Возможности применения малогабаритного цифрового радара в самолетной авиации

Канащенков А.И.¹, Матвеев А.М.², Новиков С.В.²*

¹Корпорация «Фазотрон – НИИР», Электрический переулок, 1, Москва, 123557, Россия

²Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия *e-mail: ncsrm@mail.ru

Аннотация

В статье представлен пример успешной кооперации Вузовской науки и предприятий реального сектора экономики, а именно разработки Московским авиационным институтом малогабаритной бортовой радиоэлектронной системы.

Указаны основные тактико-технические характеристики, исследована область применения данного изделия и намечены направления модернизации.

В результате в кротчайшие сроки для такого вида разработок, получен научнотехнический задел и созданы прорывные технологии в области радиолокации.

Ключевые слова: высокотехнологическое производство, научно-технический проект, радиолокационная станция, инновация, предприятие радиоэлектронной промышленности.

Современные штурмовики предназначены для поражения, в первую очередь, бронированной техники, а также живой силы, укреплений и других объектов противника непосредственно на поле боя (в том числе, при выполнении полета на малых высотах). Новейшим российским штурмовиком сегодня является Су-39 (Су-25ТМ), созданный на базе советского штурмовика Су-25Т, называемого в армии и в народе «грачём» (рис.1). Большой боевой опыт своего предшественника, накопленный за десятилетие его использования в Афганистане, а затем во время многих региональных конфликтов и антитеррористических операций, определил его новый облик и боевые возможности. Ведь большинство этих боевых действий происходило в горной местности и в ночное время, что сильно затрудняло применение штурмовиков [1,2].

Поэтому главным приобретением штурмовика становится бортовой радар — единственное средство, обеспечивающее уверенные обнаружение, распознавание и сопровождение целей на самых больших (по сравнению со всеми другими его информационными системами) расстояниях, днем и ночью, в любую непогоду, при сильных задымлениях, пылевых бурях и т.п., при выполнении полета на малых высотах и пикировании на цель. Установка подвесного контейнера с радаром «Копье-25» (2001), а затем «Копье-М» (2003) разработки ОАО «Корпорация «Фазотрон-НИИР», существенно расширила возможности штурмовика: он, наконец, смог вести и полноценный воздушный бой, для чего в его арсенал было включено новое вооружение с большими дальностями пуска.

Рис. 1 Штурмовик Су-39 [2].

Разнообразие оружия штурмовика, в том числе, современное мощное высокоточное — управляемые ракеты «воздух-воздух» и «воздух-земля», набор неуправляемых ракет и бомб, 30 мм авиапушки, а также подвесные контейнеры с 23 мм пушками в сочетании с рядом его оборонительных мер (бронирование и т.п.) делает этот штурмовик одновременно и современнейшим ударным комплексом и маленькой «летающей крепостью».

С помощью радара штурмовик получил полную автономность работы в выборе целей, определении их приоритетов, а также назначения необходимого для поражения каждой цели оружия.

В любую погоду и в любое время суток, в том числе, в условиях сильного задымления над полем боя, штурмовик может уверенно обнаруживать и сопровождать воздушные и наземные цели и выявлять угрозы. Это стало

возможным благодаря включению в состав его БРЭО радиолокационной станции (БРЛС).

Однако БРЛС «Копье-М» и «Копье-25» на сегодняшний день уже имеют ряд существенных недостатков, поэтому они и не получили дальнейшего применения и развития в отечественной самолетной авиации:

- 1) Значительные вес (более 100 кг) и объем, что позволяет разместить ее лишь в подвесном контейнере. Это также существенно уменьшает запас оружия штурмовика.
- 2) Высокая потребляемая мощность.
- 3) Невысокая надежность (120 ч, фактически ниже).
- 4) Недостаточная дальность обнаружения воздушных и наземных целей.
- 5) Невысокое разрешение по дальности (более 22 м на дальности 25 км), что ограничивает возможности распознавать тип и вид цели, а также ограничивает возможность получения ряда ее важных тактико-технических характеристик.

Скорее всего, указанные недостатки и стали причиной недостаточно широкого использования радаров «Копье-25» и «Копье-М» в современных штурмовиках.

В 2010-2012 гг. Научный центр специальных радиоэлектронных систем и менеджмента МАИ (НЦ СРМ МАИ), являющийся подразделением Московского авиационного института, в установленном порядке разработал малогабаритную цифровую БРЛС двойного назначения — МБРЛС МФ–2 (рис.2.)

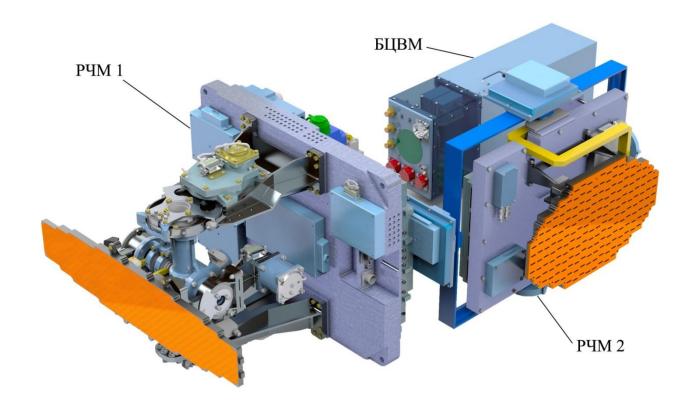


Рис. 2 - Многофункциональная бортовая радиолокационная станция

Цифра «2» не означает, что это вторая по счету разработка НЦ СРМ МАИ, напротив, это первая выполненная им работа. Зато эта цифра дает значительную часть информации о МБРЛС МФ-2, указывая, что она - двойного назначения (гражданского, и ее модификации могут быть использованы для решения специальных задач); двухдиапазонная - состоит из двух модулей (X- и Кадиапазонов); в два раза легче самого малого авиационного радара и имеет срок службы два десятка лет.

Использование МФ-2 в однодиапазонном варианте (Ка-диапазон) в составе БРЭО штурмовика типа Су-25 и его возможных дальнейших модификаций ликвидирует вышеуказанные недостатки радаров предыдущего поколения «Копье-М» и «Копье-25»:

- 1) Вес (45 кг) и объем (22 л) позволяют разместить МФ-2 как в подвесном варианте, так и в носовой части штурмовика.
 - 2) Потребляемая мощность (0,6 КВт) становится в 9 раз меньше.
 - 3) Надежность (300 ч) становится в два раза выше.
- 4) Разрешение по дальности повышается в 44 раза до «детального» 0,5 м, и позволяет иметь информационное предупреждение летчика о препятствиях и проводах ЛЭП.
- 5) Дальность обнаружения наземных целей повышается за счет введения новых режимов работы.
- 6) Снижается стоимость жизненного цикла и себестоимость радара в производстве.

МБРЛС МФ-2 обеспечивает:

- формирование радиолокационного изображения земной поверхности (в т. ч. трехмерного);
- обнаружение и определение координат наземных, надводных и воздушных объектов (подвижных и неподвижных);
 - информационное обеспечение маловысотного полета;
- -выдачу целеуказания оптико-электронным, тепловизионным системам визирования и другим бортовым системам;
 - информационную поддержку автоматизированного распознавания объектов;

- коррекцию навигационных систем и оценку параметров движения собственного ЛА;
 - измерение дальности в заданном направлении;
- оценку метеообстановки с выделением опасных для полета ЛА метеообразований и зон;
- обнаружение и сопровождение воздушных целей и определение их координат.

Будучи установленным на современном малом штурмовике, МБРЛС МФ-2 сделает штурмовик круглосуточным и всепогодным; обнаружит наземные, морские и воздушные цели на значительном расстоянии (при необходимости распознает их) и даст целеуказание о них другим информационным системам БРЭО; обеспечит боевое применение штурмовика:

- как разведчика,
- для нанесения точечных ударов по уничтожению наземных и морских целей,
- на поле боя для уничтожения живой силы, танков и других подвижных и неподвижных объектов противника.

МБРЛС МФ-2, которая легко адаптируется к авиационным носителям типа Су-25 и его модификациям, имеет значительно более высокую помехозащищенность за счет использования новых режимов, в том числе перестройки частоты излучения от импульса к импульсу (Рис 3.)

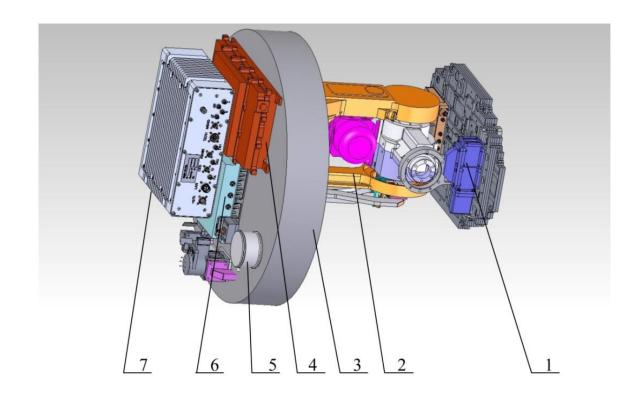


Рис. 3 - Компоновка МБРЛС (Ка или Ки диапазон волн), где:

1 – антенная сборка, 2 – подвес антенной сборки, 3 - продуваемое основание,
 4 – СЧС, 5 – вентилятор, 6 – усилитель мощности, 7 – БЦВМ

Важной особенностью МФ-2 является ее способность обрабатывать в режиме реального времени большие потоки информации за счет ее максимальной цифровизации, высокого быстродействия БЦВМ, а также мощного программного обеспечения. Это особенно важно при использовании радаров в штурмовиках - ведь в отличие от истребителей (в том числе и многофункциональных) штурмовики значительную часть своих боевых действий производят по наземным целям и объектам, в состоянии маловысотного полета. Из этого следует, что объем и скорость получаемой его радаром информации чрезвычайно велики, а поэтому справиться с такими потоками информации способна лишь использующая самую

современную элементную базу цифровая МБРЛС. Именно такой МБРЛС и является МФ-2 и ее модификации, в которых многие традиционно аналоговые устройства и преобразователи «аналог-код» заменены цифровыми, с ЭРИ современного высокого уровня интеграции. Использование цифровых принципов построения аналоговых устройств, таких как синтезатор формы сигналов, синхронизатор, приемник, позволило не только существенно снизить массогабаритные характеристики МБРЛС, но и упростить ее эксплуатацию, удешевить производство, повысить надежность.

Применение в МБРЛС высокопроизводительной вычислительной системы резко повысило ее интеллект за счёт реализации традиционных и нетрадиционных алгоритмов обработки информации.

В результате существенно снижены габариты и вес МФ-2, повышена ее надежность, что позволило исключить значительную аппаратурную часть, функции которой взяли на себя высокоинтегрированные модули и мощное программное обеспечение. Кроме того, возможно применение МБРЛС в подвесном контейнере (Рис.4).

Так что МФ-2 и ее модификации — радиолокационные станции нового поколения – и структурно, и аппаратурно, и по используемой новейшей элементной базе. Поэтому МФ-2 и ее модификации уверенно работают в высокоинформативных режимах: маловысотного полета (МВП) с обнаружением препятствий, в том числе, проводов ЛЭП; картографирования (КРТ) земной поверхности (имеется несколько режимов, обеспечивающих необходимый уровень подробности, в том числе, до

детального разрешения); селекции наземных движущихся целей (СНДЦ), измерения наклонной дальности до земли и т.д. Фактически принципиальным отличием МБРЛС МФ-2 и ее модификаций от других БРЛС является наличие у них более развитого «искусственного интеллекта», что позволяет им не только выполнять множество заданных функций, но и решать новые задачи, возникающие при их работе на протяжении жизненного цикла. Сравнительные характеристики МБРЛС с аналогами указаны в таблице1.

Таблица1 Сравнительные характеристики МБРЛС

Наименование	Созданная МБРЛС		Зарубежные аналоги			
основных параметров продукции			TESAR	TUAVR	LYNX	Отечественные аналоги
Диапазон частот	«Ku»	«X»	Ku (j)	Ku	Ku	нет
Масса (кг)	30 - 35	25 - 30	75	30	52	нет
Режимы МВП, КРТ, СНДЦ, Метео, ТО, ПО	МВП,К РТ, СНДЦ, Метео, ТО, ПО	МВП, КРТ, СНДЦ, Метео, ТО, ПО	ПО, ТО, СНДЦ	ПО, ТО, СНДЦ	ПО, ТО, СНДЦ	нет
Дальность (км) - МВП - КРТ - СНДЦ	1 -10 6 - 28 13 - 19	- 18 - 100 33 - 63	- 18 - 28 -	- 3 - 14 -	- 39 - 50 28 - 39	нет
Разрешающая способность	0,25	0,5	0,3	-	0,1	нет

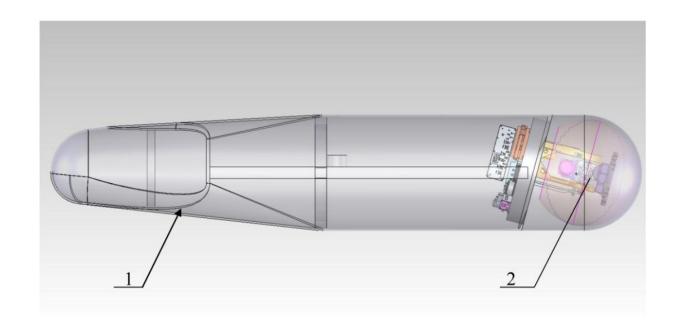


Рис. 4 - Размещение МБРЛС X-диапазона в контейнере, где: 1 — контейнер, 2 - МБРЛС

В МФ-2 и ее модификациях предусмотрен ряд дополнительных мер по обеспечению безопасности полета и снижению угрозы нанесения ударов по самолету, для чего осуществляется непрерывный радиолокационный обзор воздушного пространства и полосовой обзор подстилающей земной поверхности с селекцией движущихся целей И распознаванием неподвижных. метеообстановка выделением оценивается 30H, опасных ДЛЯ самолета метеообразований. Обеспечивается предупреждение об опасности столкновения с воздушными объектами, элементами рельефа, а также зданиями и сооружениями.

МФ2 и ее модификации имеют средства встроенного контроля, который позволяет осуществлять автоматический контроль их составных частей в процессе настройки при изготовлении и при эксплуатации на борту самолета.

Другим потребителем МБРЛС МФ-2 с возможностью ее адаптации может стать учебно-боевой самолет Як-130 (Рис.5) (который предусматривается использовать и как малый штурмовик) [6].

Рис. 5 - Учебно-боевой самолет Як-130

Поэтому практически все вышесказанное о применении МФ-2 в штурмовиках типа Су-25 и его новых модификациях, относится и к Як-130. Следует отметить, что в прессе неоднократно сообщалось о том, что «установка бортовой РЛС предусмотрена проектом УБС Як-130, для чего соответствующая форма и конфигурация приданы носовой части фюзеляжа самолета». Называлось несколько их типов: фазотроновские «Копье-Щ», «Копье-М», «Копье-М1», ФК-130 (FК-130) и нииповская «Оса» (указанные радары имеют вес 80-90 кг). Однако по разным причинам место под обтекателем Як-130 до сих пор пустует. Его прекрасно может

занять МФ-2, адаптированная к носителю. При этом будет сэкономлено от 30 до 68 кг веса, что станет для Як-130 еще более заметным приобретением.

Не говоря о том, что без малогабаритной БРЛС, обеспечивающей круглосуточную работу при любой погоде, Як-130 не может стать полноценным боевым самолетом, он не может стать и полноценным учебно-тренировочным самолетом, если обучающиеся на нем пилоты не будут иметь опыта полета ночью и в непогоду.

МБРЛС МФ-2 может быть использована также и в иностранных учебнобоевых самолетах: М.346 - итальянском «близнеце» Як-130 (он был разработан совместно ОКБ им. Яковлева и итальянской компанией Aermacchi), КАІ Т-50 (Южная Корея) и др.

Заключение:

Разработка Московским авиационным институтом семейства малогабаритных, многофункциональных радаров нового поколения дает возможность решить задачи оснащения создаваемых летательных аппаратов (легких самолетов, вертолетов и беспилотных носителей) высокоинтеллектуальными современными радиолокационными системами, обеспечить импортозамещение в ряде случаев; обеспечить высокую эксплуатационную надежность, хорошую модернизируемость и высокие тактико-технические характеристики.

А победа МАИ в 2015 году в шестой очереди открытого конкурса Минобрнауки России позволила НЦ СРМ МАИ открыть совместный проект с ФГУП «ПО «Октябрь» по разработке и организации высокотехнологичного производства малогабаритной многорежимной бортовой радиолокационной системы Ки — диапазона волн (ММБРЛС) для оснащения перспективных беспилотных и вертолетных систем [8, 9].

Библиографический список

- Иванов С.В. Су-25 «Грач». Серия: Война в воздухе № 95.- М.: Арс, 2002.
 22 с.
- 2. Юферев C. Cy-39 перерождение штурмовика Cy-25, URL: https://topwar.ru/22556-su-39-pererozhdenie-shturmovika-su-25.html
- Канащенков А.И. Разработка стратегии корпораций и предприятий Вестник Московского авиационного института. 2010. Т. 17. № 4. С. 219-230.
- 4. Новиков С.В., Канащенков А.А. Вопросы стратегического управления потенциалом предприятий радиопромышленности // Труды международной научнопрактической конференции «Актуальные вопросы экономики, менеджмента и финансов в современных условиях», Санкт-Петербург, Россия, 11 января 2016. С. 27-29.
- Канащенков А.А., Канащенков А.И., Новиков С.В. Проблемы структурных преобразований современных корпораций и предприятий // Вестник Московского авиационного института. 2016. Т.24. №2. С 217-227.
- 6. Юферев С. Як-130 настоящее и будущее учебно-боевой авиации России // Армейский вестник, 2013, URL: http://army-news.ru/2013/02/yak-130-nastoyashhee-i-budushhee-uchebno-boevoj-aviacii-rossii/

- 7. Ананенков А.Е., Марин Д.В., Нуждин В.М., Расторгуев В.В., Скосырев В.Н. Экспериментальная оценка подавления отражений от подстилающей поверхности в РЛС с высоким пространственным разрешением // Материалы XI Всероссийской научно-технической конференции «Радиооптические технологии в приборостроении. Небуг, Россия, 20-25 августа 2015. С. 94-100.
- 8. Новиков С.В., Кулакова Д.С. Реализация комплексных проектов по созданию высокотехнологичного производствам // Научная дискуссия: инновации в современном мире. 2016. № 6 (49). С. 73-77.
- 9. Кулакова Д.С., Новиков С.В. Прогнозы коммерциализации результатов комплексного проекта // Научная дискуссия: вопросы экономики и управления. 2016. № 6 (50). С. 50-56.
- 10. Новиков С.В., Тихонов А.И. Государственные закупки инновационной продукции // Сборник научных трудов по итогам III международной научнопрактической конференции «Актуальные вопросы экономики и современного менеджмента». Самара, 2016. С. 21-24.
- 11. Исаков М.В., Нуждин В.М., Соколов П.В., Усачев В.А., Шнайдер В.Б. Отражения от водной поверхности при использовании сверхкороткоимпульсного зондирующего сигнала // Труды МАИ, 2014, № 76: http://www.mai.ru/science/trudy/published.php?ID=50117