На правах рукописи

Моржухина Алена Вячеславовна

ВЫСОКОТОЧНЫЕ МЕТОДЫ ЭКСПЕРИМЕНТАЛЬНОГО И МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ ПРОЦЕССОВ ТЕПЛООБМЕНА В СЛОЯХ ВЫСОКОПОРИСТЫХ ТЕПЛОЗАЩИТНЫХ ПОКРЫТИЙ ЛЕТАТЕЛЬНЫХ АППАРАТОВ

Специальности

01.04.14 — Теплофизика и теоретическая теплотехника 05.07.03 - Прочность и тепловые режимы летательных аппаратов

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата технических наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего профессионального образования авиационный институт (национальный исследовательский «Московский университет)» (МАИ).

Научный руководитель: доктор технических наук, профессор,

член-корреспондент РАН

Алифанов Олег Михайлович

Научный консультант: доктор технических наук, доцент

Черепанов Валерий Вениаминович

Официальные оппоненты: Елисеев Виктор Николаевич

> доктор технических профессор, наук, Московский государственный технический университет им. Н.Э. Баумана, профессор кафедры «Космические аппараты и ракеты-

носители»»

Юдин Валерий Михайлович

кандидат технических наук, ГНЦ ФГУП «Центральный аэрогидродинамический институт имени профессора Жуковского», ведущий научный сотрудник

НИО-3

Ведущая организация: Государственный научный центр РФ ОАО

«ОНПП «Технология»

Защита состоится «22» декабря 2014г. в 15:00 на заседании диссертационного совета Д 212.125.08, созданного на базе Московского авиационного института (национального исследовательского университета) (МАИ), по адресу: 125993 Москва, А-80, ГСП-3, Волоколамске шоссе, д.4.

С диссертацией можно ознакомиться в библиотеке и на сайте Московского авиационного института (национального исследовательского университета) (MAИ) http://www.mai.ru/events/defence/.

Автореферат разослан « » 2014 г.

Ученый секретарь диссертационного совета

Зуев Юрий Владимирович

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы

Обеспечение надежной защиты элементов конструкций летательных аппаратов (ЛА) от нагрева во время полета в атмосфере со скоростями, значительно превышающими скорость звука, была и остается одной из наиболее важных задач при проектировании изделий ракетно-космической техники. Одним из возможных путей решения общей задачи улучшения энергомассовых характеристик космических летательных аппаратов может являться создание тепловой защиты с использованием инновационных материалов с высокими удельными массовыми, прочностными и теплозащитными характеристиками. Проблемы разработки, создания и применения новых материалов являются актуальными и нуждаются в проведении дополнительных исследований.

факторами, Ключевыми определяющим использование существующих и внедрение новых теплозащитных материалов, являются достоверные данные о теплофизических характеристиках (ТФХ) таких материалов, которые, в основном, получают экспериментальным путем. Результаты экспериментальных исследований вследствие неточностей, имеющих место во время самого эксперимента, могут приводить к большим различиям между истинными характеристиками материала и экспериментально вычисленными. Проблему достоверного ТФХ усложняет то обстоятельство, что для большой номенклатуры теплоизоляционных и теплозащитных материалов данные по ключевым исходным позициям могут существенно отличаться у различных производителей и разработчиков. Неточности в исходных теплофизических данных при проектировании теплозащитных систем ЛА приходится учитывать введением соответствующих проектных запасов, в частности, по толщинам слоев теплозащитных пакетов, которые тем больше увеличивают суммарную массу теплозащиты, чем выше погрешности в определении теплофизических характеристик материалов слоев. Все это делает задачу технического планирования рационального экспериментальных исследований, корректного определения ТФХ и уточнения существующих данных для определенных классов материалов актуальной и требующей решения

Данные о тепловом состоянии исследуемых образцов материала часто получают за счет использования термопарных датчиков. Практическая необходимость в обеспечении контроля точности термопарных измерений на всех этапах экспериментальных исследований подразумевает определение основных механизмов формирования их погрешности, создание методических рекомендаций по прогнозированию ошибок температурных измерений с привлечением как уже существующих методик (работы Елисеева В.Н., Товстонога В.А., Соловова В.А., Резника С.В.), так и новых комплексных подходов к созданию системы теплофизической метрологии, основанной на экспериментальных тепловых исследованиях, методах

обратных задач идентификации и применении статистического подхода к построению расширенных математических моделей исследуемых материалов (работы Алифанова О.М., Божкова Н.А., Черепанова В.В.). Одновременное использование результатов численного моделирования и выходных данных экспериментального исследования материалов позволяет оценивать точность проведенных прикладных исследований и уточнять данные тепловых испытаний для их последующей обработки.

Вышеизложенное делает задачу прогнозирования и верификации данных экспериментальных исследований теплозащитных материалов актуальной. Вопросы, связанные, с разработкой высокоточных методов математического и экспериментального исследования свойств остаются наиболее неизученными в высоко — и ультрапористых материалах и нуждаются в более детальном рассмотрении.

Цель работы

Ланная работа посвящена созданию методики обработке результатов термопарных измерений в высоко - и ультрапористых теплозащитных материалах в условиях их нестационарного нагрева. В ней рассматриваются вопросы построения методов обнаружения методических погрешностей термопар и обобщению методов интерпретации их показаний последующего исследования указанных классов теплозащитных материалов.

Задачи работы

- 1. Анализ текущего состояния проблем определения погрешностей температурных измерений в образцах жаропрочных конструкционных материалов.
- 2. Разработка высокоточных математических методов и создание корректной математической модели определения температурного поля внутри образца полупрозрачного материала, используемого в качестве теплозащитного покрытия летательного аппарата, испытывающего радиационный и кондуктивный нестационарный нагрев.
- 3. Применение разработанной математической модели при планировании экспериментального исследования, определения основных механизмов формирования величины погрешности при термопарных измерениях, и для контроля точности и корректировки данных тепловых испытаний.
- 4. Оценка влияния выбранных режимов нагрева на погрешности измерения термопар, установленных в образцах исследуемых материалов.
- 5. Проведение сравнительного анализа результатов данных тепловых испытаний для различных режимов нагрева и с использованием термопар разных размеров, создание рекомендации по местам их установки.

Методы исследования

Основные данные работы получены по результатам экспериментальнотеоретического исследования, проведенного по оригинальной методике на специальном тепловакуумном стенде. В основу разработанного программного инструмента положен оригинальный высокоточный сеточный численный метод решения нестационарной нелинейной комбинированного радиационно-кондуктивного теплообмена в пластине высокопористого теплозащитного материала, подвергаемого апробированный метод решения нестационарному тепловому нагреву, кинетического уравнения переноса излучения в плоском слое, учет оптических и радиационных характеристик исследуемого материала.

Научная новизна

- 1. Разработаны и исследованы численные методы, создан необходимый программный инструмент, позволяющий точно моделировать процесс комбинированного теплообмена в экспериментальных образцах, определять их тепловое состояние при нестационарном внешнем тепловом воздействии.
- 2. При проведении экспериментальных исследований теплового состояния исследуемого высокопористого материала разработаны новые конструкционно-технологические решения экспериментального модуля. Осуществлялся непрерывный контроль точности измерения в ходе всего теплофизического эксперимента.
- 3. Определены основные факторы, влияющие на погрешность показания термопар, установлена величина погрешности в широком диапазоне изменения температуры образца.

Теоретическая и практическая ценность работы

Полученные результаты могут быть использованы при подготовке и теплотехнических испытаний образцов проведении высокопористых ТФХ теплозащитных материалов, ДЛЯ уточнения характеристик определенного класса материалов, при проектировании высокотемпературных тепловых покрытий ЛА. Данная работа может послужить основой для дальнейшего анализа и учета погрешностей температурных измерений, которые, как показано в работе, влияют на точность прикладных теплофизических исследований высокопористых теплозащитных и теплоизоляционных материалов.

Достоверность и обоснованность работы подтверждается результатами сравнительного анализа с существующими решениями отдельных задач подобного типа. Результаты численного моделирования и экспериментальных тепловых исследований подтверждают корректность и точность разработанной методологии.

Апробация работы и публикации

Основные научные результаты работы докладывались на научнотехнических конференциях. В частности, на международной конференции «Eurotherm Conference №.95: Computational Thermal Radiation in Participating Media IV» (Нанси, Франция, 18-20 апреля 2012г.), на XIV Минском международном форуме по тепло- и массообмену (Минск, Белоруссия, 10-13 сентября 2012г.), на конференции «Инновации в авиации и космонавтике» (Москва, Россия, 16-18 апреля 2013г.), на конференции «Проблемы газодинамики и тепломассообмена в энергетических установках» (Орехово-Зуево, Россия, 19-23 мая 2013г.), на международной конференции Зая Германско-Российская конференция молодых ученых «Авиация и космонавтика» (Third German - Russian week of the young researcher "Aviation and Space", Новосибирск, Россия, 21-27 сентября 2013г.).

Основные результаты диссертационной работы опубликованы в ряде научно-технических отчетов, 6 публикациях в научных изданиях, из них 2 научные работы опубликованы в изданиях, рекомендуемых Перечнем ВАК при Министерстве образования и науки РФ. Имеются 3 работы принятые к публикации в изданиях, рекомендуемых Перечнем ВАК при Министерстве образования и науки РФ.

Структура и объем работы

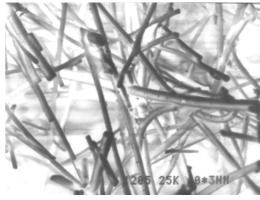
Диссертационная работа состоит из введения, пяти глав, заключения и списка литературы; содержит 118 страниц основного текста, 64 рисунка, 9 таблиц, список литературы из 64 наименований.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Bo обоснована диссертационного введении актуальность исследования, поставлены задачи и цель работы. Доказана достоверность и обоснованность результатов диссертационной работы. Кратко охарактеризованы методы теоретического экспериментального исследования, а так же доказана научная ценность и значимость работы.

В первой главе диссертационной работы рассмотрены некоторые вопросы проектирования теплозащитных покрытий ЛА и вопросы выбора Приведен конструкционных материалов. краткий анализ влияния методических погрешности термопарных измерений на достоверное температуры образцах исследуемых определение В теплозащитных материалов во время проведения тепловых исследований.

На основании проведенного анализа автором сделан вывод, что при внедрении и использовании новых теплозащитных материалов и изделий ключевой задачей остается достоверное определение теплофизических характеристик таких материалов. Знание ТФХ используемых теплотехнических материалов во всем диапазоне изменения значений температуры позволяет решать задачи оптимального проектирования теплозащитных теплоизоляционных конструкций (особенно И многослойных), создает «реперные» точки для последующей настройки расширенных математических моделей, позволяющих исследовать широкий спектр физических свойств.


Показано, что вопрос определения методических погрешностей показаний термопар в ультра - и высокопористых материалах, используемых для работы в условиях нестационарных ударных темпов нагрева, остается наиболее неизученным.

второй главе рассмотрена постановка физической исследования. Выбран определенный класс теплозащитных материалов для теоретического экспериментального исследования И высокопористые теплозащитные материалы на неметаллической основе. Доказано, что для комплексного исследования теплофизических свойств высокопористых теплозащитных материалов, особенно плохо изученных, целесообразно разработать методологию прогнозирования свойств таких материалов с учетом результатов экспериментальных исследований. Данные, полученные ПО результатам совместного математического исследования, использоваться, экспериментального ΜΟΓΥΤ как и при последующем решении соответствующих обратных задач, так и для определения ТФХ подобных материалов без проведения экспериментальных исследований.

Разрабатываемый исследовательский комплекс предлагалось апробировать сначала на хорошо изученном материале, свойства которого известны с достоверной точностью, чтобы иметь возможность оценить неточности, наличие которых не может быть с уверенностью исключено при проведении экспериментальных исследований. В качестве такого материала было принято решение выбрать материал T3MK-10 - высокопористый керамический материал на основе ультратонкого кварцевого волокна SiO_2 .

Представлены микрофотографии структуры исследуемого материала (рис.1), сводные данные по его теплофизическим характеристикам, область применения и ключевые характеристики.

Рис.1 Микрофотографии структуры пористого волокнистого материала ТЗМК-10 (по данным НПО «Молния»)

Обоснован выбор плоской геометрии исследуемого теплозащитного покрытия, определены характерные размеры пластин для проведения тепловых испытаний. Предоставлены характеристики экспериментального оборудования, разработано техническое задание на проведение тепловых исследований.

В третьей главе рассмотрен метод математического моделирования комбинированного теплообмена в образце исследуемого материала. Физическая модель комбинированного теплообмена в слоях высокопористой тепловой защиты космических летательных аппаратов, делает возможным

исследование этого процесса в пределах плоского слоя теплозащитного материала, или пластины в форме прямоугольного параллелепипеда с достаточно большим отношением ее размеров в направлениях, ортогональных тепловому потоку. Расчет поля температуры подобного образца теплозащитного материала определяется на основе решения классической задачи радиационно-кондуктивного теплообмена Накопленный опыт исследования подобных процессов в полупрозрачных теплозащитных материалах и специфика физической модели позволили решать такую задачу в двумерной постановке (рис.2).

$$C(T)\frac{\partial T}{\partial t} = div(\mathbf{\Lambda}_c \cdot \nabla T + \mathbf{q}_r) + Q(T, \mathbf{r}, t), \ \mathbf{r} \in (0, H_x) \times (0, H_y)$$

$$-\lambda_{cx}(T, \mathbf{r}_G)\frac{\partial T}{\partial x} + \alpha_x(\mathbf{r}_G)T = q_x(\mathbf{r}_G, t), \ \mathbf{r}_G \in G_1 \cup G_3,$$

$$-\lambda_{cy}(T, \mathbf{r}_G)\frac{\partial T}{\partial y} + \alpha_y(\mathbf{r}_G)T = q_y(\mathbf{r}_G, t), \ \mathbf{r}_G \in G_2 \cup G_4,$$

$$\mathbf{Puc. 2} \ \mathbf{Pacчетная}$$
область
$$\mathbf{\Lambda}_c(T, \mathbf{r}) = \begin{pmatrix} \lambda_{cx} & 0 \\ 0 & \lambda_{cy} \end{pmatrix}, \ \mathbf{q}_r = \int_{(4\pi)} I(\mathbf{r}, \mathbf{\Omega}, t)\mathbf{\Omega} d\mathbf{\Omega},$$

$$(1)$$

В задаче (1) Λc - тензор кондуктивной теплопроводности, C - объемная теплоемкость, Q — объемный источник тепла, αv , qv, v=x,y- коэффициент температуропроводности и плотность кондуктивного теплового потока на границах области, qr, I — интегральные по спектру плотность радиационного потока энергии и интенсивность излучения, Ω - единичный вектор направления распространения излучения, $d\Omega=\sin\theta d\theta d\phi$ - элементарный телесный угол (θ , ϕ - полярный и азимутальный углы сферической системы координат с полярной осью Оу, ориентированной поперек слоя материала).

В оптически толстых слоях материалов, в которых формируется глубинный режим близкого к изотропному излучения, оценить интегральный по спектру лучистый поток энергии можно на макроуровне

$$\mathbf{q}_{r} = -\frac{lc}{3} \nabla U , U = \int_{0}^{\infty} U_{\lambda} d\lambda , l = \int_{0}^{\infty} l_{\lambda}^{'} \frac{dU_{\lambda}}{dT} d\lambda / \int_{0}^{\infty} \frac{dU_{\lambda}}{dT} d\lambda ,$$

$$l_{\lambda}^{'} = ((\alpha_{\lambda} + \beta_{\lambda})(1 - e^{-\eta}))^{-1} , \eta = \frac{hc}{\lambda kT} , U_{\lambda}(\mathbf{r}, t) = c^{-1} \int_{(4\pi)}^{\infty} I_{\lambda}(\mathbf{r}, \Omega, t) d\Omega .$$
(2)

Здесь l — пробег фотонов по Росселанду, α и β — коэффициенты поглощения и рассеяния материала, $c=c_0/n$, c_0,n — скорость света в вакууме и показатель преломления среды, в которую погружены фрагменты материала (газ в порах), λ — длина волны в вакууме, индексом λ отмечены спектральные характеристики. Предполагая локальное равновесие или слабое отклонение от него, можно использовать приближение лучистой теплопроводности, диффузное или диффузно-транспортное приближения. Все они позволяют

ввести радиационную теплопроводность и использовать для радиационного потока закон Фурье:

$$\mathbf{q}_{x} = -\lambda_{x} \nabla T \quad , \tag{3}$$

В высоко- и ультрапористых теплозащитных материалах фрагменты материала являются анизотропными, а их размер сопоставим с длиной волны, в этом случае излучение для таких длин волн может значительно отличаться от изотропного излучения. В средах, где имеют место процессы рассеяния, поведение излучения является существенно сложнее, нежели в чисто поглощающих средах. В таком случае излучение необходимо описывать на кинетическом уровне, решая уравнение переноса излучения.

В случае плоского слоя теплозащитного материала (рис.3) толщиной *Ну* мы приходим к известной интегрально-краевой задачи, для которой справедливы формулы:

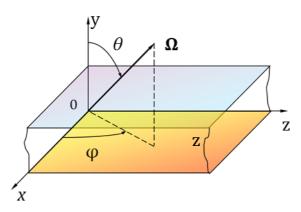


Рис. 3 Модель плоского слоя теплозащитного покрытия

$$(\mu \frac{\partial}{\partial y} + \gamma(y))I(y,\mu) = \alpha(y)I_b(y) + \beta(y) \int_{-1}^{1} \sigma(y,\mu,\mu_1)I(y,\mu_1)d\mu_1 \quad , \tag{4}$$

$$I(0,\mu) = I_b(0) , \mu > 0 ,$$

$$I(H_v,\mu) = I_b(H_v) , \mu < 0$$
(5)

где I — спектральная интенсивность излучения, $\alpha,\beta,\gamma=\alpha+\beta$ - локальные спектральные коэффициенты поглощения, рассеяния, ослабления соответственно, $\sigma(y,\mu,\mu_{\rm l}) = \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} p(y,\mathbf{\Omega}\cdot\mathbf{\Omega}_{\rm l}) d\varphi d\varphi_{\rm l}$ - усредненная фазовая

функция, для которой выполнено условие нормировки $\int\limits_{(4\pi)} p(y, \mathbf{\Omega} \cdot \mathbf{\Omega}_1) d\mathbf{\Omega}_1$ = 1 , $\mathbf{\Omega}$ -

единичный вектор направления, $d\Omega = sin\theta d\theta d\phi$ - элементарный телесный угол (θ,φ) - полярный и азимутальный углы сферической системы координат с полярной осью Oy, ориентированной поперек слоя), $\mu = cos\theta$, Ib - интенсивность равновесного излучения, определяемая формулой Планка.

Для численного решения уравнения радиационно-кондуктивного теплообмена задача (1) масштабировалась с использованием естественной системы масштабов, которая устраняла дополнительные коэффициенты,

возникающие в безразмерной задаче. Для аппроксимации уравнения энергии теплопроводности использовался известный гибридный неявный метод переменных направлений с дробными шагами:

$$C_{lk}^{n+1/2} \frac{(\tilde{T}_{lk}^{n+1/2} - T_{lk}^{n})}{\tau / 2} = L_{xlk}^{n+1/2} + L_{ylk}^{n} + Q_{lk}^{n+1/2} , \qquad (6)$$

$$C_{lk}^{n+1/2} \frac{(T_{lk}^{n+1} - \tilde{T}_{lk}^{n+1/2})}{\tau / 2} = L_{xlk}^{n+1/2} + L_{ylk}^{n+1} + Q_{lk}^{n+1/2} , \qquad (7)$$

где

$$L_{xlk}^{n+1/2} = \frac{\lambda_x (T_{l+0.5,k}^{n+1/2}) (\tilde{T}_{l+1,k}^{n+1/2} - \tilde{T}_{lk}^{n+1/2}) - \lambda_x (T_{l-0.5,k}^{n+1/2}) (\tilde{T}_{l,k}^{n+1/2} - \tilde{T}_{l-1,k}^{n+1/2})}{h_x^2}, T_{l\pm0.5,k}^{n+1/2} = \frac{T_{lk}^{n+1/2} + T_{l\pm1,k}^{n+1/2}}{2},$$

$$L_{ylk}^i = \frac{\lambda_y (T_{l,k+0.5}^{n+1/2}) (T_{l,k+1}^i - T_{lk}^i) - \lambda_y (T_{l,k-0.5}^{n+1/2}) (T_{lk}^i - T_{l,k-1}^i)}{h_y^2}, T_{l,k\pm0.5}^{n+1/2} = \frac{T_{lk}^{n+1/2} + T_{l,k\pm1}^{n+1/2}}{2},$$

$$C_{lk}^{n+1/2} = C(T_{lk}^{n+1/2}), Q_{lk}^{n+1/2} = Q(T_{lk}^{n+1/2}), i = n \lor n + 1,$$

$$(8)$$

где τ , hx, hy - шаг метода по времени и шаги пространственной сетки соответственно, нижние индексы относятся к пространственным переменным, верхний указывает номер итерации по времени. Схема имеет 2-й порядок точности аппроксимации по пространственным переменным и с такой же точностью аппроксимирует по времени уравнение (1) на дробном временном слое n+1/2. Полусумма (6) и (7) имеет вид:

$$C_{lk}^{n+1/2} \frac{(T_{lk}^{n+1} - T_{lk}^{n})}{\tau} = L_{xlk}^{n+1/2} + \frac{1}{2} (L_{ylk}^{n} + L_{ylk}^{n+1}) + Q_{lk}^{n+1/2}$$
(9)

где все коэффициенты уравнения вычисляются по предварительно рассчитанному полю температуры $T_{lk}^{n+1/2}$ с использованием следующей неявной схемы типа предиктор-корректор с дополнительным шагом n+1/4:

$$C(T_{lk}^{n})\frac{(\tilde{T}_{lk}^{n+1/4} - T_{lk}^{n})}{\tau/4} = \frac{\lambda_{x}(T_{l+0.5,k}^{n})(\tilde{T}_{l+1,k}^{n+1/4} - \tilde{T}_{lk}^{n+1/4}) - \lambda_{x}(T_{l-0.5,k}^{n})(\tilde{T}_{l,k}^{n+1/4} - \tilde{T}_{l-1,k}^{n+1/4})}{h_{x}^{2}} + \frac{\lambda_{y}(T_{l,k+0.5}^{n})(T_{l,k+1}^{n} - T_{lk}^{n}) - \lambda_{y}(T_{l,k-0.5}^{n})(T_{l,k}^{n} - T_{l,k-1}^{n})}{h_{y}^{2}} + Q(T_{lk}^{n}),$$

$$(10)$$

$$C(\tilde{T}_{lk}^{n+1/4}) \frac{(T_{lk}^{n+1/2} - T_{lk}^{n})}{\tau/2} = \frac{\lambda_{x}(\tilde{T}_{l+0.5,k}^{n+1/4})(\tilde{T}_{l+1,k}^{n+1/4} - \tilde{T}_{lk}^{n+1/4}) - \lambda_{x}(\tilde{T}_{l-0.5,k}^{n+1/4})(\tilde{T}_{lk}^{n+1/4} - \tilde{T}_{l-1,k}^{n+1/4})}{h_{x}^{2}} + \frac{[\lambda_{y}(\tilde{T}_{l,k+0.5}^{n+1/4})(\hat{T}_{l,k+1}^{n+1/4} - \hat{T}_{lk}^{n+1/4}) - \lambda_{y}(\tilde{T}_{l,k-0.5}^{n+1/4})(\hat{T}_{lk}^{n+1/4} - \hat{T}_{l,k-1}^{n+1/4})}{h_{y}^{2}} + Q(\tilde{T}_{lk}^{n+1/4}), \hat{T}_{lk}^{n+1/4} = \frac{T_{lk}^{n+1/2} + T_{lk}^{n}}{2}.$$
(11)

Стоит отметить, что в приведенных выше соотношениях, волной отмечены значения температуры, которые, строго говоря, нельзя соотнести с временным слоем, определяемым по ее верхнему индексу. Это связано с тем, что при получении этих значений используются дифференциальные операторы по различным пространственным переменным, относящиеся к различным временным слоям.

Пространственные производные в граничных условиях (1) аппроксимируются на каждом шаге метода неявно и односторонним образом и также с точностью второго порядка. Например,

$$\left(\frac{\partial T}{\partial x}\right)_{1,k} = \frac{-3T_{1,k} + 4T_{2,k} - T_{3,k}}{2h_x} + O(h_x^3), \left(\frac{\partial T}{\partial x}\right)_{N_x,k} = \frac{3T_{N_x,k} - 4T_{N_x-1,k} + T_{N_x-2,k}}{2h_x} + O(h_x^3)$$
(12)

где Nx - число узлов сетки по координате x. Полученные на всех стадиях решения трехдиагональные системы уравнений решаются скалярной прогонкой. Для реализации численного метода и решения задачи по определению температурного поля внутри образца частично прозрачного материала в рабочей среде MATLAB был разработан соответствующий программный инструмент.

Корректность численного метода была проверена на точных аналитических решениях. Полученные данные подтвердили надежность, достаточно высокую точность численного метода и возможность его применения для верификации данных полученных альтернативными, в том числе и экспериментальными, методами.

Так же в **третьей главе** результаты анализа шага «предикто-корректор» показали, что проблемы численного решения уравнения (4) связаны в первую очередь с наличием малого коэффициента перед пространственной производной. Они возникают, когда жесткая компонента уравнения (4) включена в какое-либо из уравнений для «дробных шагов» наряду с другими компонентами исходного уравнения (за исключением, возможно, производной по времени). Поэтому предлагается следующий алгоритм расщепления по «физическим процессам».

1. В первую очередь делается «дробный» шаг «конвекции», обрабатывающий только жесткую компоненту уравнения (4). На этом шаге используется схема «дифференцирование против потока», формируется условие устойчивости, определяющее шаг метода по времени, и учитываются пространственные граничные условия.

$$I^{n+1/3}(y,\mu) - I^{n}(y,\mu) + \tau \frac{\partial}{\partial y}(\mu I^{n}(y,\mu)) = 0 , \tau < \Delta y / \max \mu_{j}$$
 (13)

Стоит заметить, что если следующий шаг подобного явного алгоритма будет учитывать остальные неинтегральные компоненты уравнения (4), т.е. будет связан с учетом физических процессов ослабления излучения и вторичного излучения после поглощения, то в результате возникает двух шаговый в целом алгоритм

2. Поэтому на втором шаге нужно учитывать действие интегральной компоненты уравнения (3.6), связывая этот шаг с процессом своеобразного «перемешивания» излучения, порождаемым рассеянием:

$$I^{n+2/3}(y,\mu) = I^{n+1/3}(y,\mu) + \tau \beta(y) \int_{-1}^{1} \sigma(y,\mu,\mu_1) I^{n+1/3}(y,\mu_1) d\mu_1 , \qquad (14)$$

3. Шаг учета эффектов вторичного излучения и ослабления:

$$I_{\nu}^{n+1}(y,\mu) = I_{\nu}^{n+2/3}(y,\mu) + \tau(\alpha(y)I_{b\nu}(y) - \gamma(y)I_{\nu}^{n+2/3}(y,\mu)) \quad . \tag{15}$$

Практическое применение показывает простоту и эффективность указанного метода. Итерации (13)-(15) сходятся при выполнении условия устойчивости (13). Сходимость метода практически не зависит от выбора начального состояния, как и структура стационарного решения, которое, зависит лишь от параметров задачи. Естественно, в подобных расчетах должен также осуществляться непрерывный контроль за невязкой стационарного уравнения в узлах разностной сетки. Для описанного метода также написана программа в рабочей среде МАТLАВ.

В заключение стоит отметить, что решение кинетического уравнения в полном виде, безусловно, создает возможность для контроля корректности разного рода аналитических приближений в теории переноса излучения: диффузионного, диффузионно- транспортного, метода моментов и др.

В четвертой главе представлены результаты экспериментального исследования образцов высокопористого волокнистого композиционного материала ТЗМК-10. Основными целями проведенных тепловых испытаний образцов материала ТЗМК-10 являлось определение, с использованием термопарных измерений одномерных полей температур в направлении перпендикулярном плоскости осаждения волокон в образцах, имеющих форму плоских пластин и определение плотностей тепловых потоков на нагреваемых поверхностях образцов В условиях нестационарного радиационно-кондуктивного нагрева в вакууме, в диапазоне температур от комнатной до 1000°С. Предполагалось, что исследуемый материал является термостабильным в исследуемом диапазоне температур 25÷1000°C.

Для реализации поставленной задачи проводились следующие измерения

Основные измерения:

- $T_i(\tau), 0 \le \tau \le \tau_e$ изменение температуры в заданных точках схемы измерений $X_i, i = \overline{1,M}$ в образцах исследуемого материала;
- $T_i(\tau), 0 \le \tau \le \tau_e$ изменение температуры в заданных точках схемы измерений X_i , $i = \overline{M+1,M1}$ в датчиках плотности теплового потока на обратных поверхностях образцов.

- $T_{H9}(\tau)$, $0 \le \tau \le \tau_e$ изменение температуры нагревательного элемента (НЭ) экспериментального модуля (ЭМ) (используется для определения плотности теплового потока от (НЭ), и в системе управления нагревом);
- $I(\tau)$, $0 \le \tau \le \tau_e$ изменение тока в цепи НЭ и $U(\tau)$, $0 \le \tau \le \tau_e$ изменение напряжения на границах рабочей зоны НЭ. Данные характеристики используются для расчета электрической мощности выделяемой в рабочей зоне НЭ при определении плотности теплового потока на НЭ.

Дополнительные измерения:

- Геометрические размеры и масса образцов для определения плотности исследуемого материала.
- Геометрические размеры и масса датчиков теплового потока для определения плотности используемого в датчиках материала.

В процессе подготовки и проведения тепловых испытаний были решены задачи и выполнены следующие работы:

- Разработано и согласовано ТЗ на подготовку и проведение тепловых испытаний;
- Проведено фотографирование образцов, а также обмер и взвешивание образцов с целью определения плотности исследуемого материала;
- Разработаны и реализованы конструктивные и технологические решения проблем, связанных с необходимостью обеспечения хорошей повторяемости условий проведения испытаний при смене схемы измерений в образцах (включая проблемы обеспечения минимизации и стабильности контактных термических сопротивлений между элементами образцов и датчиков плотности тепловых потоков, проблемы обеспечения повторяемости режимов нагрева и др.). Для выбора решений была проведена необходимая технологическая НИР с использованием пробных образцов.
- Разработана конструкция экспериментальных образцов и датчиков плотности теплового потока (включая, схему температурных измерений, выбор термодатчиков, и др.);
- Доработана конструкция экспериментального модуля ЭМ-2Т с учетом свойств исследуемых образцов материала и исходных данных на испытания;
- Разработана методика подготовки и проведения данных тепловых испытаний на основе общей методики проведения тепловых испытаний на стенде ТВС-2М с модулем ЭМ-2Т;
- Проведено изготовление и контроль термодатчиков, изготовление и препарирование экспериментальных образцов, изготовление элементов доработанного ЭМ (включая НЭ с управляющими термопарами, теплоизоляционные оправки и средства электроизоляции), изготовление и контроль датчиков теплового потока из материала ТЗМК-10;

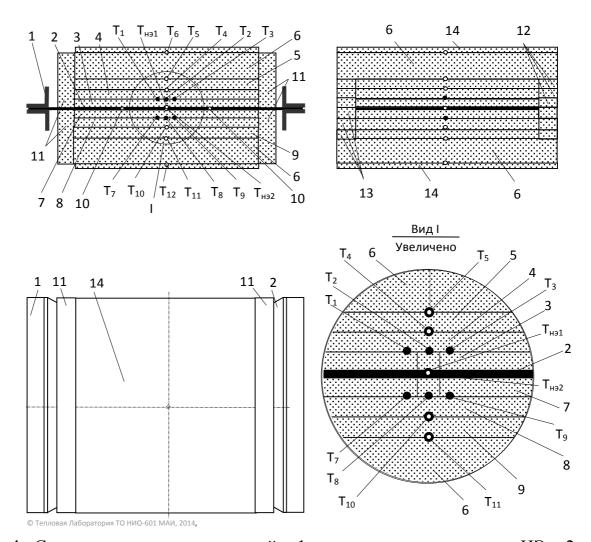
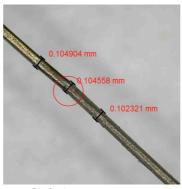
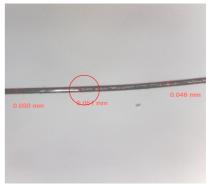


Рис.4 Схема тепловых испытаний: 1 – прижимная планка НЭ, 2 – нагревательный элемент (НЭ), 3 - секция А1 образца А, 4 -секция А2 образца A, 5 – датчик плотности теплового потока $D_{\rm A}$ на образце A,6 – прижимная теплоизолирующая пластина, 7 – секция В1 образца В, 8 – секция В2 образца В, 9 – датчик плотности теплового потока DB на образце В, 10 точки измерения напряжения на НЭ, 11 - теплоизолирующая пластина, 12 натяжные теплоизолирующие рамки на образце А, 13 на образце Β, теплоизолирующие рамки 14 дополнительная электроизолирующая пластина, T_{нэ1} - «управляющая» термопара на НЭ и нагреваемой поверхности образцов A и B, T_{нэ2} – резервная «управляющая» термопара на НЭ и нагреваемой поверхности образцов А и В, Т₁, Т₂, и Т₃исследуемые термопары в образце А, Т₄ - термопара на обратной поверхности образца А и на нагреваемой поверхности датчика, Т₅ – термопара на обратной поверхности датчика теплового потока на образце А, Т₆- термопара на обратной поверхности прижимной пластины на образце $A, T_7, T_8, и T_9 - исследуемые термопары в образце <math>B, T_{10} -$ термопара на обратной поверхности образца В и на нагреваемой поверхности датчика, Т₁₁ - термопара на обратной поверхности датчика плотности теплового потока на образце В, Т₁₂ - термопара на обратной поверхности прижимной пластины на образце В

• Проведена сборка ЭМ, предварительный контроль качества управляющих и измерительных линий, установка ЭМ в вакуумную камеру, подключение и контроль управляющих и измерительных линий к автоматизированной системе (АС). Проверка и подготовка систем стенда;


Для проведения тепловых испытаний материала ТЗМК-10 были разработаны и изготовлены два одинаковых экспериментальных образца A и B, имеющие форму квадратных пластин с размерами (длина \times ширина \times толщина) \sim 100 \times 100 \times 20 мм Каждый образец конструктивно представляет собой сборку из двух одинаковых квадратных пластин (секций) A1, A2 и B1, B2 соответственно, с размерами (длина \times ширина \times толщина) \sim 100 \times 100 \times 10 мм.

Все секции образцов были изготовлены из одного исходного блока материала ТЗМК-10, с целью уменьшения возможного разброса физических свойств. Средняя плотность материала ТЗМК-10 определенная путем взвешивания и расчета объема образцов составляла 149,2 кг/м³. Парные секции экспериментальных образцов А1, А2 (В1, В2) в процессе их сборки в экспериментальный модуль плотно прижимались друг к другу. В испытаниях использовалась симметричная схема нагрева двух образцов А и В (рис.4).


Тепловые испытания образцов с использованием схемы испытаний, приведенной на рис.4 проводились в два этапа (с наличием термопар большего диаметра в исследуемой области и без них). В качестве исследуемых термопар в образцах использовались термопары типа Хромель-Алюмель (тип К) с различными диаметрами проводов (рис.5). Целевые термопары устанавливались между секциями образца в его середине на расстоянии 5 мм друг от друга с изотермическими участками длинной ~100 мм. В образце А: - термопара Т1 (0,05мм, сварка «в стык»), термопара Т2 (0,1мм, сварка «в стык»), термопара Т3 (0,2мм, сварка «с корольком», диаметр королька термопары Ø 0,45мм). В образце В – термопары Т7,Т8,Т9 соответственно.

Ø 0,2 мм, сварка «с корольком»

Ø 0,1 мм, сварка «в стык»

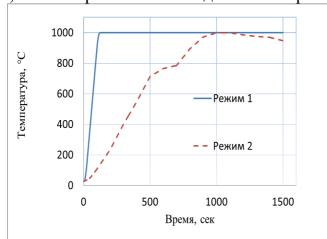
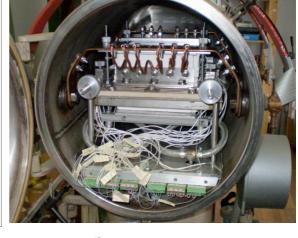
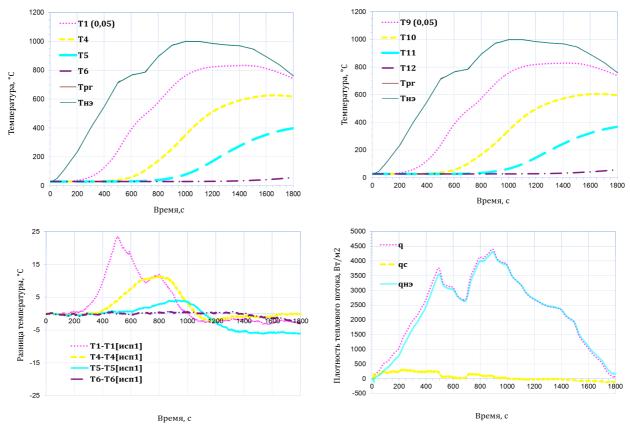

Ø 0,05 мм, сварка «в стык»

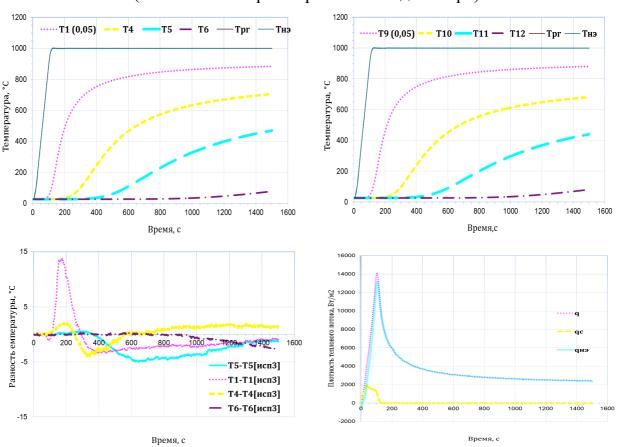
Рис. 5 Целевые термопары при увеличении


Для реализации схемы нагрева образцов было предложено два режима нагрева (рис.6). В соответствии с принятой схемой была проведена серия испытаний нагрева образцов материала. На первом этапе тепловых

испытаний были реализованы режимы нагрева №1 и №2 с наличием трех термопар различных диаметров в контрольном сечении (10 мм от НЭ), на втором этапе термопары диаметром 0,2 и 0,1 мм были удалены, экспериментальный модуль с термопарой диаметром 0,05 мм так же несколько раз был прогрет на режимах №1 и №2.

Собранный экспериментальный модуль с образцами (рис. 7) устанавливался в вакуумную камеру стенда, подключался к тоководам системы электропитания НЭ и сигнальным линиям системы измерений. Перед каждым испытаниями проводился контроль измерительных линий АС. Далее проводилась сушка и прожиг экспериментальной сборки образцов в вакууме в течение 1000с при средней температуре 500°C и среднем давлении 3.0×10^{-4} бар. Затем охлаждение и сохранение экспериментальной сборки.


Рис. 6 Режимы прогрева образцов материала ТЗМК-10


Рис. 7 Экспериментальный модуль в вакуумной камере стенда ТВС-2М

Некоторые результаты тепловых испытаний представлены на рис.8-9 для второго этапа испытаний без наличия более толстых термопар. Показана разница в показаниях термопар с наличием более толстых термопар (испытание \mathbb{N}_{2} 1,3) и без них. Т1, Т4, Т5, Т6 — термопары, расположенные на расстоянии 10, 20, 30 и 50 мм от НЭ соответственно.

Сравнительный анализ результатов тепловых испытаний образцов исследуемого материала показал, что наличие термопар большого диаметра термопар приводит к искажению в показаниях. На начальных участках времени за счет отвода тепла по электродам термопары измеренное значение «запаздывает» от истинной температуры, и эта разница может достигать 25°C. Полученные В испытаниях результаты позволяют дальнейшей обработки данных экспериментальных исследований решать задачи математического моделирования поля температур в образцах с установленными термопарами и без термопар, определять (уточнять) ТФХ исследуемого материала из решения соответствующих ОЗТ. Уточнение ТФХ материала позволяет более корректно решить задачи моделирования поля оценки влияния термопар на поле температуры температуры и исследуемых образцах

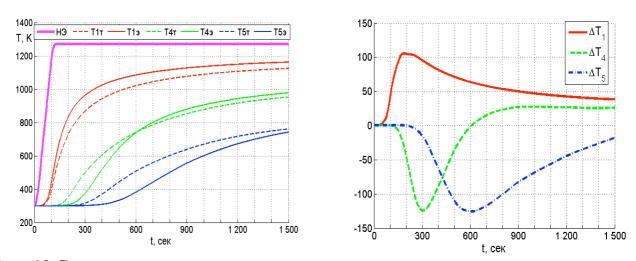


Рис. 8 Результаты прогрева образцов на режиме №2 (без наличия термопар большего диаметра)

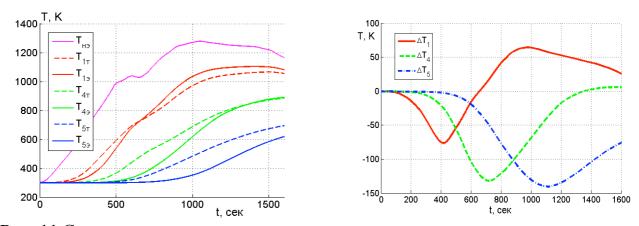


Рис. 9 Результаты прогрева образцов на режиме №1 (без наличия термопар большего диаметра)

пятой главе проведен сравнительный анализ результатов численного и экспериментального исследования образцов материала ТЗМК-10. Для практической реализации численного метода в рабочей среде MATLAB был подготовлен комплекс программ и проведено моделирование T3MK-10 теплового состояния образцов материала теплофизических характеристик материала и алгоритма, разработанного в рамках данных исследований. Некоторые результаты расчетов прогрева образца в осевом сечении пластины материала с размерами 10х10х30 мм в сравнении с экспериментальными данными приводятся на рис. 10-11.

Рис. 10 Сравнение результатов экспериментального и аналитического решения для режима нагрева №1 в контрольных точках T1, T4, T5

Рис. 11 Сравнение результатов экспериментального и аналитического решения для режима нагрева №2 в контрольных точках T1,T4,T5

Под величиной ΔT здесь и далее подразумевается разность показаний тепловых датчиков и значений температуры, полученных в точках расположения термопар при математическом моделировании.

Видно, что имеется отличие экспериментальных и рассчитанных значений температуры. В точках, расположенных относительно близко к нагревательному элементу, экспериментальные значения, как правило, превышают соответствующие теоретические. Однако, с продвижением

«вглубь» материала в сторону холодной границы, экспериментальные значения температуры становятся ниже соответствующих теоретических. Кривые, демонстрирующие погрешности ΔT подобны, однако, не во всех случаях совпадает знак погрешности.

Для определения механизма формирования погрешности измерений анализировалось поведение плотности тепловых потоков в месте установки термопар (см. рис. 12-14). Также на рис.12-14 приведены соответствующие значения погрешности измерений и разность плотностей кондуктивного и радиационного потоков.

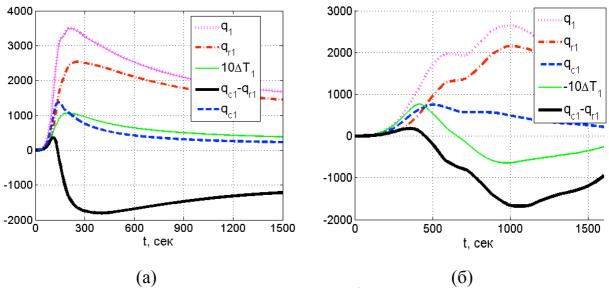
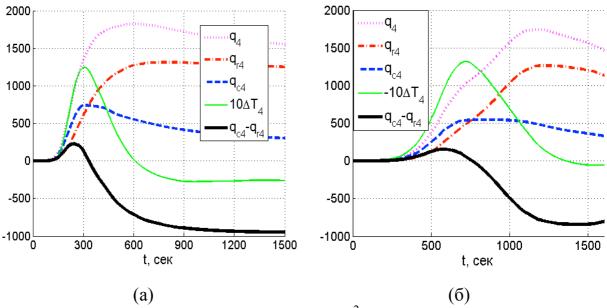
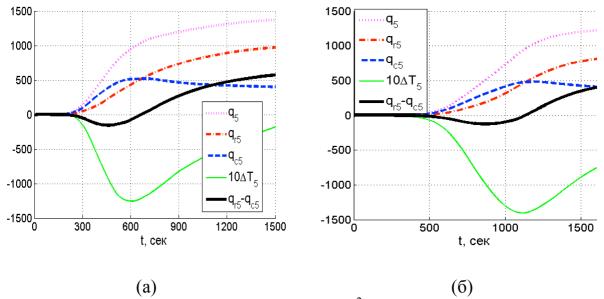




Рис. 12 Плотности тепловых потоков ($Bт/м^2$) в контрольной точке T1 для режима нагрева №1 - (а) и №2 - (б).

Рис. 13 Плотности тепловых потоков ($Bт/м^2$) в контрольной точке Т5 для режима нагрева №1 - (а) и №2 - (б).

Рис. 14 Плотности тепловых потоков ($Bт/m^2$) в контрольной точке Т5 для режима нагрева №1 – (а) и №2 – (б).

подобие Приведенные рисунки демонстрируют наглядно зависимостей эволюшионных разности плотностей погрешности кондуктивного радиационного теплового потока. говорит существовании двух «конкурирующих» разнонаправленных механизмов, изменяющих показания термопар: радиационный тепловой поток завышает наличие термопары, термосопротивления, кондуктивный поток, показания термопары занижает.

следует 10-11, наибольшие Например, ИЗ рис. погрешности в показаниях термопар (до 148 градусов) достигаются в слоях более удаленных от НЭ при такой температуре, когда отсутствует влияние радиационной составляющей теплового потока. В этой области действие существенно занижает собственную термосопротивления, температуру термопары по сравнению с ее истинным значением, а завышающее показания действие радиационного потока невелико. Полученные результаты могут быть использованы при дальнейшем исследовании подобных высокопористых материалов для корректировки результирующих показаний контактных датчиков температуры.

Поведение погрешности термопары Т1 в режиме ударного нагрева существенно иное. Для режима №1 максимальное значение погрешности для контрольной точки Т1, расположенной на расстоянии 10мм от НЭ, достигается на 200 секунде, в это же время (рис 12.) достигается максимум плотности теплового потока на той же глубине, а температура в исследуемом слое равна приблизительно 700°C. Экспериментальные данные сильно превышают истинное значение температуры, что вызвано высоким темпом достаточно быстрым включением влияния теплового составляющей которая плотности потока, из-за высокой пористости материала практически сразу начинает действовать. Погрешность показаний термопары Т1 определяются поэтому не только составляющими локального теплового потока, но и определенной частью радиационного теплового потока НЭ, практически «напрямую», воздействующего на термопару.

В контрольных точках Т4 и Т5, расположенных на глубине 20 и 30 мм, максимальные погрешности термопарных достигают 130°. Так, первоначально экспериментальные показания в точке Т5 существенно ниже по сравнению с результатами расчета, в силу термосопротивления, экспериментальной И В проявляется своеобразный эффект «запаздывания». Однако, при достижении в этих слоях температуры включения радиационной компоненты теплового (≈500K) происходит выравнивание экспериментальной потока теоретической кривой.

Для режима нагрева №2 наблюдается похожий характер поведения погрешностей измерения. Однако, из-за того, что в этом программном режиме нагрев имел более пологий характер, знак погрешности в слоях, расположенных ближе к НЭ, противоположен имеющемуся в режиме ударного нагрева: эта область дольше подвергается превалирующему воздействию кондуктивного теплового потока, T.K. воздействие радиационной компоненты включается существенно позже. Данные условия усугубляют проблему корректного определения температуры в глубинных слоях, где практически на всем участке нагрева из-за термосопротивления в контакта «термопара-образец» истинные значения искажаются показаниями термопары более сильно.

ОСНОВНЫЕ ВЫВОДЫ И РЕЗУЛЬТАТЫ РАБОТЫ

- 1. Определена и обоснована физическая модель для уточнения экспериментально-расчетной методики исследования физических свойств полупрозрачных высокопористых теплозащитных материалов. На этом этапе работы были выбраны геометрические характеристики образца, тип исследуемого материал для отработки данной методики в качестве примера, тип граничных условий и варианты режимов теплового нагружения.
- 2. Разработана математическая модель процессов радиационнокондуктивного теплообмена в образце высокопористого частично прозрачного теплозащитного материала. Предложен и апробирован численный метод решения задачи радиационно-кондуктивного теплообмена и численный метод решения кинетической задачи переноса излучения в плоском слое частично прозрачного материала. По результатам сравнения с аналитическими решениями и анализа поведения невязки кинетического

уравнения в процессе решения задачи была подтверждена высокая достоверность и точность численных методов.

- 3. Проведено планирование эксперимента и определена схема и методика температурных измерений. Получены обоснованы конструктивно-технологические решения, провести позволяющие высокоточные экспериментальные исследования выбранного теплозащитного материала ТЗМК-10 на тепловакуумном стенде ТВС-2М с использованием специального экспериментального модуля ЭМ-2Т.
- 4. Проведены тепловые испытания образцов материала ТЗМК-10 с применением разработанной методики. Результаты проведенных экспериментальных исследований и их анализ показали, что в условиях высоких уровней температуры и темпа нагрева термопары диаметром больше 50 мкм создают значительное возмущение теплового поля и влияют на показания соседних термопар. Их применение существенно затрудняет интерпретацию экспериментальных данных.
- **5.** Сравнительный анализ экспериментальных данных и результатов математического моделирования показал, что:
 - Основными механизмами, влияющими уровень на показаниях контактных температуры, датчиков являются контактные термосопротивления в месте расположения термопары опережающий нагрев результате термопары радиационного теплопереноса. Эти механизмы создают противоположные по знаку отклонения собственной температуры термопары.
 - Снижение влияния одного из этих механизмов увеличивает относительную погрешность показаний термопары. Так в глубинных слоях относительная погрешность в отдельные моменты времени достигала 27%. Предельные значения относительной погрешности измерений температуры с помощью термопары на различных глубинах в значительной степени зависят от уровня и скорости теплового нагружения.
 - При высоком темпе нагрева радиационный поток, созданный нагревателем, проникает в более глубокие слои высокопористого полупрозрачного материала и вносит дополнительное возмущение в тепловое состояние расположенных там термопар.
 - В области квазиустановившегося температурного поля относительные погрешности показаний термопар заметно снижаются для ТЗМК-10 до уровня, не превышающего 4%.

ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

Публикации в изданиях, рекомендованных перечнем ВАК РФ

- 1. Алифанов О.М., Черепанов В.В., Зайцева А.В., Бобошина С.В. Моделирование переноса излучения в теплозащитных материалах с высоким спектральным альбедо рассеяния // Тепловые процессы в технике, М.: Наука и технологии, 2012, Т.4, №9. С. 418-424
- 2. Alifanov O.M., Cherepanov V.V., Zaytseva A.V. The modeling of radiation transfer in highly-porous composite materials with strong scattering // Journal of Physics: Conference Series. Eurotherm Conference №.95: Computational Thermal Radiation in Participating Media IV. 18–20 April 2012, Nancy, France, Vol.369, article №012023 URL: http://iopscience.iop.org/1742-6596/369/1

Публикации в других научных издания

- 3. Алифанов О.М., Черепанов В.В., Зайцева А.В. Моделирование теплофизических и спектральных свойств пеностеклоуглерода методом Монте-Карло. В сборнике « XIV Минский международный форум по тепло-и массообмену, 10-13 сентября 2012г. Тезисы докладов и сообщений». Минск: ИТМО Т.1, часть 2, С. 662-665
- 4. Зайцева А.В. Модели радиационного переноса в высокопористых композитных материалах с высоким спектральным альбедо рассеивания. В сборнике «Инновации в авиации и космонавтике 2013. 16-18 апреля 2013г.» Сборник тезисов, М.:МАИ, с.169
- 5. Зайцева А.В. Моделирование радиационного переноса в высокопористых композиционных материалах с высоким спектральным коэффициентом рассеяния. В сборнике «Проблемы газодинамики и тепломассообмена в энергетических установках, 19-23 мая 2013г.» Тезисы докладов, М: МЭИ, С. 367-368
- 6. Morzhukhina A.V. Mathematical model of radiation heat transfer in reticulated vitreous carbon. В сборнике «Third German-Russian week of the young researcher "Aviation and Space". 21-27 September 2013г.» Тезисы докладов, М.: Пресс Бюро, С.45