p^3 4d$	$5s^2 5p^{\circ} S_0, 1.$	P. 12.127 eV (1.
N₂	nl[K]J	g	E	<i>n</i> *
1	$5p^{-1}S_{0}$	1	0.000	1.059
2	$6s[3/2]_2$	5	8.315	1.889
3	6s[3/2] ₁	3	8.436	1.919
4	6p[1/2] ₁	3	9.579	2.310
5	6p[5/2] ₂	5	9.685	2.359
6	6p[5/2] ₃	7	9.720	2.376
7	6p[3/2] ₁	3	9.789	2.411
8	6p[3/2] ₂	5	9.820	2.427
9	5d[1/2] ₀	1	9.890	2.465
10	$5d[1/2]_1$	3	9.917	2.480
11	6p[1/2] ₀	1	9.933	2.489
12	5d[7/2] ₄	9	9.943	2.494
13	$5d[3/2]_2$	5	9.959	2.497
14	5d[7/2] ₃	7	10.039	2.551
15	5d[5/2] ₂	5	10.157	2.626
16	5d[5/2] ₃	7	10.220	2.669
17	5d[3/2] ₁	3	10.401	2.805
18	$7s[3/2]_2$	5	10.562	2.946
19	$7s[3/2]_1$	3	10.593	2.976
20	7p[1/2] ₁	3	10.901	3.328
21	7p[5/2] ₂	5	10.954	3.402
22	7p[5/2] ₃	7	10.969	3.423
23	6d[1/2] ₀	1	10.971	3.427

Энергии и эффективные главные квантовые числа Хе, 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ ¹S₀, I.P. 12.127 eV (13.433 eV)

24	$6d[1/2]_1$	3	10.978	3.438
25	7p[3/2] ₂	5	10.996	3.464
26	$6d[3/2]_2$	5	10.998	3.468
27	7p[3/2] ₁	3	11.003	3.475
28	$7p[1/2]_0$	1	11.015	3.493
29	$6d[7/2]_4$	9	11.024	3.507
30	$6d[7/2]_3$	7	11.037	3.529
31	$6d[5/2]_2$	5	11.064	3.574
32	6d[5/2] ₃	7	11.101	3.636
33	6d[3/2] ₁	3	11.163	3.750

В приближении *jl*-связи состояния (уровни) атомов инертных газов $X[n p^{5}({}^{2}P_{1})nl [K]_{j}]$ характеризуются квантовыми числами *n*, *l*, *j*, *K* и *J*. Здесь n -главное квантовое число; *l* – орбитальный момент оптического электрона; *j* – полный момент атомного остатка, записанный в приближении *LS* - связи как $\vec{j} = \vec{L}_{p} + \vec{S}_{p}$ (квантовые числа полного углового момента принимают значения $j = {}^{3}/_{2}$, ${}^{1}/_{2}$). Квантовое число K = |j - l|, ..., j + l - 1, j + l соответствует угловому моменту $\vec{K} = \vec{j} + \vec{l}$. Полный момент атома равен $\vec{J} = \vec{K} + \vec{s}$, где s = 1/2 - спин оптического электрона. В табл. 2 указаны спектроскопический символ состояния, статистический вес g = 2J + 1, энергия возбуждения E_i , в эВ, эффективное квантовое число согласно [13,14].

Для неводородоподбных атомов радиальный интеграл, входящий в выражение для эффективного сечения фотоионизации, нельзя вычислить точно. Для расчётов матричных элементов в (7) используется метод квантового дефекта [6]. Сечения фотопоглощения при переходе электрона с некоторого *i* – го уровня атома или иона в континуум определяется формулой

$$\sigma_i(n\ell \to \varepsilon \ell') = \left(\pi a_0^2\right) \frac{4\alpha}{3} \left(\frac{\hbar \omega}{Ry}\right) \left(\frac{n^*}{z}\right)^4 \cdot \ddot{S}_{\ell\ell'} g^2(n\ell \to \varepsilon \ell'), \qquad (12)$$

где $\ddot{S}_{\ell\ell'}$ – приведённый матричный элемент, определяемый угловыми моментами начального и конечного состояний, а функция $g(n\ell \to \varepsilon \ell')$ связана с радиальным интегралом соотношением

$$\int_{0}^{\infty} R_{n\ell}(r) r G_{\varepsilon\ell'}(r) r^{2} dr = \left(\frac{n_{\ell}^{*}}{z}\right)^{2} g(n\ell \to \varepsilon\ell').$$
(13)

Здесь $R_{n\ell}$ и $G_{\varepsilon\ell'}$ - волновые функции связанного и свободного состояний. Индексы ℓ, ℓ' - условные, состояние может зависеть от всей совокупности квантовых чисел.

В приближении квантового дефекта, по методу Берджесса-Ситона имеем

$$g(n\ell \to \varepsilon \ell') = \frac{(-1)^{\ell+1}}{\sqrt{\zeta_{\ell}}} \cdot \frac{G_{\ell\ell'}}{\left(1 + \varepsilon (n^*)^2\right)^{\gamma}} \cos \pi \left[\mu_{\ell'}(\varepsilon) + \chi_{\ell\ell'}(n^*) + \alpha_{\ell\ell'} \frac{\varepsilon n^*}{1 + \varepsilon n^*} + \beta_{\ell\ell'} \frac{\varepsilon (n^*)^2}{1 + \varepsilon (n^*)^2} \right]; (14)$$

ГДе
$$\chi_{\ell\ell'}(n^*) = n^* + a_{\ell\ell'} + \frac{b_{\ell\ell'}}{n^*} + \frac{c_{\ell\ell'}}{(n^*)^2}.$$
(15)

В этой формуле $\mu_{\ell'}(\varepsilon)$ -квантовый дефект в континууме, который можно определить экстраполяцией значений $\mu_{\ell'} = n_{\ell'} - n_{\ell'}^*$ для известных уровней в область положительных энергий. Неплохим приближением для интересующей нас области энергий ε является линейная комбинация (ритцевская зависимость)

$$\mu(\varepsilon) = a + b\varepsilon. \tag{16}$$

В случае Хе значения коэффициентов а и b приведены в табл.3.

Таблица 3

Уровень	J	a	<i>b</i>
ns[3/2]	1	3.99269	- 0.32037
ns[3/2]	2	4.01932	- 0.32709
np[1/2]	0	3.42715	- 0.5828
np[1/2]	1	3.5881	- 59325
np[3/2]	1	3.51339	- 0.39146
np[3/2]	2	3.49978	- 0.42556
np[5/2]	2	3.55627	- 0.47022
np[5/2]	3	3.53747	- 0.48174
nd[1/2]	0	2.53691	- 0.11477
nd[1/2]	1	2.5006	- 0.33778
nd[3/2]	1	2.17537	- 0.55356
nd[3/2]	2	2.43896	- 432333
nd[5/2]	2	2.40827	+ 0.16734
nd[5/2]	3	2.38882	+ 33212
nd[7/2]	3	2.439	- 0.07345
nd[7/2]	4	2.47963	- 0.16225

Значения коэффициентов а и b квантового дефекта атома ксенона для

Поправочный множитель ς_{ℓ} в формуле (14) можно представить в виде

$$\varsigma_{\ell} = \frac{n^* - \ell}{n^*} \cdot \frac{n^* + 2\ell}{n^* + 1}$$
(17)

Функции $G_{\ell\ell'}(n^*)$ и $\gamma = \gamma_{\ell\ell'}(n^*)$, а также коэффициенты $a_{\ell\ell'}; b_{\ell\ell'}; c_{\ell\ell'}; \alpha_{\ell\ell'}; \beta_{\ell\ell'}$ взяты из таблиц [6]. Квантовый дефект рассматривался как линейная комбинация от безразмерной величины энергии ионизации уровня. В области положительных энергий эта величина соответствует энергии вылетающего

электрона
$$\varepsilon = \frac{\hbar\omega}{Z^2 Ry} - \frac{1}{(n^*)^2}$$
. (18)

4. Сечение фотоионизации Хе

Результаты расчёта сечений фотоионизации согласно (12) для ксенона

Таблица 4

(максимального значения в пороге) приведены в табл. 4.

таксимальные значения сечении фотопонизации ле, в единиц. 10 см.							
.Переход	I, Эв	σ(ε=0)	Переход	I, Эв	σ(ε=0)		
6s[3/2]₁→εp	3,69	1,8	$7s[3/2]_1 \rightarrow \epsilon p$	1,534	3,946		
6s[3/2]₂→εp	3,812	2,4	7s[3/2]₂→εp	1,565	6,944		
6s'[1/2] ₀ →εp'	3,986	0,81	7s'[1/2] ₀ →εp'	1,565	1,334		
6s'[1/2]₁→εp'	3,863	0,68	7s'[1/2]₁→εp'	1,555	0,808		
$6p[1/2]_0 \rightarrow \varepsilon s$	2,194	3,27	$7p[1/2]_0 \rightarrow \varepsilon s$	1,112	14,55		
$6p[1/2]_1 \rightarrow \varepsilon s$	2,547	2,74	$7p[1/2]_1 \rightarrow \varepsilon s$	1,225	11,9		
$6p[3/2]_1 \rightarrow \varepsilon s$	2,338	2,52	$7p[3/2]_1 \rightarrow \varepsilon s$	1,124	10,6		
$6p[3/2]_2 \rightarrow \varepsilon s$	2,306	2,6	$7p[3/2]_2 \rightarrow \varepsilon s$	1,131	9,55		
6p[5/2] ₂ →εs	2,441	2,54	$7p[5/2]_2 \rightarrow \varepsilon s$	1,173	11,76		
6p[5/2] ₃ →εs	2,406	2,73	7p[5/2] ₃ →εs	1,158	10,15		
$6p'[1/2]_0 \rightarrow \varepsilon s'$	2,292	2,87	$7p'[1/2]_0 \rightarrow \varepsilon s'$	1,152	10,76		
$6p'[1/2]_1 \rightarrow \varepsilon s'$	2,346	2,631	$7p'[1/2]_1 \rightarrow \varepsilon s'$	1,152	3,61		
$6p'[3/2]_1 \rightarrow \varepsilon s'$	2,475	2,831	$7p'[3/2]_1 \rightarrow \varepsilon s'$	1,177	14,67		
$6p'[3/2]_2 \rightarrow \varepsilon s'$	2,378	2,982	$7p'[3/2]_2 \rightarrow \varepsilon s'$	1,15	13,99		
6p[1/2] ₀ →εd	2,194	27,5	$7p[1/2]_0 \rightarrow \varepsilon d$	1,112	87,2		
$6p[1/2]_1 \rightarrow \varepsilon d$	2,547	24,8	$7p[1/2]_1 \rightarrow \varepsilon d$	1,225	67,1		
$6p[3/2]_1 \rightarrow \varepsilon d$	2,338	34,1	$7p[3/2]_1 \rightarrow \varepsilon d$	1,124	120,2		
$6p[3/2]_2 \rightarrow \varepsilon d$	2,306	29,05	$7p[3/2]_2 \rightarrow \varepsilon d$	1,131	9,83		
$6p[5/2]_2 \rightarrow \varepsilon d$	2,441	27,9	$7p[5/2]_2 \rightarrow \varepsilon d$	1,173	8,36		
6p[5/2] ₃ →εd	2,406	29,8	$7p[5/2]_3 \rightarrow \epsilon d$	1,158	9,27		
$6p'[1/2]_0 \rightarrow \varepsilon d'$	2,292	15,9	$7p'[1/2]_0 \rightarrow \varepsilon d'$	1,152	28,9		
$6p'[1/2]_1 \rightarrow \varepsilon d'$	2,346	28	$7p'[1/2]_1 \rightarrow \varepsilon d'$	1,152	85		
$6p'[3/2]_1 \rightarrow \varepsilon d'$	2,475	27,1	$7p'[3/2]_1 \rightarrow \varepsilon d'$	1,177	80,4		
$6p'[3/2]_2 \rightarrow \varepsilon d'$	2,378	31,1	$7p'[3/2]_2 \rightarrow \varepsilon d'$	1,15	86,23		
5d[1/2] ₀ →εp	2,237	0,25	6d[1/2] ₀ →εp	1,16	1,629		
5d[1/2] ₁ →εp	2,21	0,41	6d[1/2] ₁ →εp	1,148	2,24		
$5d[3/2]_1 \rightarrow \epsilon p$	1,726	2,86	$6d[3/2]_1 \rightarrow \epsilon p$	0,964	9,97		
5d[3/2] ₂ →εp	2,168	0,55	6d[3/2] ₂ →εp	1,129	4,01		
5d[5/2] ₂ →εp	1,97	14	6d[5/2] ₂ →εp	1,06	0,718		
5d[5/2] ₃ →εp	1,907	16,8	6d[5/2] ₃ →εp	1,03	0,879		
5d[7/2] ₃ →εp	2,088	0,37	6d[7/2] ₃ →εp	1,089	5,2		
5d[7/2]₄→εp	2,184	0,45	6d[7/2]₄→εp	1,103	4,17		
$5d'[3/2]_1 \rightarrow \epsilon p'$	1,826	2,02	$6d'[3/2]_1 \rightarrow \epsilon p'$	1,177	7,4		

Максимальные значения сечений фотоионизации Xe, в единиц. 10⁻¹⁸см².

$5d'[3/2]_2 \rightarrow \epsilon p'$	2,095	0,901	$6d'[3/2]_2 \rightarrow \epsilon p'$	1,08	7,51
$5d'[5/2]_2 \rightarrow \epsilon p'$	2,132	1,21	$6d'[5/2]_2 \rightarrow \epsilon p'$	1,094	8,03
5d'[5/2] ₃ →εp'	2,058	1,34	6d'[5/2] ₃ →εp'	1,067	8,62
$5d[1/2]_0 \rightarrow \varepsilon f$	2,237	67	6d[1/2] ₀ →εf	1,156	5,19
$5d[1/2]_1 \rightarrow \epsilon f$	2,21	61,3	6d[1/2]₁→εf	1,148	4,59
$5d[3/2]_1 \rightarrow \varepsilon f$	1,726	81,2	$6d[3/2]_1 \rightarrow \epsilon f$	0,964	177,1
$5d[3/2]_2 \rightarrow \epsilon f$	2,168	60	6d[3/2] ₂ →εf	1,129	71,4
$5d[5/2]_2 \rightarrow \epsilon f$	1,97	78,5	6d[5/2] ₂ →εf	1,062	114,9
5d[5/2] ₃ →εf	1,907	77	6d[5/2] ₃ →εf	1,026	141,5
5d[7/2] ₃ →εf	2,088	49,3	6d[7/2] ₃ →εf	1,089	11,12
5d[7/2]₄→εf	2,184	61,5	6d[7/2]₄→εf	1,103	10,15
$5d'[3/2]_1 \rightarrow \epsilon f'$	1,826	2,02	6d'[3/2]₁→εf'	1,177	10,03
$5d'[3/2]_2 \rightarrow \epsilon f'$	2,095	90	6d'[3/2]₂→εf'	1,08	8,67
$5d'[5/2]_2 \rightarrow \epsilon f'$	2,132	1,21	6d'[5/2] ₂ →εf ^ϵ	1,094	7,61
5d'[5/2]₃→εf'	2,058	1,34	6d'[5/2] ₃ →εf'	1,067	9,9

Результаты расчёта сечений фотоионизации в приближении квантового дефекта по методу Берджесса-Ситона для ксенона представлены графически сплошными кривыми на представленных ниже рисунках.

Для массовых расчётов многоуровневой кинетики удобен способ с использованием формулы (10). Одно из значений $\hbar\omega$ фиксируем как $\hbar\omega_0$, и ему будет соответствовать значение сечения σ_0 . Используя выражение

$$\sigma = \sigma_0 \left(\frac{\hbar\omega_0}{\hbar\omega}\right)^3$$
, которое следует из (10) можем получить значения сечений для

других энергий. Эти значения на рис. 1 представлены точками. Сечения фотоионизации для водорода могут на порядок величины превосходить значения сечений тяжёлых инертных газов. Оценки по формуле Крамерса дают такую же погрешность.

Рис. 1 Сечения фотоионизации Хе.

Автор выражает благодарность А.Ю. Гавриловой, М.Е. Кули-заде и Р.А. Мироновой за помощь в работе.

Библиографический список

 Суржиков С.Т. Оптические свойства газов и плазмы. — М.: Из-во МГТУ им. Н.Э.Баумана, 2004. - 575 с.

Физико-химическая кинетика и термодинамика. Справочник / Под ред.
 Г.Г.Черного и С.А. Лосева. Том 2. – М.: НИЦ механики, 2002. - 368 с.

Суржиков С.Т. Тепловое излучение газов и плазмы. - М.: Из-во МГТУ им.
 Н.Э.Баумана, 2004. - 546 с.

4. Гаврилова А.Ю., Киселёв А.Г., Скороход Е.П. Диаграммы метаравновесных состояний тяжёлых инертных газов // Теплофизика высоких температур. 2014. Т. 52. №2. С.174-185.

5. Справочник констант элементарных процессов с участием атомов, ионов, электронов, фотонов. - С-Пб.: Санкт-Петербургский государственный университет, 1994. - 336 с.

6. Грим Г. Спектроскопия плазмы. - М.: Атомиздат, 1969. - 452 с.

7. Скороход Е.П. Оптические свойства низкотемпературной ксеноновой плазмы: Дисс. канд. ф.-м.н. М: 1983.

8. Скороход Е.П. Спектроскопические методы исследования физикохимических и тепловых процессов в плазменных устройствах: Дисс. доктора техн. наук. М.: 2003. Киселёв А.Г., Скороход Е.П. Многоконфигурационное приближение и матрица плотности // Труды МАИ, 2011, № 49: https://www.mai.ru/science/trudy/published.php?ID=28183

Семиохин И.А. Элементарные процессы в низкотемпературной плазме. М.: Изд-во МГУ, 1988. - 142 с.

11.Grechukhin D.P., Karpushkina,E.I. // J. Nucl. Energy, Part C. V.6. 1964. pp. 631.

Методы исследования плазмы / (Под ред. Лохте-Хольтгревена). - М.:
 Мир, 1971.— 552 с.

13. URL: http://physics.nist.gov; Atomic Physics; Atomic Spectra Database.

14. Гаврилова А.Ю., Скороход Е.П. Сечения и константы скоростей плазмохимичекских реакций инертных газов. - М.: Из-во МАИ, 2011. - 192 с.

15. Войницкий С.О., Скороход Е.П. Расчёт заселённостей аргона в проточной дуге // Труды МАИ, 2012, № 50: http://www.mai.ru/science/trudy/published.php?ID=28694

16. Гаврилова А.Ю., Кули-заде М.Е. Скороход Е.П. Распределения возбуждённых состояний атомов в плазменной струе аргона // Труды МАИ, 2012, № 50: http://www.mai.ru/science/trudy/published.php?ID=28604 http://www.mai.ru/science/trudy/published.php?ID=28604

17.Гидаспов В.Ю., Москаленко O.A. Численное моделирование инициирования детонации в керосино-воздушной газокапельной смеси ударной 2016. № 90: падающей волной // Труды МАИ. http://www.mai.ru/science/trudy/published.php?ID=74647

26

18. Гидаспов В.Ю. Численное моделирование стационарных детонационных волн в смеси частиц алюминия с воздухом // Труды МАИ, 2011, № 49: http://www.mai.ru/science/trudy/published.php?ID=28605&PAGEN_2=3

19. Гидаспов В.Ю. Численное моделирование одномерного стационарного равновесного течения в детонационном двигателе // Труды МАИ, 2015, № 83: http://www.mai.ru/science/trudy/published.php?ID=61826