На правах рукописи

Василевский Дмитрий Олегович

СПОСОБ УВЕЛИЧЕНИЯ УДЕЛЬНОГО ИМПУЛЬСА ТЯГИ ЗА СЧЁТ ИНТЕНСИФИКАЦИИ ТЕПЛООБМЕНА В СИСТЕМЕ ОХЛАЖДЕНИЯ КАМЕРЫ СГОРАНИЯ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ

Специальность 2.5.15. - «Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов»

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата технических наук

Москва2022

Работа выполнена на кафедре «Ракетные двигатели» в федеральном государственном бюджетном образовательном учреждении высшего образования «Московский авиационный институт (национальный исследовательский университет)».

Научный	Коломенцев Александр Иванович			
руководитель:	кандидат технических наук, доцент, профессор ФГБОУ ВО «Московский			
	авиационный институт (национальный исследовательский университет)»			
Официальные	Кретинин Александр Валентинович, доктор			
оппоненты:	технических наук, профессор, федеральное			
	государственное бюджетное образовательное учреждение			
	высшего образования «Воронежский государственный			
	технический университет», профессор кафедры			
	«Нефтегазового оборудования и транспортировки»			
	Мосолов Сергей Владимирович, кандидат физико-			
	математических наук, государственный научный центр			
	Российской Федерации «Исследовательский центр имени			
	М.В. Келдыша», начальник направления жидкостных			
	ракетных двигателей.			
Ведущая	Федеральное казенное предприятие «Научно-			
организация:	испытательный центр ракетно-космической			
-	промышленности»			

Защита диссертации состоится 23 января 2023 г. в 15 часов 00 минут на заседании диссертационного совета 24.2.327.06, созданного на базе ФГБОУ ВО «Московский авиационный институт (национальный исследовательский университет)» по адресу: 125993, Москва, А-80, ГСП-3, Волоколамское шоссе, д. 4.

С диссертацией можно ознакомиться в библиотеке и на сайте федерального государственного бюджетного образовательного учреждения высшего образования «Московский авиационный институт (национальный исследовательский университет)»:

https://mai.ru/events/defence/?ELEMENT_ID=168838

Автореферат разослан «___» ____ 2022 года.

Ученый секретарь

диссертационного совета 24.2.327.06

доктор технических наук, доцент

Краев Вячеслав Михайлович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования

Существующие требования к двигателям высоких ступеней показывают рациональность использования перехода к безгазогенераторным схемам жидкостных ракетных двигателей (ЖРД) с целью снижения стоимости двигательных установок за счёт упрощения конструкции, снижения её массы и повышения надёжности.

Сравнительно более низкий уровень тяги упрощает систему охлаждения теплонапряжённых узлов конструкции, что позволяет в совокупности использования криогенных компонентов. Появляется возможность использование более эффективной системы охлаждения за счёт подачи криогенного компонента в область форсуночной головки и развития поверхности съёма тепла за счёт применении внутренних рёбер. Разработка методов оптимизации подобных конструкций позволяет спрогнозировать тепловое состояние и необходимые геометрические параметры на стадии проектирования, что делает актуальным данные исследования.

Объектом исследования является камера ЖРД с новой системой охлаждения на базе безгазогенераторной пневмогидравлической схемы, работающая на криогенных компонентах топлива (КТ).

Целью работы является повышение удельного импульса тяги (УИТ) безгазогенераторого ЖРД за счёт интенсификации теплообмена в камере сгорания.

Для достижения поставленной цели необходимо было решить следующие задачи:

 в целях увеличения УИТ за счёт эффективной работы двигателя разработать схему охлаждения камеры сгорания (КС) высококриогенным водородом с учётом подачи его в область форсуночной головки за счёт развития внутренней поверхности КС;

- разработать математическую модель процесса охлаждения КС и сопла путём выбора газодинамического профиля учитывающего изменение теплофизических параметров по тракту охлаждения от коэффициента избытка окислителя (КИО) и давления в КС;
- разработать методику и программу по расчёту газодинамических и теплогидравлических параметров с целью выбора оптимальных геометрических параметров каналов тракта охлаждения;
- с помощью известных по литературе натурных экспериментов произвести критический анализ в целях проверки адекватности модели.

Научная новизна работы заключается в следующем.

- Разработана схема охлаждения КС высококриогенным водородом с учётом подачи его в область форсуночной головки за счёт развития внутренней поверхности КС.
- 2. Создана математическая модель процесса охлаждения КС и сопла путём выбора газодинамического профиля учитывающего изменения КС термодинамических параметров В от КИО И давления И теплофизических параметров по тракту охлаждения.
- Разработана методика и программа по расчёту газодинамических и теплогидравлических параметров с целью выбора оптимальных геометрических параметров каналов тракта охлаждения.

Практическая значимость работы состоит в том, что разработанная новая схема охлаждения и математические методы оптимизации высоконапряжённых узлов конструкции безгазогенераторных ЖРД позволяют увеличить надёжность их работы и увеличить УИТ на 5 с.

Достоверность полученных результатов и выводов подтверждается:

1. Использованием всестороннего критического анализа известных натурных испытаний и экспериментальных результатов модельных двигателей.

- 2. Использованием верифицированных известных научных положений и методов расчета ракетных двигателей, теории тепломассообмена, хладотехники и теплотехники.
- 3. Применением фундаментальных положений гидравлики, газовой динамики, термодинамики и теплофизики.

Основным диссертанта разработанная вкладом является автором математическая модель И программа определения оптимальных основных проектных параметров И конструктивного облика тракта охлаждения и геометрических параметров внутренних рёбер ЖРД по критериям минимальных гидравлических потерь и максимального подогрева горючего. По найденным с использованием разработанной модели оптимальных геометрических параметров тракта охлаждения и внутреннего оребрения увеличен УИТ ЖРД и получен предварительный конструктивный облик ЖРД для межорбитального транспортного аппарата многоразового использования (МТА МИ).

Апробация и внедрение результатов исследований

Основные результаты работы были представлены на конкурсе научнотехнических работ и проектов «Молодежь и будущее авиации и космонавтики», (Москва, 2016 г.); XV, XVI, XIX Международных конференциях «Авиация и космонавтика» (Москва, 2016, 2017, 2020 гг.); II Международном православном студенческом форуме (г. Москва, 2016 г.); Международной научно-технической конференции «Проблемы и перспективы развития двигателестроения (г. Самара, 2016 г.); III Международной конференции «Актуальные проблемы авиации и космонавтики» (г. Красноярск, 2017 г.), Международной конференция 2021 «Математическое моделирование» (г. Москва, г.); Международной молодежной научной конференции «XXIII Туполевские чтения (школа молодых ученых)» (г. Казань, 2017 г.); XLII-XLIV, XLVII и XLVIII Международных молодежных научных конференциях «Гагаринские чтения» (Москва, 2016-2018, 2021, 2022 гг.).

Публикации. По теме диссертации опубликовано 4 статьи, из них 4, рецензируемые в журналах и изданиях, имеющих аккредитацию ВАК.

Структура и объем работы. Диссертационная работа состоит из введения, пяти глав, заключения и списка используемых источников из 92 наименований, изложена на 150 страницах машинописного текста и иллюстрирована 89 рисунками, число таблиц - 10.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обосновывается актуальность и новизна темы, формулируется цель работы и задачи исследования.

В первой главе проводится аналитический обзор безгазогенераторных двигателей. Отмечается, что у двигателей безгазогенераторной схемы удлинена цилиндрическая часть камеры для большего подогрева хладагента в тракте охлаждения.

Рассмотрены основные агрегаты регулирования, типа насосов, турбин и устройств распыливания в безгазогенераторных двигателей.

Показано, что данные схемы работают при относительно низком давлении в КС, по сравнению с двигателями по схемы работы с дожиганием генераторного газа. Поэтому в работе проводится исследования по увеличению давления и параметров работы камеры двигателя безгазогенераторной схемы.

Показаны способы УИТ основные повышения лавления И в безгазогенераторных Эти способы двигателях. связаны С увеличением поверхности теплообмена с целью повышения подогрева горючего компонента.

Показаны и классифицированы основные способы интенсификации теплообмена в теплообменниках и энергетических установках:

интенсификация конвективного теплообмена в однофазной среде вибрацией поверхности;

- интенсификация вибрацией жидкости;
- вдув или отсос газа;
- воздействие на поток турбулизирующими вставками;
- механическое воздействие на поток путем перемешивания жидкости или вращения поверхности теплообмена;
- увеличение площади поверхности теплообмена путем ее оребрения (развитые поверхности);
- воздействие на теплоотдачу путем добавок в жидкость твердых частиц или газовых пузырьков;
- комбинированные способы интенсификации теплообмена;
- интенсификация теплоотдачи кипением при вынужденном движении;
- конденсация пара в каналах в условиях вынужденного движения.

Показано, что поверхности делятся принципиально на макроструктурные и микроструктурные.

Во второй главе приводится методика расчёта охлаждения камеры сгорания и сопла:

- методика расчёта газодинамического профиля камеры сгорания и сопла и энергетических параметров двигателя;
- методика разбиения газодинамического профиля на сечения;
- методика расчёта конвективного и лучистого теплового потока;
- методика расчёта наружного проточного охлаждения;
- основные условия достаточного охлаждения камеры.

Скорость истечения на срезе сопла определяется по формуле:

$$W_{a} = \varphi_{\text{CYMM}} \times \sqrt{2 \frac{k}{k-1} R_{k} T_{k}} \times \left(1 - \left(\frac{P_{a}}{P_{k}}\right)^{\frac{k-1}{k}}\right)$$
(1)

где T_{κ} – температура продуктов сгорания в КС, К; R_{k} – газовая постоянная в КС, Дж/(кг·К); $\varphi_{\text{сумм}} = \varphi_{\kappa} \times \varphi_{c}$ – коэффициент удельного импульса.

Идеальный суммарный массовый расход определяется по формуле:

$$m_{\text{сумм.ид}} = \frac{P - (P_a - P_{\text{H}}) \times F_{a.ud}}{W_{a.ud}}$$
(2)

,

где *P_н* – наружное давление, Па.

Теоретический удельный импульс определяется по формуле:

$$I_{\rm y.reop} = W_{a.ud} + (P_a - P_{\rm H}) \times \frac{F_{a.ud}}{m_{\rm cymm.ud}}$$
(3)

Действительный удельный импульс определяется по формуле:

$$I_{\rm y,g} = I_{\rm y,reop} \times \varphi_{\rm cymm} \tag{4}$$

Действительный суммарный массовый расход определяется по формуле:

$$m_{\rm cymm, d} = \frac{P}{I_{\rm y, d}} \tag{5}$$

В математической модели используется методика Иевлева В. М по определению плотности конвективного теплового потока.

Функция термодинамических и теплофизических параметров определяется по формуле:

$$S = \frac{(J_{\rm or} - J_{\rm ct.r}) \cdot \mu_{\rm or}^{0,15}}{(L_{\rm r})^{0,425} \cdot (1 + T_{\rm ct.oth})^{0,595} \cdot (3 + T_{\rm ct.oth})^{0,15}} \cdot 1000^{0,105}, \tag{6}$$

где J_{or} – энтальпия заторможенного потока недиссоциированных продуктов сгорания при температуре газа в ПРС или ПГРС, Дж/кг; $J_{cr.r}$ – энтальпия недиссоциированных продуктов сгорания при температуре стенки со стороны газа, Дж/кг; μ_{or} – коэффициент динамической вязкости заторможенного потока недиссоциированных продуктов сгорания при температуре газа в ПРС или ПГРС, Па·с.

Конвективный тепловой поток в текущем сечении определяется по формуле:

$$q_{\text{конв}} = B \cdot \frac{\tau(\lambda_i)}{D_{\text{отн}}^2} \cdot \frac{p_k^{0.85}}{D_{\text{мин}}^{0.15}} \cdot \frac{S_i}{Pr_{r,i}^{0.58}}$$
(7)

где В– коэффициент конвективного теплообмена; *p*_k–давление в камере сгорания, Па.

Лучистый тепловой поток в текущем сечении с учётом частичного поглощения в пристеночном слое определяется по формуле:

$$q_{\rm луч} = \varphi \cdot \varepsilon_{\rm cr. \mathfrak{s} \varphi} \cdot C_0 \cdot \left(\varepsilon_{\rm r} \cdot \left(\frac{T_{\rm K}}{100} \right)^4 - A_{\rm r} \cdot \left(\frac{T_{\rm cr. r}}{100} \right)^4 \right), \tag{8}$$

где φ –коэффициент, учитывающий уменьшение интенсивности излучения из-за поглощения в ПРС; $\varepsilon_{cr.э\phi}$ –эффективная излучательная способность стенки; C_0 – постоянная Стефана – Больцмана, Вт/(м²·K⁴); ε_{r} – степень черноты излучающих газов при температуре газа; T_{κ} – температура газа в камере сгорания, К; A_{r} – поглощательная способность газа при температуре стенки со стороны газа.

Распределение плотности лучистого потока по длине газодинамического профиля (ГДП) принимается согласно эмпирической зависимости Л.Ф Фролова.

Изменения температуры жидкости на участке в охлаждающем тракте определяется по формуле:

$$\Delta T_{\text{OXT}} = \frac{0.5 \cdot (q_{\text{KOHB},i} + q_{\text{KOHB},(i\pm 1)}) \cdot \Delta S_{\text{KOK},i}}{\dot{m}_{\text{OXT}} \cdot c_{p,\text{OXT},i}(T_{\text{OXT}}; p_{\text{OXT}})},\tag{9}$$

Комплекс теплофизических свойств, характеризующий охлаждающую способность хладагента определяется по формуле:

$$K = (\lambda_{\text{oxn},i}(T_{\text{oxn}}; p_{\text{oxn}}))^{0,6} \cdot \left(\frac{c_{p,\text{oxn},i}(T_{\text{oxn}}; p_{\text{oxn}})}{\mu_{\text{oxn},i}(T_{\text{oxn}}; p_{\text{oxn}})}\right)^{0,4},$$
(10)

где λ_{0xn} -коэффициент теплопроводности охлаждающей жидкости, Bt/(м·K); μ_{0xn} -коэффициент динамической вязкости охлаждающей жидкости, Па·с.

Коэффициент теплоотдачи в тракте охлаждения определяется по формуле:

$$\alpha_{\text{охл}} = \frac{0.023 \cdot K_i (T_{\text{охл}}; p_{\text{охл}}) \cdot (w_{\text{масс.}i})^{0.8}}{D_{\text{гидр.}i}^{0.2}} \cdot \frac{Pr_{\text{охл.}i}}{Pr_{\text{ст. охл.}i}}$$
(11)

Изменение давления жидкости на трение в охлаждающем тракте на участке определяется по формуле:

$$\Delta P_{\rm Tp} = \xi_{\rm Tp}(Re; \Delta_{\rm oTH}) \cdot \frac{\rho_{\rm oxn,i}(T_{\rm oxn}; p_{\rm oxn}) \cdot W_{\rm oxn,i}^2}{2} \cdot \frac{L_{\rm kah,i}}{D_{\rm rudp,i}},$$
(12)

Температура стенки со стороны газа определяется по формуле:

$$T_{\text{cT.r}} = \frac{\frac{T_{\text{or.npc}.i}}{T_{\text{or.npc}.i} - T_{\text{cT.r.}i}} + \frac{T_{\text{oxn}.i}}{\left(\left(\frac{\delta_{\text{cT.BH}.i}}{\lambda_{\text{MAT}.i}(T_{\text{cT.r.cp}.i})}\right) + \frac{1}{\alpha_{\text{oxn}.p.i}}\right) \cdot q_{\text{конв}.i}}{\frac{1}{T_{\text{or.npc}.i} - T_{\text{cT.r.}i}} + \frac{1}{\left(\left(\frac{\delta_{\text{cT.BH}.i}}{\lambda_{\text{MAT}.i}(T_{\text{cT.r.cp}.i})}\right) + \frac{1}{\alpha_{\text{oxn}.p.i}}\right) \cdot q_{\text{конв}.i}}; \quad (13)$$

Температура стенки со стороны охлаждающей жидкости определяется по формуле:

$$T_{\text{ct.oxf}} = T_{\text{ct.r.}i} - \left(\frac{\delta_{\text{ct.bh.}i}}{\lambda_{\text{mat.}i} (T_{\text{ct.r.cp.}i})}\right) \cdot q_{\text{cymm.}i}$$
(14)

Для определения температуры торца внутреннего оребрения используется следующая формула:

$$T_{\mathbf{r},\mathbf{p}} = T_{\mathrm{or},\mathrm{nrpc},i} + \frac{\left(T_{\mathrm{cr},r,i} - T_{\mathrm{or},\mathrm{nrpc},i}\right)}{ch(\mu_{\mathrm{r},\mathrm{p},i} \times h_{\mathrm{p},i}) + sh(\mu_{\mathrm{r},\mathrm{p},i} \times h_{\mathrm{p},i}) \times \left(\frac{\alpha_{\mathrm{r},i}}{\mu_{\mathrm{r},\mathrm{p},i} \times \lambda_{\mathrm{Mat},i}}\right)}.$$
(15)

Для оценки площади боковой поверхности внутреннего «газового» оребрения используется следующая аналитически выведенная формула:

$$\Delta S_{\text{бок.p}} = 0,5 \cdot \pi \cdot (D_i + D_{i\pm 1}) \cdot \Delta X_{s.i} - n_{p.i}$$

$$\times \delta_{p.i} \times \Delta X_{s.i} + (2 \times h_{p.i} + \delta_{p.i}) \times \Delta X_{s.i} \times n_{p.i}.$$
(16)

Блок схема охлаждения камеры представлена на рисунке 1.

Рисунок 1 – Блок схема расчёта охлаждения двигателя

В третьей главе описан объект исследования диссертационной работы. Приведено описание пневмогидравлической схемы объекта исследования.

Пневмогидравлическая схема представлена на рисунке 2.

Рисунок 2 – ПГС двигателя РД-0146

В четвёртой главе приводится анализ повышения УИТ от давления в КС. Проводится расчёт геометрических и энергетических параметров двигателя с шагом 0,5 МПа по давлению в камере от номинального давления в КС.

Проводится теплогидравлический расчёт охлаждения для двигателя с давлением в камере сгорания 8 МПа и 10,5 МПа.

Показано, что при подогреве водорода до 400 К, полученным при расчёте охлаждения с внутренним оребрением, возможно увеличить давления в КС до 10,5 МПа (рисунок 3).

Далее проводится поверочный расчёт охлаждения двигателя с пересчётом геометрии ГДП камеры сгорания и сопла и переопределения геометрических параметров тракта охлаждения.

Рисунок 3 – Зависимость температуры на выходе из тракта охлаждения (ТО) от

давления в КС

Рисунок 4 – Зависимость суммарного массового расхода в двигатель и УИТ от давления в КС

Согласно расчёту охлаждения при давлении 8 МПа без внутреннего оребрения суммарные температуры и давления охладителя составили 260 К и 23,09 МПа соответственно.

Поперечный разрез камеры с внутренним оребрением приведен на рисунке 5. Внутренние рёбра располагаются продольно в цилиндрической части камеры двигателя со стороны продуктов сгорания.

1 – внутренняя оболочка; 2 – основные рёбра; 3 – канал тракта охлаждения; 4 – скругленные по радиусу углы образующих канал ТО; 5 – дополнительные продольные рёбра; 6 – наружная профилированная оболочка.

Рисунок 5 – ТО с продольными дополнительными внутренними рёбрами

В таблице 1 представлены геометрические параметры внутренних дополнительных рёбер.

Параметр	Значение параметра	
Высота ребра, мм	2,8	
Толщина ребра, мм	1,2	
Количество рёбер, штук	200	
Шаг по основанию ребра, мм	2,83	
Шаг по торцу ребра, мм	2,91	

Таблица 1– Геометрические параметры внутренних рёбер

Изменение температуры и давления охладителя с давлением в КС 10,5 МПа представлено на рисунках 6 и 7. Тепловое состояние (ТС) внутренней стенки и торца рёбер представлено на рисунке 8 и 9.

Рисунок 6 – Изменение давления охладителя по длине ГДП

Рисунок 7 – Изменение температуры охладителя по длине ГДП

Рисунок 9- ТС внутренних газовых рёбер по длине ГДП

Согласно приведённым расчётам по варьированию высоты внутреннего ребра, получается, что высота ребра сильно зависит от температуры торца ребра и оптимальное значение находится при высоте ребра 2 – 2,8 мм. Это соответствует температуре охладителя на выходе 381,19 К – 426,46 К, давлению охладителя на выходе 22,33 МПа – 21,91 МПа, максимальной температуры огневой стенки со стороны газа 846,64 К – 875,39 К, максимальной температуры огневой стенки со стороны жидкости 638,96 К – 673,42 К и максимальной температуре наружной силовой стенки 373,05 К– 427,02 К.

В пятой главе приводится расчётно-экспериментальное исследование тепловых процессов при регенеративном охлаждении.

Верификация в диссертационной работе проводилась в 2 этапа.

Первая верификация была по достижению необходимого расчётного подогрева горючего на выходе из ТО двигателя РД-0146.

Во второй верификации для двигателей SSME 40 К оценивались и сравнивались расчётные тепловые потоки с экспериментальными.

За основу при проведении полного сравнения расчётных и экспериментальных данных была взята схема охлаждения двигателя РД-0146. Так как осевая координата расположение входного коллектора в закритической части сопла неизвестна, она подбиралась расчётно методом последовательных приближений.

В двигателе реализуется петлевая схема охлаждения (рисунок 10). Входной коллектор по расчёту расположен в осевой координате 499 мм. Из коллектора через равномерно расположенных 110 отверстий в коллекторе хладагент поступает в каналы ТО. После коллектора горючее по половине каналов прямотоком движется до среза сопла, где разворачивается, охлаждает сопло, критическое сечение и движется обратным током до камеры сгорания.

Геометрия каналов ТО для расчёта охлаждения взята согласно прошлым расчётам для давления в КС 8 МПа.

Согласно экспериментальным данным температура и давление на выходе из ТО равняется 23МПа и 301 К. Давление на выходе из насоса горючего (НГ)

равняется 26,25 Мпа, следовательно, суммарные гидравлические потери в TO равняются 3,25 МПа.

Рисунок 10 – Система охлаждения (СО) двигателя РД-0146

Распределение температуры и давления охладителя по длине ГДП показано на рисунке 11 и 12.

Рисунок 11 – Распределение температуры охладителя по длине ГДП

Рисунок 12 – Распределение давления охладителя по длине ГДП

Температура на выходе из ТО получилось равной 307 К, что примерно на 2 % различается с экспериментальными данными и является вполне допустимым для проектировочных расчётов.

При прочих равных условиях при спроектированной СО двигателя давление на выходе равно 22,57 МПа, а суммарные гидравлические потери 2,57 МПа. Следовательно, при разработанной СО двигателя РД-0146 возможно сэкономить 0,68 МПа только в ТО.

Двигатели по которому проводилась верификация является модельными двигателями и имеют название SSME 40 К с водородным регенеративным охлаждением и SSME 40 К с водяным охлаждением. Данные двигатели в ≈ 3 раза меньше полномасштабного двигателя SSME.

Верификация проводится путём сравнения плотности теплового потока по экспериментальным данным с данными полученными по математической модели.

Тепловой поток при испытаниях измерялся калориметрическим методом. Верификация проводилась по открытым экспериментальным данным.

Водород, которым является хладагентом и охлаждает камеру и сопло, после ТО выбрасывается за борт.

Материал из которого изготавливаются рёбра и внутренняя стенка называется Narloy-Z. Narloy-Z является жаропрочным сплавом и состоит преимущественно из меди с добавлением серебра и циркония.

Теплопроводность материала Narloy-Z от температуры взята согласно графическим зависимостям по характерным точкам температуры.

Исходные данные, по которым проводилась верификация, приведены в таблице 2.

Расчетный параметр	Полномасштабный	40 К с водным охлаждением	40 К с регенеративным охлаждением
Общее количество элементов впрыска	600	61	61
Количество дефлекторных элементов впрыска	75	3	3
Диаметр камеры, мм	450,6	143,8	143,8
Диаметр критики, мм	261,75	84,1	84,1
Длина камеры, мм	355,6	355,6	355,6
Степень расширения сопла	5:1	7:1	5 : 1
Количество каналов охлаждающей жидкости камеры	390	116	128
Ориентация канала охлаждающей жидкости камеры	Осевая	Окружная	Осевая

Таблица 2 – Исходные данные для верификации двигателей SSME 40K

В расчёте принимается температура водорода на входе в ТО - 22 К, давление на входе - 20 МПа, массовый расход на входе - 7,19 кг/с.

Сравнение измеренных и расчётных тепловых потоков приведено на рисунке 13.

В расчёте принимается температура воды на входе в ТО – 298 К, давление на входе - 10 МПа, массовый расход на входе - 8,99 кг/с.

Сравнение измеренных и расчётных тепловых потоков с водяным охлаждением приведено на рисунке 14.

Рисунок 14 – Экспериментальные (сверху) и расчётные (снизу) тепловые потоки двигателя SSME 40 К с водяным охлаждением

Согласно приведенным расчётам можно сделать вывод, что в цилиндрической части камеры тепловой поток при водородном и водяном

охлаждении имеет удовлетворительную сходимость, во входной части камеры и срезе сопла имеет хорошую сходимость с экспериментальным данными.

Чтобы проверить точность модуля теплового анализа математической модели, было выполнено сравнение между доступными справочными данными и прогнозом математической модели.

Полученное согласие между прогнозом математической модели и ссылочными данными является достаточным для инструмента, используемого в концептуальных и предварительных проектных исследованиях.

Количественные и качественные различия в результатах могут быть объяснены следующим:

• Математическая модель не имитирует распыление и рассеивание топлива, а также горение капель.

• Свойства горячего газа для теплового анализа извлекаются из квазиодномерной модели потока.

• Теплопередача моделируется с использованием полуэмпирических соотношений.

После проведенного анализа по сравнению тепловых потоков можно сделать вывод, что разработанную математическую модель можно использовать при проектировании камер ЖРД и прогнозировании величин тепловых потоков и температур стенок в камере и сопле, так и для поверочных расчётов уже имеющейся конструкции камеры ЖРД.

Путём варьирования величин геометрических параметров ТО в разработанной математической модели, можно оптимизировать конструкцию с точки зрения требуемых температур стенок, гидравлических потерь и требуемых температур хладагента.

В заключении сформулированы следующие основные результаты по диссертационной работе:

1. В целях увеличения УИТ за счёт эффективной работы двигателя разработана схема охлаждения КС высококриогенным водородом с

учётом подачи его в область форсуночной головки за счёт развития внутренней поверхности КС;

- Разработана математическая модель процесса охлаждения КС и сопла путём выбора газодинамического профиля учитывающего изменение теплофизических параметров по тракту охлаждения от давления и температуры и термодинамических параметров в КС от КИО и давления в КС;
- Разработана методика и программа по расчёту газодинамических и теплогидравлических параметров с целью выбора оптимальных геометрических параметров каналов тракта охлаждения;
- С помощью известных по литературе натурных экспериментов произведен критический анализ в целях проверки адекватности модели.

Список публикаций по теме диссертации

В рецензируемых научных изданиях:

- 1. Беляков В. А., Василевский Д. О. Перспективные схемные решения безгазогенераторных двигателей // Вестник ПНИПУ. Аэрокосмическая техника. 2019. № 58, С. 69–86. Doi: 10.15593/2224-9982/2019-58-06
- Беляков В. А., Василевский Д. О., Ермашкевич А.А. и др. Развитие концепции многоразового жидкостного ракетного двигателя на трёхкомпонентном топливе / В. А. Беляков, Д. О. Василевский, А. А. Ермашкевич и др. // Сибирский аэрокосмический журнал. 2021. Т. 22, № 1. С. 121–136. Doi: 10.31772/2712-8970-2021-22-1-121-136.
- 3. Беляков В. А., Василевский Д. О., Ермашкевич А.А. и др. Проектирование системы охлаждения многоразового жидкостного ракетного двигателя на трёхкомпонентном топливе / В. А. Беляков, Д. О. Василевский, А. А. Ермашкевич и др. // Сибирский аэрокосмический

журнал. 2021. Т. 22, № 2. С. 316–327. Doi: 10.31772/2712-8970-2021-22-2-316-327.

4. Василевский Д.О. Повышение удельного импульса кислородводородного жидкостного ракетного двигателя за счёт увеличения теплоотдачи в камере сгорания / Д. О. Василевский // Сибирский аэрокосмический журнал. 2022. Т. 23, № 4.