Федеральное государственное бюджетное общеобразовательное учреждение высшего образования Казанский национальный исследовательский университет им. А.Н. Туполева-КАИ

На правах рукописи

Шайдуллин Руслан Айратович

ВЛИЯНИЕ ВЗАИМОДЕЙСТВИЯ ПРОДУКТОВ СГОРАНИЯ БЕЗМЕТАЛЬНОГО ТВЕРДОГО ТОПЛИВА С ПРОДУКТАМИ РАЗЛОЖЕНИЯ ТЕПЛОЗАЩИТНОГО МАТЕРИАЛА НА ХАРАКТЕРИСТИКИ РДТТ

Специальность: 2.5.15 — Тепловые, электроракетные двигатели и энергоустановки летательных аппаратов

Диссертация на соискание ученой степени кандидата технических наук

> Научный руководитель: кандидат технических наук Андрей Наилевич Сабирзянов

Оглавление

Введение	4
Глава 1 Горение твердого ракетного топлива. Моделирование и верификация 13	3
1.1.1 Введение	3
1.1.2 Обобщенные и полуобобщенные кинетические механизмы	4
1.1.3 Кинетика в конденсированной фазе. Детальная кинетика в газовой фазе 17	7
1.2 Моделирование горения твердого топлива и верификация	0
1.2.1 Описание моделей	0
1.2.2 Моделирование горения твердого топлива	1
1.2.3 Моделирование течения реагирующей среды в сверхзвуковой части сопла	8
1.3 Моделирование горения твердого топлива в составе гипотетического РДТТ	0
1.4 Выводы по главе 1	3
Глава 2 Горение перхлората аммония. Моделирование, редуцирование и	
верификация	5
2.1 Горение перхлората аммония	5
2.2 Редуцирование, моделирование и верификация	8
2.3 Выводы по главе 2	4
Глава 3 Влияние взаимодействия продуктов сгорания с продуктами	
разложения теплозащитного материала дозвуковой части соплового блока на	
коэффициент расхода и коэффициент сопла40	6
3.1 Краткие сведения о тепловых процессах в соплах РДТТ и методе их	
моделирования46	б

3.2 Влияние взаимодействия продуктов сгорания твердого топлива с
продуктами разложения теплозащитного покрытия на коэффициент расхода 52
3.3 Влияние вдува продуктов газификации теплозащитного материала
утопленной части сопла на коэффициент сопла
3.4 Выводы по главе 3
Глава 4 Исследование влияния взаимодействия продуктов сгорания с
продуктами разложения резиноподобного теплозащитного материала в
объеме камеры сгорания на коэффициент расхода и коэффициент сопла 73
4.1 Методология расчета
4.2 Влияние абляции резиноподобного теплозащитного покрытия на
коэффициенты расхода и сопла
4.3 Выводы по главе 4
Глава 5 Влияние взаимодействия продуктов разложения теплозащитного
покрытия с продуктами сгорания безметального твердого топлива на
коэффициент удельного импульса
5.1 Изменение коэффициента удельного импульса
5.2 Выводы по главе 5
Заключение
Список сокращений и условных обозначений
Список литературы
Приложение А
Приложение Б
Приложение В

Введение

Актуальность темы исследования. Степень ее разработанности.

При работе ракетного двигателя на твердом топливе (РДТТ) происходят сложные процессы на уровне физико-химических взаимодействий продуктов сгорания (ПС) твердого топлива (ТТ) и газифицированных продуктов разложения теплозащитного покрытия (ТЗП) в камере сгорания (КС) и сопловом блоке. Взаимодействие может сопровождаться экзотермическим или эндотермическим эффектом, в свою очередь, предопределяя повышение или понижение общей энергии смеси продуктов. Во многом сопровождаемый эффект зависит от состава ПС, а именно от рецептуры ТТ, стехиометрии компонентов и от состава газообразных продуктов пиролиза, изменяющегося в зависимости от температуры нагрева. На фоне разного рода физико-химических процессов, происходящих в КС и в объеме соплового блока, изменение энергии продуктов истечения способствует изменению тяги РДТТ. К тому же неоднородность термодинамических параметров, наличие скачков уплотнения и изменение газодинамического контура течения вследствие вдува газов пиролиза ТЗП способствуют увеличению потерь энергии по тракту РДТТ.

Приблизительную оценку изменения энергии смеси за счет взаимодействия вдуваемых газов пиролиза с поверхности ТЗП возможно проводить посредством термодинамического приближения [3-7, 9, 21, 44, 70, 77, 96, 133, 134], не учитывающего время взаимодействия и определяющего идеальный случай. В действительности химические превращения могут и вовсе не успевать проходить в рамках времени пребывания ПС в объеме КС и соплового блока [3, 4, 12]. Так, например, в раструбе сопла, где происходит основной переход потенциальной энергии ПС в кинетическую энергию струи, время пребывания достаточно малое и термодинамическое равновесие может не достигаться. Посредством частичного или полного замораживания смеси в минимальном сечении или по длине раструба сопла создаются условия, приближающие расчетные данные к экспериментальным результатам, однако, даже в этом случае авторами [3, 4, 7, 49, 66] закладывается ошибка в определении потерь из-за химической неравновесности в раструбе сопла

до 20%. Средствами реакторных схем (вытеснения и идеального смешения) возможно производить оценку изменения энергии потока в ходе химических реакций, однако неравномерность И неоднородность термодинамических параметров в радиальном (поперечном) сечении данные модели предсказать не могут [3, 57, 75, 81, 96, 121, 125, 134]. В свою очередь, любая неравномерность потока вблизи поверхности ТЗП способна изменить тепловой поток, передаваемый к поверхности, что может привести к изменению массоприхода газов пиролиза и изменению газодинамической картины течения по тракту РДТТ [77]. В работе [77] авторы ссылаются на эффект ламинаризации [10] в дозвуковой части сопла вблизи происходящий взаимодействия минимального сечения, за счет газифицированными продуктами разложения ТЗП и приводящий к местному уменьшению теплового потока к поверхности приблизительно в 2 раза относительно теоретического значения. Во многом газодинамическая картина течения в объеме соплового блока зависит от формы дозвукового участка сопла. В большинстве случаев применяется утопленное а проектирование сопло, дозвукового участка основывается на частном опыте специализированных предприятий. Потери, связанные с утопленностью сопла и уменьшением энергии истечения, исследовались в работах [21, 36, 44, 46, 48, 49, 53]. В работах [30, 31, 106] рассматривается оценка потерь коэффициента расхода для утопленных сопел разной конфигурации дозвуковых участков с учетом вдува газифицированных продуктов разложения, однако химическое взаимодействие между газами не учитывалось. Течение реагирующей среды ПС ТТ в составе РДТТ исследовалось авторами А.С. Коротеевым, А.М. Губертовым, Б.Т. Ерохиным, В.В. Миронов и др. Основные результаты исследований, полученные посредством термодинамического приближения, направлены на изменений изучение энергетических параметров в РДТТ при взаимодействии ПС ТТ с продуктами разложения ТЗП и на определение параметров смеси при горении и течении по соплу. В работах иностранных авторов [129-131] использовались механизмы формальной кинетики совместно с газодинамическим моделированием течения смеси по тракту РДТТ. Однако, их исследования больше направлены на изучение

горения ТТ в составе двигателя и на эррозионную составляющую уноса теплозащитного материала с химическими реакциями на поверхности сопла, а не на изменение энергетических характеристик РДТТ.

Согласно работам В.Е. Алемасова, А.Ф. Дрегалина, А.С. Коротеева, А.М. Губертова, Б.Т. Ерохина, В.Н. Наумова, Ю.М. Милехина, Г.С. Лаврова, А.А. Шишкова и др. изменение кинетической энергии в объеме сопла объясняется основными факторами: газодинамическим - изменение «живого» двумя минимального сечения, градиентов параметров вблизи стенки и неравномерность параметров в радиальном сечении (коэффициент расхода µ_c; потери из-за рассеивания ξ_p , трения ξ_{TP} , двухфазности ξ_{φ} , температурной неравномерности и др. $\xi_{\text{пр}}$); химическим – диссоциация ПС и химическое взаимодействие газов пиролиза с газами ПС (потери из-за химической неравновесности $\xi_{\scriptscriptstyle H}$). При этом физикохимические взаимодействия ПС TT с продуктами разложения T3П определяют градиенты параметров в приповерхностной зоне стенок ТЗП в объемах сопла и КС, в совокупности оказывает непосредственное влияние на изменение коэффициентов сопла φ_c, расхода μ_c и коэффициента совершенства процессов в КС фв, совместно определяющих эффективность преобразования энергии в пустотную тягу (внутреннего контура):

$$P_{\Pi} = \dot{m} \cdot w_a + p_a \cdot F_a,$$

где \dot{m} — секундный расход продуктов истечения; w_a — скорость на срезе сопла; p_a — статическое давление на срезе сопла; F_a — площадь среда сопла. В составляющую $\dot{m} \cdot w_a$ уже включено $\phi_{\beta} \cdot \mu_c \cdot \phi_c$. Изменение кинетической энергии потока на срезе сопла также прямо пропорционально связано с изменением потенциальной энергии ПС в КС, которое во многом определяется тепловыми потерями в объеме КС и описывается коэффициентом совершенства процессов ϕ_{β} . Помимо затрат тепловой энергии на прогрев стенок РДТТ потенциальная энергия может уменьшаться вследствие эндотермических реакций ПС ТТ с продуктами разложения ТЗП или бронепокрытия в объеме КС [61].

Современные требования к проектированию РДТТ направлены на использование полного потенциала ТТ и ТЗП, минимизируя потери,

накладываемые химическим взаимодействием, утопленностью и неоднородностью газодинамического течения и термодинамических параметров [27, 28, 44, 52]. Повышение энергоэффективности РДТТ во многом связано с используемым топливом, выбором ТЗП и газодинамическим контуром сопла. Определение потерь коэффициентов расхода и сопла при взаимодействии газифицированных продуктов разложения ТЗП позволит выбрать наиболее оптимальные конструктивные решения, впоследствии позволяющие уменьшить потери удельного импульса, увеличить дальность полета и массу полезной нагрузки ракетоносителя. Полученные коэффициентов результаты ПО изменению показателей энергоэффективности позволят осуществлять более точную оценку изменений параметров в РДТТ, нивелируя расхождения между теоретическими экспериментальными результатами для малогабаритных двигательных установок.

В литературе отсутствуют рекомендации по проектированию дозвуковых участков утопленного сопла с учетом физико-химического взаимодействия ПС с вдуваемыми газифицированными продуктами разложения ТЗП. Выработка подобных рекомендаций с точки зрения диапазонов изменений коэффициентов расхода и сопла подразумевает наличие апробированного кинетического механизма горения ТТ, позволяющего исследовать взаимодействия состава ПС ТТ с другими индивидуальными веществами, выделяющимися с поверхности ТЗП.

Цели и задачи исследования.

Предметом исследования являются коэффициент расхода, коэффициент сопла и коэффициент удельного импульса, как показатели совершенства процессов истечения в дозвуковой и сверхзвуковой участках сопла. Объектом исследования является гипотетический РДТТ, выполненный в двух разных компоновках: классическая схема РДТТ с разными дозвуковыми участками утопленного сопла; РДТТ с торцевым горением заряда постоянной площади с классическим дозвуковым входным участком сопла. Для исследования классической схемы РДТТ выбраны формы входного участка утопленного сопла: радиусная и эллипсодиные формы.

Цель исследования: анализ влияния продуктов газификации ТЗП на

коэффициент расхода, коэффициент сопла и коэффициент удельного импульса, совместно определяющих потери в РДТТ.

Задачи исследования:

- сформировать и отработать кинетический механизм взаимодействия ПС безметального ТТ и продуктов разложения ТЗП, включая отработку кинетического механизма горения ТТ на примере перхлората аммония (AP ammonium perchlorate);
- сформировать и отработать совместную физико-математическую модель химического взаимодействия продуктов разложения ТЗП и ПС ТТ;
- определить диапазоны изменения коэффициентов расхода и сопла при абляции ТЗП в дозвуковой части сопла при разных геометрических формах дозвукового контура утопленного сопла;
- определить диапазоны изменения коэффициентов расхода и сопла при абляции резиноподобного ТЗП в КС РДТТ;
- определить границы изменения коэффициента удельного импульса вследствие взаимодействия ПС ТТ с продуктами разложения ТЗП в объемах КС и сопла.

Научная новизна:

- получен редуцированный кинетический механизм для пламени АР;
- определены границы изменения коэффициентов сопла и расхода в широком диапазоне интенсивности вдува газов пиролиза ТЗП с дозвукового участка сопла;
- определены границы изменения коэффициентов сопла и расхода при взаимодействии продуктов разложения ТЗП с ПС безметального ТТ в объеме КС;
- определены границы изменения коэффициента удельного импульса при абляции ТЗП в объемах КС и дозвукового участка сопла;
- определены оптимальные формообразующие параметры дозвукового контура сопла при абляции ТЗП с дозвукового участка утопленного сопла.

Теоретическая и практическая значимость работы.

Получены рекомендации по моделированию процесса горения безметального ТТ на основе AP/HTPB (HTPB – hydrocxyl-terminated polybutadiene – полибутадиеновый каучук с гидроксильными концевыми группами). Получены результаты изменения коэффициентов расхода и сопла при абляции ТЗП в КС и в дозвуковом участке сопла с переменной интенсивностью газификации продуктов разложения теплозащитного материала. Полученные рекомендации и результаты могут быть использованы при проектировании и доводке РДТТ для обеспечения заданных энергетических и тяговых характеристик.

Методология и методы исследования.

В работе использовались современные аналитические и численные методы, основанные на решении уравнений газовой динамики. Моделирование горения ТТ проводилось с применением программного пакета (ПП) ANSYS Chemkin-Pro с использованием нульмерного и одномерных реакторов: гомогенный, вытеснения (проточный), стационарный и нестационарный реакторы идеального смешения. В осесимметричной постановке моделирование процесса горения ТТ совместно с газодинамической системой уравнений (система уравнений Навье-Стокса) ПП **ANSYS** Fluent. Система уравнений проводилось В замыкалась двухпараметрической моделью турбулентности k-ω SST, использовались модели горения Finite-Rate и Eddy Dissipation Concept.

Положения, выносимые на защиту:

- 1. Редуцированный кинетический механизм горения АР.
- 2. Результаты исследования влияния входных участков радиусной и эллипсоидной форм утопленного сопла при абляции ТЗП с дозвуковой части сопла на коэффициенты расхода и сопла в широком диапазоне интенсивности газификации продуктов разложения.
- 3. Результаты исследования влияния процесса абляции резиноподобного ТЗП в КС РДТТ на коэффициенты расхода, сопла и совершенства процессов в КС.
- 4. Границы изменения коэффициента удельного импульса при абляции ТЗП в КС и сопле РДТТ.

Достоверность и обоснованность результатов.

Результаты, полученные с помощью кинетических механизмов для АР и АР/НТРВ, верифицировались с данными экспериментов, расчетными результатами других авторов и сравнивались с данными, полученными посредством термодинамического приближения. Использовались отработанные методики и алгоритмы расчетов для определения коэффициентов расхода и сопла РДТТ.

Апробация работы и публикации:

Список публикаций по теме диссертации содержит 11 наименований: 5 статей в журналах, рекомендованных ВАК; 5 тезисов докладов по итогам Всероссийских и международных конференций; 1 статья в журнале, входящая в базу Scopus. Публикации в изданиях, рекомендованных ВАК:

- 1. Шайдуллин, Р.А. Влияние закрутки потока на входе в сопло ракетного двигателя на коэффициент расхода / Р.А. Шайдуллин, А.Р. Бекеров, А.Н. Сабирзянов // Вестник Московского авиационного института. 2021. Т. 28. № 2. С. 142–151.
- 2. Шайдуллин, Р.А. Численное исследование кинетических механизмов в пламени перхлората аммония / Р.А. Шайдуллин, А.Н. Сабирзянов // Вестник Московского авиационного института. 2023. Т. 30. № 2. С. 131–138.
- 3. Шайдуллин, Р.А. Моделирование горения твердого топлива на основе перхлората аммония и полибутадиена в условиях гипотетического двигателя / Р.А. Шайдуллин, А.Н. Сабирзянов // Тепловые процессы в технике. 2023. Т. 15. № 6. С. 276–287.
- 4. Шайдуллин, Р.А. Влияние взаимодействия продуктов сгорания с продуктами разложения резиноподобного теплозащитного материала в объеме камеры сгорания РДТТ на коэффициенты расхода и сопла / Р.А. Шайдуллин, А.Н. Сабирзянов // Вестник Московского авиационного института. 2024. Т. 31. № 3. С. 158–168.
- 5. Шайдуллин, Р.А. Влияние вдува продуктов газификации теплозащитного покрытия утопленной части сопла РДТТ на потери удельного импульса / Р.А. Шайдуллин, А.Н. Сабирзянов // Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение. 2025. № 1. С. 59–82.

Статья, входящая в базу Scopus:

1. Shaidullin, R.A. The impact of some factors of thermal protection material degradation on the discharge coefficient of the recessed nozzle / A.N. Sabirzyanov, R.A. Shaidullin // Russian Aeronautics. 2023. Vol. 66. No. 3. pp. 510–519.

Диссертационная работа, отдельные ее разделы и результаты докладывались обсуждались международных Всероссийских конференциях: на И международная молодежная научная конференция «Туполевские чтения» (2021 г., Казань); XXII Всероссийская научная конференция с международным участием «Сопряженные задачи механики реагирующих сред, информатики и экологии» (2021 г., г. Томск); XVI Всероссийский симпозиум по горению и взрыву (2022 г., г. Суздаль); международная научно-техническая конференция «Перспективы двигателестроения» (2023 г., г. Самара); Всероссийская техническая конференция «Ракетно-космические двигательные установки» (2023 г., г. Москва).

Внедрение результатов исследования.

Результаты диссертационной работы:

- используются при проведении учебных занятий и при выполнении курсовых и дипломных проектов с развитой научно-исследовательской частью в КНИТУ-КАИ (см. приложение А);
- совершенствуют научно-исследовательскую базу для решения сопряженных задач в данной области.

Личный вклад автора.

Диссертационное исследование проведено и описано автором самостоятельно. Все результаты, приведенные в диссертации, получены лично автором. Анализ полученных результатов проведен под руководством научного руководителя к.т.н. А.Н. Сабирзянова.

Структура и объем работы.

Диссертация состоит из введения, пяти глав, заключения и списка использованных источников информации. Полный объем диссертации составляет 125 страниц, 66 рисунка и 7 таблиц. Список использованных источников информации содержит 135 наименований. Приложение содержит акт внедрения и кинетические механизмы.

Глава 1 Горение твердого ракетного топлива. Моделирование и верификация

В данной главе на основании обзора и анализа научно-технической литературы выбирается подход к моделированию и исследованию параметров горения безметального твердого ракетного топлива. Рассматривается связь кинетических механизмов, верификация подхода и полученных результатов с результатами термодинамического равновесия. Представлена общая структура физико-математической модели химического взаимодействия в осесимметричном приближении.

1.1 Горение твердого ракетного топлива

1.1.1 Введение

Горючее-связующее в твердых ракетных топливах является веществом, повышающим реакционную способность всего топлива и связывающим кристаллическую структуру окислителя в общую топливную массу, формируя необходимые и достаточные механические характеристики всего заряда [7, 77, 121, 133, 134]. На практике в качестве горючего-связующего используются полимеры, образующие, в частности, системы с поперечными связями, такие как: полиэтилен; полиуретан; полиэфир; полибутадиен, полихлорвинил, бутилформальполисульфид и другие [45, 60, 62, 71, 78, 107].

Окислитель, в свою очередь, должен реагировать с горючими элементами с выделением максимального количества тепловой энергии. В качестве окислителя в ТТ используются: АР, перхлораты лития, калия, нитрония; нитраты лития, аммония, калия, натрия и тому подобное [78, 80, 123, 132].

Вариации рецептурного состава ТТ позволяют получить требуемые характеристики топлива, что создает большие трудности для универсального и детального описания процессов, происходящих в КС. Многие параметры,

определяющие совершенство процессов в КС, находятся только экспериментальным путем [1, 5, 14].

Общее представление о параметрах горения разных топливных пар дает равновесный термодинамический расчет [3-7, 63]. Такие модели очень полезны для определения параметров в нулевом приближении с минимальными затратами времени. Однако только с помощью термодинамических расчетов невозможно понять процессы, происходящие при горении ТТ, что, в свою очередь, определило потребность появления моделей различной степени сложности и точности, связанные с описанием химических процессов в пламени.

За последние 50–60 лет представлено множество моделей для описания процесса горения ТТ. По большей части такие модели классифицированы по их отношению к кинетике горения [105, 134]: 1) обобщенные и полуобобщенные кинетические механизмы; 2) детальная кинетика в газовой фазе; 3) соединение детального кинетического механизма в газовой фазе и в конденсированной.

1.1.2 Обобщенные и полуобобщенные кинетические механизмы

Исследования Я.Б. Зельдовича, Н.Н. Семенова, М.В. Бэкстеда, Г.М. Кнотта, М.К. Кинга, Р.Л. Дэрра, С.Ф. Прайса и др. для разных топливных пар ТТ привнесли огромный вклад к пониманию процессов горения в твердой и конденсированной фазах с помощью проведения сопутствующих экспериментов и моделирований [85-87, 102, 119-122]. Разработанные модели основаны на обобщенных и полуобобщенных кинетических механизмах и отражают статистические данные экспериментов и расчетов, включающие описание поверхностных реакций [85, 93, 102, 115]. Такие модели позволяют достаточно корректно описать температуру горения ТТ, температурную чувствительность топлива и в некоторых случаях состав продуктов сгорания, основываясь на термодинамических, статистических или экспериментальных данных. Например, статистическая модель Миллера, в которой присутствует симуляция Монте-Карло ДЛЯ достаточно точного определения скорости горения ТТ [115], статистическая модель BDP (Beckstead-Derr-Price) [85], описывающая высвобождение энергии в поверхностном слое.

Разложение AP в газовой фазе описывалось К. Джирао и Ф.А. Уилльямсом [102], где одностадийная обобщенная реакция основывалась на 10-химических уравнениях в газовой фазе. Расчеты показали, что 70% AP разлагается в конденсированном слое, а остальное преобразуются в NH_3 и $HClO_4$. Результаты расчета при давлении 20 атм удовлетворительно коррелируют с данными эксперимента.

Модель горения AP в связке HTPB [93] также основана на обобщенном механизме горения, в котором присутствует несколько химических уравнений разложения в поверхностном слое. Реагентами являются AP и HTPB, а конечными продуктами — термодинамический обобщенный состав ПС. Представленные результаты расчета удовлетворительно коррелируют с термодинамическими расчетами по температуре и содержанию массовой доли CO в ПС от содержания массовой доли NH₄ClO₄ в TT. Общепринятые обобщенные и полуобобщенные кинетические механизмы разложения HTPB и AP приведены в работах [88, 102, 104, 105, 110, 132]. В таблице 1 представлены основные общепринятые обобщенные механизмы разложения HTPB и AP.

При всех преимуществах применения обобщенных и полуобобщенных кинетических механизмов горения, к которым следует отнести и машинное время моделирования, имеются и существенные недостатки, одним из которых является неспособность предсказать зонное изменение концентрации веществ. Так, в некоторых работах [22, 93, 134] отмечается, что для перехода из одного вещества в другое возможно приложение меньшей энергии для начала взаимодействия, чем энергия активации $E_{\rm a}$. Связано это с возможностью разветвления основных реакций на более простые с радикалами, для взаимодействия которых суммарная энергия столкновения необходима меньше, чем при протекании основной реакции. Такое разветвление способствует более быстрому изменению концентрации реагентов и продуктов, что может привести к изменению температурного состояния системы в целом.

Таблица 1 — Основные обобщенные и полуобобщенные кинетические механизмы разложения HTPB и AP

Реакции	A	E_a	Литература
HTPB ⁽¹²⁰⁰⁾ _(ж) →2 HTPB ⁽⁵⁸⁰⁾ _{(ж)+} 3C _(тв) +H ₂	10 ¹⁰	10000	[105]
HTPB $^{(580)}_{(x)} \rightarrow 10C_4H_6 + C_2H_3 + CH_3$	2.1011	10000	[105]
HTPB ⁽⁵⁸⁰⁾ _(ж) +15AP→20CO+10HCN+13CH ₄ +32+ + H_2 O+8ClO+7Cl+5N	3,2·10 ¹¹	10000	[105]
$\begin{array}{l} \text{HTPB}^{(580)}_{(\text{x})} + 20\text{HClO}_4 \longrightarrow 8\text{CO} + 24\text{CO}_2 + 24\text{H}_2\text{O} + \\ + 20\text{HCl} + 5\text{C}_2\text{H}_2 + \text{CH}_4 + 2\text{H}_2 \end{array}$	10 ¹²	10000	[105]
$\begin{array}{c} 0.523 \text{HTPB}(\texttt{x}) + \text{AP}_{(\texttt{x})} \rightarrow 0.4686 \text{CO} + \\ + 0.5773 \text{CO2} + 0.0931 \text{C1} + 0.0378 \text{H} + 0.8708 \text{HC1} + \\ + 0.2364 \text{H2} + 2.269 \text{H2O} + 0.477 \text{N2} + 0.0288 \text{NO} + \\ + 0.0133 \text{O} + 0.1391 \text{OH} + 0.0499 \text{O}_2 \end{array}$	1,09·10 ⁰⁹	30000	[93]
$\text{HTPB}_{(\Gamma)} + 0.5\text{HClO}_4 \rightarrow [-\text{C}_4\text{H}_2-]_n + 0.5\text{HCl} + 2\text{H}_2\text{O}$			[88]
$[-C_4H_2-]_n + 2HClO_4 \rightarrow [-C_4H_2-]_{n-1} + 2HCl + H_2O + +CO + 3CO_2$			[88]
$AP_{(x)} \rightarrow NH_3 + HClO_4$	8·10 ¹²	28000	[88, 105]
$AP_{(x)} \rightarrow H_2O + O_2 + HCl + NHO$	108	22000	[105]
$AP_{(x)} \rightarrow 2H_2O + Cl + NO_2$	5·10 ⁷	22000	[105]
$AP_{(x)} \rightarrow ClO_3 + NH_3 + OH$	109	22000	[105]
$AP_{(x)} \rightarrow 1,62H_2O+1,105O_2+0,265N_2+0,12N_2O+ +0,23NO+0,76HCl+0,12Cl_2$	-	22000	[93]
AP _(ж) →1,25O2+1,5H2O+HCl+0,5N2	-	22000	[108]

Примечание – Единицы измерения параметров в Аррениусовой зависимости моль, см, с, К и кал [22, 79].

В обобщенном представлении кинетических механизмов горения уже заложены возможные реакции разветвления, и применение таких химических механизмов горения невозможно при исследовании процессов взаимодействия ПС с другими веществами, выделяющимися побочно или запланировано в различных двигательных установках. В качестве примера можно привести комбинированные ракетные двигатели с твердотопливным газогенератором [2, 6, 126, 127], где происходит вторичное дожигания продуктов горения ТТ, или РДТТ, где в результате пиролиза ТЗП выделяются различные горючие и негорючие элементы, способные взаимодействовать с основными ПС, локально выделяя или поглощая энергию, тем самым изменяя общие потери в двигательной установке.

Модели, затрагивающие кинетику в конденсированной и твердой фазах ТТ, позволяют предсказать температурную чувствительность скорости горения, зависимости скорости горения от давления [93, 94, 105, 132,] и тепловыделение в жидкой фазе, но в ряде случаев не дают предсказаний конечной температуры газа [94, 105]. В частности, это может быть связано из-за недостаточного понимания детализации процессов ступенчатого разложения смесевых топлив в твердой и жидкой фазах, которые крайне сложно изучить и описать из-за невозможности проведения достоверного эксперимента в микронном масштабе. Например, многофакторная зависимость толщины расплавленного слоя на поверхности кристаллов АР от давления [103]. Для упрощения расчетных моделей применяется обобщенная или полуобобщенная кинетика разложения АР/НТРВ в несколько реакций, позволяющая получить концентрации веществ на входе в реакционную область газовой фазы. Однако такую модель сложно верифицировать, что накладывает отпечаток на кинетику в газовой фазе и, соответственно, на принципиально важные параметры в двигательной установке.

1.1.3 Кинетика в конденсированной фазе. Детальная кинетика в газовой фазе Основоположниками теории горения и химической кинетики являются Я. Вант-Гофф, С. Аррениус, Н.А. Меншуткин, Я.Б. Зельдович, Н.Н. Семенов, В. Оствальд, А.Е. Шилов и др. За более чем сто лет развития теории горения на свет появилось большое разнообразие кинетических механизмов горения различных топливных пар, затрагивающие основы кинетики в газовой фазе при горении пастообразного Так, твердого топлив. В фундаментальной О.П. Коробейничева рассматривается кинетический механизм горения АР/НТРВ, состоящий из 49 компонентов (включая атомы и свободные радикалы) и 234 обратимых элементарных реакций. Эта работа впоследствии основополагающей для понимания процесса горения АР/НТРВ и АР в газовой фазе [34]. В дальнейшем указанный кинетический механизм упрощался до 58 обратимых элементарных реакций с участием 35 компонентов с изменением предэкспоненциальных множителей некоторых реакций [36]. На основе данного

механизма были разработаны более конкретизированные кинетические механизмы.

Механизм Н.Е. Ермолина основывался на 33 компонентах в 300 обратимых элементарных реакциях, который впоследствии сократился до 24 веществ в 56 реакциях с сопутствующем отличием от полного механизма до 7% [26]. Точность в определении профилей стабильных компонентов составляла до 2% по сравнению с экспериментальными результатами.

Механизм М.Б. Джеппсона [105] включал в себя части кинетических механизмов О.П. Коробейничева [34-36] и Н.Е. Ермолина [25, 26]. Существенным отличием в работе М.Б. Джеппсона значится моделирование совместного химического превращения в конденсированной и газовой фазах. Такой подход является следующей ступенью для детального описания процесса горения АР и НТРВ, учитывающего твердо-, жидко- и газофазные реакции. Химический механизм разложения мелкодисперсных АР и НТРВ представлен в таблице 2 [105].

Таблица 2 – Кинетический механизм разложения HTPB и AP в конденсированной фазе [105]

№	Реакции	A	b	E_a
1	$\text{HTPB}^{(1200)}_{(x)} \rightarrow 2\text{HTPB}^{(580)}_{(x)} + 3C_{(TB)} + H_2$	1010	0	10000
2	$\text{HTPB}^{(580)}_{(x)} \rightarrow 10C_4H_6 + C_2H_3 + CH_3$	2.1011	0	10000
3	$HTPB^{(580)}_{(x)}+15AP\rightarrow 20CO+10HCN+13CH_4+32H_2O+8ClO+ +7Cl+5N$	3,2·10 ¹¹	0	10000
4	$\text{HTPB}^{(580)}_{(x)} + 20\text{HClO}_4 \rightarrow 8\text{CO} + 24\text{CO}_2 + 24\text{H}_2\text{O} + 20\text{HCl} + 5\text{C}_2\text{H}_2 + \\ + \text{CH}_4 + 2\text{H}_2$	10^{12}	0	10000
5	$AP_{(x)} \rightarrow NH_3 + HClO_4$	8.10^{12}	0	28000
6	$AP_{(x)} \rightarrow H_2O + O_2 + HCl + NHO$	10^{8}	0	22000
7	$AP_{(x)} \rightarrow 2H_2O + Cl + NO_2$	5·10 ⁷	0	22000
8	$AP_{(x)} \rightarrow ClO_3 + NH_3 + OH$	109	0	22000

Примечание – Единицы изменения в таблице 2: моль, см, с, К и кал [22, 79].

Механизм конденсированной фазы включал в себя 8 обобщенных реакций, в которых моделировались распад высокомолекулярного HTPB на более мелкие

единицы, разложение полимера на C_4H_6 , разложение HTPB в сочетании со свободными радикалами и другими молекулярными веществами, зарождающимися при разложении AP, образование C_2H_2 и C_2H_4 [34] и разложение AP, опираясь на экспериментальные данные [24, 26, 73, 85, 88, 95].

Газофазный механизм М.Б. Джеппсона [105] представляет собой редуцированный механизм О.П. Коробейничева [34]. Для лучшего согласования в части реакций были изменены значения параметров в Аррениусовой зависимости в соответствии с GRI-механизмом Т. Боумана и др. Кроме этого, в некоторые реакции были добавлены параметры зависимости от давления, реакции из модели горения AP [26] и реакции для описания взаимодействия с хлоросодержащими углеводородными системами и с N₂O в газовой фазе.

Эксперименты и расчеты осуществлялись при низких давлениях, которые, в свою очередь, удовлетворительно коррелировали друг с другом [105, 24, 26]. Однако при умеренных давлениях (до 100 атм) кинетический механизм горения AP и HTPB может существенно отличаться.

Моделирование горения при умеренных давлениях с помощью детального кинетического механизма АР/НТРВ продемонстрировано в работах [99-101]. Механизм М.Л. Гросса включает в себя 37 молекулярных и атомарных соединений и 127 реакций в газовой фазе (Приложение Б), полученных путем модернизации механизмов М.Б. Джеппсона [105], О.П. Коробейничева [34], Н.Е. Ермолина [26] и универсального механизма К.В. Пудуппаккама [101]. Модернизация механизма в основном заключалась в сохранении конечных ПС и исключении мало влияющих реакций И индивидуальных веществ путем анализа чувствительности. Исключенными частицами являются H_2O_2 , NNH, NOCl, C, CH, C H_2CO и ClOO. Четырех ступенчатый механизм разложения АР был заменен обобщенной реакцией, определяющей входные данные для газовой фазы. Расчеты М.Л. Гросса проводились с учетом фракционных особенностей соединения АР/НТРВ. Согласно результатам двумерного приближения достигнуто удовлетворительное согласие по концентрациям на выходе и конечной температуры пламени с данными равновесного расчета для ТТ АР/НТРВ 80/20 [101].

Горение ТТ зависит от огромного количества факторов, учесть все из которых практически невозможно. К примеру, данные энергии активации НТРВ весьма неоднозначны. Известно, что при скорости нагрева $3000-18000~\mathrm{C}\cdot\mathrm{Muh}^{-1}$ энергия активации составляет $E_a = (10-15)\cdot 10^3~\mathrm{kan}\cdot\mathrm{моль}^{-1}$ [73], а при скорости нагрева $1-100~\mathrm{C}\cdot\mathrm{muh}^{-1} - E_a = (30-45)\cdot 10^3~\mathrm{kan}\cdot\mathrm{моль}^{-1}$ [119]. При разной скорости нагрева поверхности НТРВ, что в принципе зависит от содержания горючегосвязующего в ТТ и, соответственно, температуры поверхности, энергия активации будет отличной от существующего представления.

- 1.2 Моделирование горения твердого топлива и верификация
- 1.2.1 Описание моделей

К одним из основных методов расчета описания физико-химических превращений относится модель, построенная на предположении химического равновесия [3-7], а сам расчет сформирован на решении системы уравнений, которые следуют из законов классической термодинамики и условий сохранения веществ. Подобная модель широко используется на стадиях разработки, проектирования и отработки высокотемпературных агрегатов [8, 12-14, 53, 64, 65, 72, 77]. Применительно к сопловым блокам РДТТ используют подобную модель в качестве идеального приближения процесса истечения, к тому же при допущении о замораживании веществ на входе или в некоторых сечениях сверхзвуковой части удельного химической сопла возможна оценка потерь импульса из-за неравновесности смеси [3, 4, 7, 46, 49], относительное уменьшение которого для замороженного течения от входного сечения сопла может составлять 5-10 % [3]. При горении высокотемпературных ТТ в крупногабаритных РДТТ потери из-за химической неравновесности обычно не превышают 0,2 %, когда как для малогабаритных двигателей при горении безметальных топлив при температуре не более 2500 К подобные потери могут преодолевать рубеж в несколько процентов [65]. Данный метод появился одним из первых и является простейшим способом учета высокотемпературных процессов в КС и сопле РДТТ.

Следующей ступенью моделирования химических превращений считают приближения реакторных моделей [81, 121, 125], основанные на интегрировании

системы уравнений совместно с уравнениями неразрывности для индивидуальных веществ. Широкое применение получили приближения реакторов идеального смешения и вытеснения [125], или, интерпретируя Plug-stirred reactor (PSR) и plug-flow reactor (PFR), последний часто называют проточным реактором. В русскоязычной литературе PSR рассматривается, как реактор идеального смешения (РИС) или нестационарный реактор идеального смешения (НРИС) [3]. Приближение НРИС (или нестационарный PSR) считается во многих планах более достоверным способом оценки потерь из-за химической неравновесности в сопле по сравнению с моделью замороженного течения. При этом погрешности могут достигать 10-25 % от действительной неравновесности, что связано с открытыми до сих пор вопросами химической кинетики относительно констант скоростей и механизмов [3]. Приближение проточного реактора также позволяет определять изменение скорости потока на срезе сопла при известном газодинамическом контуре сопла и известных данных по температуре и составу продуктов смеси.

1.2.2 Моделирование горения твердого топлива

Моделирование химических превращений в газовой фазе базируется на Аррениусовских зависимостях для определения скоростей реакций, которые очень чувствительны к температуре горения. По данным Ю.В. Фролова [73], теплота при преобразованиях в конденсированной фазе в 10 раз выше тепловыделения в газовой фазе. Таким образом, неточность в определении поверхностных температур создает необходимость в изменении констант в кинетическом механизме реакции.

В работах [26, 36] температура на поверхности горящего ТТ при низких и умеренных давлениях принималась в районе $T_s = 800$ К. Данная точка зрения в общих чертах совпадает с мнением других исследователей [84, 120, 122] при давлении до 5 атм. В диапазоне умеренных давлений в работе [89] предложена зависимость температуры на поверхности AP: $T_s = 873 + 3,15 p$, K, где p, атм – давление в системе. Основные факторы, определяющие температуру на поверхности ТТ при горении смеси AP/HTPB: весовое соотношение компонентов

горючего и окислителя; размер зерен AP; содержание и состав примеси. В работе [117] обозначен возможный диапазон $T_{\rm s} \approx 900{-}1250~{\rm K}.$

В работе [128] предложены расчетные значения температуры поверхности T_s топлива AP/HTPB в зависимости от давления и соотношения компонентов AP в TT, где предполагается два варианта: реакции в конденсированной фазе начинаются с 298 К (рисунок 1.1 (*a*)); реакции в конденсированной фазе начинаются с 800 К (рисунок 1.1 (*б*)). Графические данные возможно получить посредством полиномиальной зависимости вида:

$$T_s(p) = a_5 \cdot p^5 + a_4 \cdot p^4 + a_3 \cdot p^3 + a_2 \cdot p^2 + a_1 \cdot p^1 + a_0$$
, K; p , атм, где коэффициенты аппроксимации представлены в таблицах 3 и 4.

ТаблицаЗ — Коэффициенты аппроксимации для зависимости температуры на поверхности твердого топлива на основе AP/HTPB (реакции начинаются с 298 K)

AD 0/	$T_s(p) = a_5 \cdot p^5 + a_4 \cdot p^4 + a_3 \cdot p^3 + a_2 \cdot p^2 + a_1 \cdot p^1 + a_0$, K; p , атм								
AP, %	a ₅ ·10 ⁸	a ₄ ·10 ⁶	a ₃ ·10 ⁴	$a_2 \cdot 10^2$	a ₁ ·10 ⁰	a ₀ ·10 ⁻²			
79,9	7,9527833	-31,16660	46,45965	-33,6911337	13,62135161	7,47457474			
77,73	8,74998246	-34,69611	52,42242	-38,4394725	15,3768676	7,012270944			
75,03	5,40531306	-21,29855	32,72249	-25,6292592	11,93893655	6,951232016			
71,59	5,8198644	-22,79347	34,26334	-25,627603	11,21654504	6,70839064			
65,97	1,958617512	-8,46323	14,61042	-13,2863634	7,570058742	6,826749811			
59,25	5,113171665	-19,53805	28,82427	-21,5410789	9,79103273	6,511551861			

Таблица4 — Коэффициенты аппроксимации для зависимости температуры на поверхности твердого топлива на основе AP/HTPB (реакции начинаются с 800 K)

AD 0/	$T_s(p) = a_5 \cdot p^5 + a_4 \cdot p^4 + a_3 \cdot p^3 + a_2 \cdot p^2 + a_1 \cdot p^1 + a_0$, K; p , атм								
AP, %	$a_5 \cdot 10^8$	a ₄ ·10 ⁶	a ₃ ·10 ⁴	$a_2 \cdot 10^2$	$a_1 \cdot 10^2$	$a_0 \cdot 10^{-2}$			
79,9	4,18569417	-16,8217345	26,1840737	-20,5583308	978,382118	7,96298211			
77,73	-3,51966688	9,35512157	-5,94121254	-3,34838674	601,739298	7,96974256			
75,03	-4,68465815	15,2878223	-16,8433285	5,55233068	289,108453	7,99589144			
71,59	-4,25843117	14,2800772	-16,8824205	7,39259207	116,230302	8,00274569			
65,97	-3,14788883	10,9068969	-13,6278810	6,79833129	35,7823954	8,01022384			
59,25	-3,31129508	11,6009456	-14,7989605	7,76593410	-0,352822208	8,00436941			

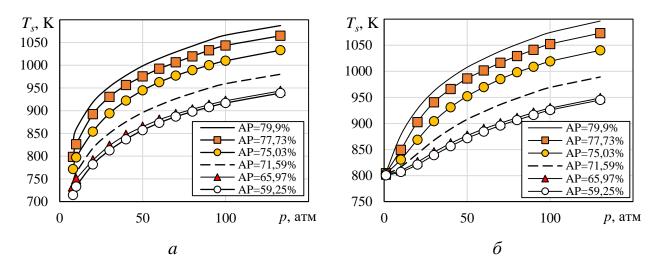


Рисунок 1.1 — Расчетная температура поверхности АР/НТРВ: реакции в конденсированной фазе начинаются с 298 К (a) с 800 К (δ) [128]

При этом тепловой баланс, а именно количество теплоты Q, затраченное на разогрев твердой и жидкой фазы TT, можно определить в соответствии с упрощенным выражением:

$$Q = \sum \left[c_{p \text{ тв.}i} (T_{\text{плав.}i} - T_{\text{нач}}) \right] \cdot g_i + \sum \left[c_{p \text{ ж.}i} (T_s - T_{\text{плав.}i}) \right] \cdot g_i - Q_c, \tag{1.1}$$

где $c_{p\,i}$ – теплоемкость окислителя/горючего вещества; g_i – массовые доли окислителя/горючего в твердом топливе; $T_{\rm плав}$ – температура плавления окислителя/горючего; $T_{\rm нач}$ – начальная температура твердого топлива;

 T_s — температура поверхности ТТ (на разделе конденсированной и газовой фаз); Q_c — тепловыделение энергии в конденсированной фазе монотоплива; индексы «тв» и «ж» относятся к характеристикам твердой и жидкой фаз ТТ. Теплофизические свойства АР и НТРВ возможно определить из работы [105]. Не упрощенный тепловой баланс между фазами ТТ (1.1) представлен в работе [23].

В работах [101, 128, 124] также использовались универсальные механизмы К.В. Пудуппаккама с поправками М.Л. Гросса и М.У. Таннера, отличающиеся набором некоторых реакций [128] для применения более широкой рецептуры АР/НТРВ (от 59 % до 84 % по АР).

На рисунке 1.2 отражены расчетные значения температур при рецептуре АР/НТРВ (от 59% до 84% по АР), полученные посредством применения универсальных механизмов К.В. Пудуппаккама с поправками М.Л. Гросса [32] и М.У. Таннера [128] в постановке PSR. На рисунке 1.3 представлен расчетный состав ПС, вещества представлены в виде мольных долей. Расчетные результаты сравнивались и верифицировались с данными предельного термодинамического равновесия. Граничные условия для газовой фазы представлены в таблице 5 [128] с учетом отвода тепла Q из газовой фазы на разогрев, фазовые превращения ТТ при выделении/поглощении тепла в конденсированной фазе. В таблице 5 значения Q представлены с учетом горения ТТ с площадью 1 см², вещество С(S) инертное. Температура поверхности ТТ разной рецептурой T_s принята в соответствии с данными при p = 20,4 атм при начале реакций в конденсированной фазе с 800 К (см. рисунок 1.1 δ). Энтальпии образования АР и НТРВ определялись в соответствии с данными из работы [105].

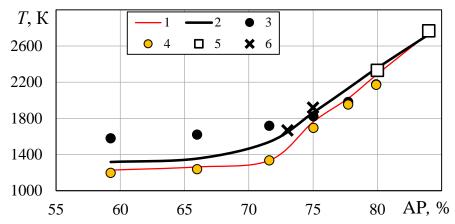


Рисунок 1.2 — Расчетные значения конечной температуры пламени ТТ на основе AP/HTPB для рецептуры от 59 % до 84 % содержания AP при p=20,4 атм (PИС / PSR): 1 — термодинамическое равновесие (ПП Chemkin-Pro); 2 — термодинамическое равновесие (ПП ASTRA [70]); 3 — универсальный механизм К.В. Пудуппаккама [101]; 4 — универсальный механизм К.В. Пудуппаккама [128]; 5 — механизм М.Л. Гросса [101]; 6 — данные М.К. Раздана и К.К. Куо [54]

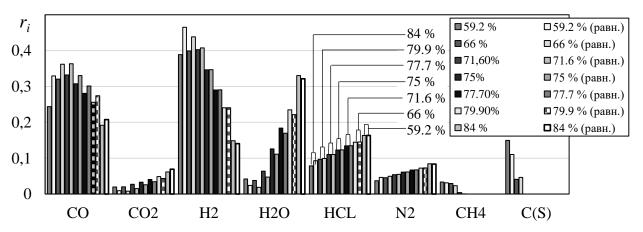


Рисунок 1.3 — Расчетные значения мольных долей ПС ТТ на основе АР/НТРВ для рецептуры от 59 % до 84 % содержания АР посредством универсального кинетического механизма К.В. Пудуппаккама с поправками М.У. Таннера [128] при p=20,4 атм (РИС / PSR)

Таблица5 — Продукты разложения конденсированной фазы твердого топлива на основе AP/HTPB [124, 128]

A	P, %	84	79,9	77,73	75,03	71,59	65,97	59,25
	C ₄ H ₆	0,040609	0,06918	0,08276	0,09924	0,12281	0,12736	0,08850
	CO	0	0,01258	0,02069	0,03053	0,05263	0,05189	0,01770
	H ₂ O	0,28934	0,27673	0,26897	0,25954	0,16228	0,11792	0
	HCN	0,06599	0,06289	0,05517	0,0458	0,03509	0,01415	0
	N_2	0,025381	0,02516	0,02759	0,03053	0,02193	0,01887	0
ИПС	H_2	0,020305	0,03774	0,04828	0,06107	0,13158	0,18396	0,30531
Мольные доли	CO_2	0,045685	0,03774	0,03448	0,03053	0,01754	0,00472	0
льн	CLOH	0,096447	0,10063	0,09655	0,0916	0,06579	0,04717	0
Mc	HCL	0,020305	0,01258	0,01379	0,01527	0,00877	0,00472	0
	CH ₄	0	0	0	0	0	0	0,00442
	C_2H_2	0,081218	0,07547	0,07586	0,07634	0,07895	0,07547	0,06637
	NH ₃	0,15736	0,14465	0,13793	0,12977	0,14912	0,13679	0,13274
	HCLO ₄	0,15736	0,14465	0,13793	0,12977	0,15351	0,13679	0,13274
	C(S)	0	0	0	0	0	0,08019	0,25221
	кДж/с 20,4 атм)	4	3,13	2,29	1,54	1,32	1	1,15

Для топливной пары AP/HTPB в широком диапазоне рецептуры наиболее подходящим является универсальный механизм К.В. Пудуппаккама с поправками М.У. Таннера [128]. Данные по конечным ПС находятся в удовлетворительном согласии с результатами расчета термодинамического равновесия, наибольшие расчетные отклонения получены при рецептуре AP/HTPB 59/41. Отклонение значений температуры в результатах расчета термодинамического равновесия (ПП ASTRA и Chemkin-Pro) может быть обусловлено применением в ПП ASTRA брутто-формулы для HTPB (C₂H_{3.07}) и отсутствием некоторых индивидуальных веществ в определении равновесного состава ПС. Таким образом, допускается применять данный механизм для оценки возможных взаимодействий в объеме КС и сопла. Однако данный механизм является крайне объемным для подробного

моделирования в двух- и трехмерной постановках (613 реакций), поэтому его применение ограничивается оценками в нульмерных и одномерных постановках посредством реакторов PSR, PFR, гомогенного реактора и др. Удовлетворительное согласие результатов с данными, полученные посредством приближения термодинамического равновесия, демонстрирует механизм М.Л. Гросса для соотношений АР/НТРВ 80/20 и 84/16. Механизм М.Л. Гросса, включающий в себя 127 реакций, возможно применять в двух- и трехмерных приближениях.

Подобный подход, используя уравнение (1.1), в приближенном описании отвода тепла от газовой фазы на разогрев и фазовые превращения твердотопливной массы совместно с нульмерным приближением PSR способен удовлетворительно описывать процесс горения и для однокомпонентного вещества. На примере горения гексогена (RDX) на рисунке 1.4 продемонстрированы расчетные мольные доли ПС, температура пламени по сравнению с данными других авторов [109] и термодинамического приближения. В таблице 6 представлены граничные условия по составу на входе в газовую фазу и основные параметры [109]. Основные теплофизические параметры твердого RDX определялись в соответствии с данными из работы [112, 128].

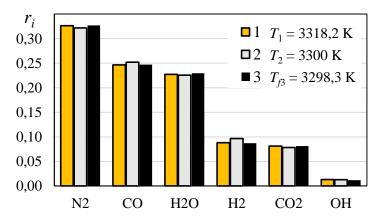


Рисунок 1.4 — Мольные доли продуктов сгорания при горении гексогена при p = 90 атм: 1 — расчетные данные (PSR); 2 — расчетные данные [109]; 3 — предельное термодинамическое равновесие (ПП ASTRA)

	Основные параметры				Мольнь	е доли на н	входе в газо	вую фазу
U, mm/c	ρ _{RDX} , _Γ /cm ³	р, атм	Ts, K	Q, к B т	H ₂ O, NO, NO ₂	CH ₂ O, N ₂ O	HCN	RDX
20,21	1,82	90	723	4	0,09	0,025	0,18	0,5

Т а б л и ц а 6 – Граничные условия для моделирования горения гексоген [87]

Температура пламени, определяемая посредством PSR, при горении гексогена при p=90 атм составила $T_1=3318,2$ K, по модели У.С. Ляу и В. Янга [109] $T_2=3300$ K (отличие в определении температуры пламени между упрощенным и более детальным подходом, учитывающий распределение температуры в слоях твердой и жидкой фаз, приблизительно может быть в районе 1-2%). Отличие между предельным термодинамическим равновесием и расчетным по составу ПС не превышает 1%.

1.2.3 Моделирование течения реагирующей среды в сверхзвуковой части сопла

Исследование потерь удельного импульса из-за термохимического взаимодействия ПС АР/НТРВ с продуктами разложения ТЗП возможно Ansys производить средствами Chemkin-Pro И программным пакетом термодинамического равновесия ASTRA [70], которые позволяют оценивать параметры смеси при расширении сопла. Оценку изменения параметров смеси в сверхзвуковой части сопла посредством используемого механизма допустимо проводить в приближениях HPИС [3] и PFR [125].

Релаксация ПС к термодинамическому равновесию по диссоциации может оказаться существенной при временах расширения порядка 10^{-4} с и меньше, что характерно для малоразмерных двигателей [65]. Поэтому целесообразно проверить применяемую формальную химическую кинетику на стремление к равновесию с изменяемыми термодинамическими параметрами по соплу. Оценка производилась в приближении закрытого гомогенного реактора при допущении о стремлении времени пребывания к бесконечности $(\tau \to \infty)$ при сохранении пропорций изменения статического давления и температуры. Результаты моделирования

представлены на рисунке 1.5 в виде изменения мольных долей ПС ТТ АР/НТРВ 80/20 по относительной длине сопла ($\overline{x} = l_i/l_c$, где l_i , l_c — текущая и полная длина сверхзвукового участка сопла). Вещества НСІ и N_2 допускается считать замороженными на входе в раструб сопла в связи с малым изменением их мольной доли при расширении. В рамках исследуемых процессов разница между малыми концентрациями индивидуальных веществ может быть колоссальной при сравнении с равновесными значениями [4].

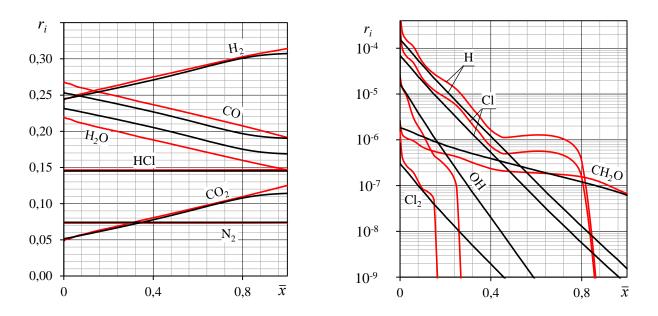


Рисунок 1.5 — Изменение мольных долей веществ продуктов сгорания при расширении: красная линия — термодинамическое равновесие; черная линия — закрытый гомогенный реактор

Кинетический механизм М.Л. Гросса прогнозирует содержание мольных долей ПС, сопоставимых с результатами расчета предельного термодинамического равновесия. Такой механизм допустимо использовать в дальнейшей оценке взаимодействия ПС ТТ с продуктами разложения ТЗП в условиях сверхзвукового течения в осесимметричном приближении. Сравнение расчетного изменения мольных долей веществ ПС ТТ по длине раструба сопла с данными экспериментов не представляется возможным в связи с отсутствием сообщений о подобных экспериментах и колоссальной сложности корректного их проведения.

1.3 Моделирование горения твердого топлива в составе гипотетического РДТТ

Моделирование горения ТТ и взаимодействия ПС с продуктами разложения ТЗП в составе гипотетического РДТТ производилось в осесимметричной адиабатной постановке посредством ПП ANSYS Fluent, в котором турбулентные течения вязкой среды описываются системой осредненных по Рейнольдсу уравнений Навье-Стокса. Система уравнений Навье-Стокса замыкается моделью турбулентности, в качестве которой выбрана двухпараметрическая модель k- ω SST [114] c типовым набором модельных констант. Верификация турбулентности k- ω SST для описания течений в ракетных двигателях широко раскрыта в работах К.Н. Волкова, В.Н. Емельянова и С.В. Денисихина [15-19]. В работах [30, 31, 56-59, 106] модель k- ω SST применялась для моделирования процессов течения в дозвуковой части сопла для достоверного описания изменений коэффициента расхода для разных форм дозвуковых участков, в том числе и с учетом абляции ТЗП [30, 31]. Основные размеры сеточной модели выполнены в соответствии с оптимальным соотношением размера квадратной ячейки и среднеквадратичной ошибкой по основным индивидуальным веществам $\Pi C \delta_1$ (по сравнению с термодинамическим приближением) и по основным параметрам потока на выходе КС δ_2 (рисунок 1.6). При высоте призматических слоев по поверхности гидравлического такта КС и сопла величиной 1,3 мм наблюдается сеточная независимость решения, при которой соблюдается условие $y^+ < 1$.

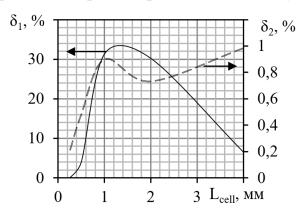


Рисунок 1.6 — Влияние размера ячейки в КС на среднеквадратичные ошибки по основным индивидуальным веществам ПС δ_1 и по параметрам потока на выходе из КС δ_2

В качестве модели горения, применялась модель Finite-Rate (FR), включенная в состав ПП Ansys Fluent. Модель FR определяет скорость химической реакции посредством экспоненциальной зависимости Аррениусовского вида, не учитывая пульсации турбулентности. Антагонистом модели FR является модель Eddy-Dissipation-Concept (EDC) [97, 98], которая включает в себя учет диффузионной составляющей пламени. Сравнение данных моделей в составе гипотетического РДТТ рассмотрено в работе [75]. Во-первых, в проектировании РДТТ используется допущение, что в объеме КС достигается предельное термодинамическое равновесие. Во-вторых, в работах многих зарубежных авторов, исследовавших плоское течение в приповерхностной зоне горящего ТТ, присутствуют доводы и зависимости от давления при горении заключения о том, ЧТО В термодинамическое равновесие по составу и температуре пламени достигается на расстоянии до 500 мкм от горящей поверхности. Исходя из данных суждений и результатов работы [75], модель EDC определяет меньший градиент температуры и индивидуальных веществ ПС в приповерхностной зоне ТТ даже при больших значениях коэффициентов масштаба длины C_{v} и малых значений константы масштаба времени C_{τ} (рисунок 1.7). В связи с этим, принимая во внимание, что горение ТТ в данной работе происходит с допущением о монотопливе (отсутствует учет частиц разного размера [11]; смесь ТТ – идеальна перемешана на молекулярном уровне), наиболее целесообразным является применение модели FR. К тому же, модель FR способна описывать кинетическое пламя, когда как горение монотоплива подразумевает поверхности TT предварительновыход с перемешанной смеси газов. Для наглядности на рисунке 1.8 продемонстрированы времена жизни вихря (eddy-life time) в продольном сечении гипотетического РДТТ, полученное посредством модели EDC при типовых значениях коэффициентов масштабов C_y и C_τ , превышающее время химических реакций в приповерхностной зоне ТТ.

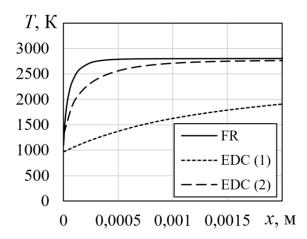


Рисунок 1.7 — Градиенты температуры в приповерхностной зоне горящего ТТ: EDC (1) — C_{τ} = 0,4; C_{ν} = 2,1; EDC (2) - C_{τ} = 0,01; C_{ν} = 200

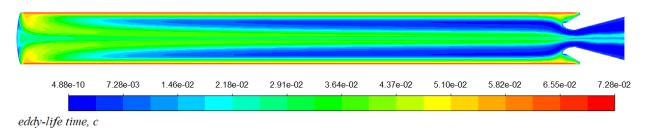


Рисунок 1.8 – Поле времени жизни вихря в продольном сечении РДТТ (EDC, C_{ν} и C_{τ} – типовые значения)

Термодинамические свойства веществ определялись из баз данных JANAF [113], NASA, А. Бурката [90, 91], М.К. Лина [92, 110, 135]. Термодинамические свойства смеси определялись в соответствии с законом аддитивности.

Для корректного описания переходных химических процессов при горении ТТ и при взаимодействии ПС безметального смесевого ТТ с продуктами разложения/абляции использовалась нестационарная постановка. Инкремент времени определялся в диапазоне $\Delta \tau = 10^{-6} - 10^{-5}$ с (рисунок 1.9). В связи с невысокими температурами среды энергиями электронного возбуждения и ионизации пренебрегали [133].

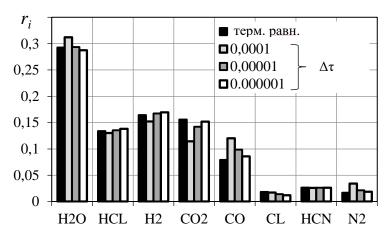


Рисунок 1.9 — Мольные доли ПС AP/HTPB 80/20 на выходе из КС в зависимости от шага по времени (м-зм М.Л. Гросса)

В некоторых численных экспериментах учитывались нереагирующие частицы сажи в объеме КС РДТТ. Частицы представляли собой форму идеальной сферы, движение которых вдоль непроницаемых стенок описывалось моделью wall-jet, основанной на теории Набера-Рейтца, определяющей скорости и направления частиц по результирующему потоку импульса в невязкой среде.

1.4 Выводы по главе 1

В данной главе проведен обзор и анализ научно-технической литературы по горению и моделированию горения безметального ТТ на основе АР/НТРВ. Рассмотрен подход к моделированию горения ТТ как монотоплива. Посредством реакторных моделей проведены верификация и анализ кинетических механизмов АР/НТРВ в широком диапазоне рецептуры. Удовлетворительная верификация на основании предельного термодинамического равновесия выбрать обоснованно подходы моделированию позволила К процессов химического взаимодействия, описанию теплового баланса между твердой, жидкой и газовой фазами, обеспечивающих удовлетворительную точность расчета процесса горения. Проведена дополнительная верификация и анализ поведения кинетических механизмов в условиях сопла. Полученные рекомендации и удовлетворительное согласование результатов расчетов реагирующих смесей позволило перейти непосредственно к описанию математической модели горения

и взаимодействия ПС с продуктами разложения ТЗП в составе гипотетического РДТТ.

Глава 2 Горение перхлората аммония. Моделирование, редуцирование и верификация

В данной главе представлено исследование кинетических механизмов для пламени АР.

2.1 Горение перхлората аммония

Перхлорат аммония представляет собой бесцветный кристалл, являющийся эффективным окислителем смесевых ТТ. Вариативность рецептуры ТТ с АР и добавлением различных горючих веществ накладывает определенные сложности в моделировании процесса горения ТТ. К примеру, термодинамическая температура пламени AP $T \approx 1400 \text{ K}$ [35], а при добавлении полибутадиенового каучука с учетом стехиометрического соотношения может вырасти до $T \approx 3000 \text{ K } [63, 68]$. Добавляя к существующей смеси алюминиевый мелкозернистый порошок, температура пламени может подняться до 3500 К и выше [62]. К сложностям моделирования процесса горения совместно с газовой динамикой также можно отнести выбор моделей горения [33, 43, 75], которые некоторых случаях продемонстрировать или частичное совпадение результатов полное экспериментальными данными.

Существенное увеличение температуры пламени ТТ на основе АР, полибутадиена и алюминия условно можно объяснить согласованностью внутренних энергий, химических реакций и разветвлений цепей химических механизмов горения топливных пар. В зависимости от соотношений компонентов в ТТ химические механизмы могут быть более или менее наполненными. Размеры химических механизмов способны достигать 10000 реакций, что существенно осложняет совместное моделирование уравнений газовой динамики и химических реакций [96, 134]. В таких случаях используют менее объемные механизмы, полученные посредством редуцирования скелетных механизмов (основных). Имеется также возможность уменьшения механизма до одной и более обобщенных реакций, которые представляют собой упрощенный и осредненный подход

описания химической кинетики [116]. Данный вариант часто отличается менее достоверными результатами, однако широко используется в моделировании за счет меньших затрат машинного времени [33, 43].

Для описания горения TT необходимо применить принцип раздельного кинетических механизмов ДЛЯ пламени АР, для совместного взаимодействия пламени АР и полибутадиена, для совместного взаимодействия алюминия с АР и полибутадиеном. Таким образом, изучение взаимосвязей компонентов ТТ по отдельности будет являться обоснованным решением проблемы моделирования горения ТТ, что в конечном итоге позволит изучить вопрос более подробно в составе РДТТ. В данной главе объектом исследования являются кинетические механизмы химических реакций в пламени АР в газовой фазе. Предмет исследования – профили температуры и состав компонентов устойчивых соединений продуктов химического взаимодействия в пламени АР. Под термическим разложением твердого АР следует понимать период, ограничивающийся нагревом твердого АР до температуры фазового перехода и образованием продуктов газификации конденсированной фазы. Под горением АР следует понимать процесс химического взаимодействия между продуктами газификации конденсированной фазы [24, 78, 133].

На основе экспериментальной работы [24], которая сформировала некоторый фундамент для математического описания процесса горения АР, создавались модели и кинетические механизмы. Результаты эксперимента [24] отличались более точным подходом по сравнению с данными предшественников [82]. На основе указанных результатов после многих итераций ПО упрощению кинетического механизма, получившегося объемным, в работе [26] предложен механизм, состоящий из 79 реакций. Посредством данной модели Н.Е. Ермолин нашел удовлетворительное совпадение по изменению мольных долей веществ и температуры в зависимости от расстояния с поверхности АР. В работе [124] данный механизм был модернизирован — добавлена реакция $2NO = O_2 + N_2$ для лучшего согласования по компонентному составу продуктов горения АР в газовой фазе при совместном моделировании конденсированной и газовой фаз. В работе [101]

представлен модифицированный универсальный механизм К.В. Пудуппаккама с поправками М.Л. Гросса, который кроме октогена и гексогена способен описывать химическое взаимодействие в пламени АР после включения хлоросодержащих реакций [110]. Данный универсальный механизм состоит из 106 веществ и 613 химических реакций в газовой фазе. Моделирование рабочих процессов в полноразмерной трехмерной постановке с применением такого объемного кинетического механизма требует существенных вычислительных ресурсов, что необходимость определяет редуцирования универсального механизма К.В. Пудуппаккама для более широкого практического применения. В данной исследование кинетических главе проведено механизмов химического взаимодействия в пламени АР [101, 124] при разных давлениях в одномерной постановке проточного реактора [123]. Математическое исследование проводилось при абсолютных давлениях от 0,6 до 120 атм с помощью ПП ANSYS Chemkin-Pro [81] с типовым набором настроек. Граничные условия при давлении p = 0.6 атм принимались в соответствии с работой [26]: скорость горения $AP \approx 3.3 \cdot 10^{-4}$ м/с; в таблице 7 представлен состав продуктов термического разложения АР, подаваемый с его поверхности. Состав считался неизменным при повышении давления в системе. Температура на поверхности АР от давления рассчитывалась на основе уравнения массовой скорости горения АР [68] и закона горения $U = 0.1823 \cdot \bar{p}^{0.93}$, где \bar{p} — относительное давление. В рамках применяемых моделей к расчету пламени АР тепловой баланс (1.1) между твердой, жидкой и газовой фазах не учитывался. Основные результаты работы представлены в [76].

Т а б л и ц а 7 — Состав продуктов газификации конденсированной фазы AP (мольные доли)

O_2	H ₂ O	N	N_2	NO_2	NH ₃	N ₂ O	ClOH	HCl	HClO ₄	Cl
0,2162	0,3667	0,0071	0,0283	0,06	0,0859	0,0247	0,06	0,095	0,0364	0,0198

2.2 Редуцирование, моделирование и верификация

Универсальный механизм [101] сокращен до 128 реакций (27 веществ) по представляет системный методу [111], который подход, использующий вычислительное сингулярное возмущение основе предположения на квазистационарных состояниях [118]. Основными критериями редуцирования являлось сохранение профилей пламени и изменение устойчивых индивидуальных веществ, участвующих в химическом взаимодействии в зависимости от расстояния до поверхности АР. Кривая, полученная с использованием редуцированного механизма, количественно и качественно практически не отличается от результатов, учитывающих взаимодействие по более объемному механизму. Редуцированный механизм представлен в приложениях (Приложение В).

Сравнение расчетных профилей температуры пламени в зависимости от расстояния с поверхности АР при включении механизмов из работ [101, 124] представлено на рисунке 2.1. Полученные расчетные профили коррелируют с результатами работ [101, 124] при давлении 0,6 атм.

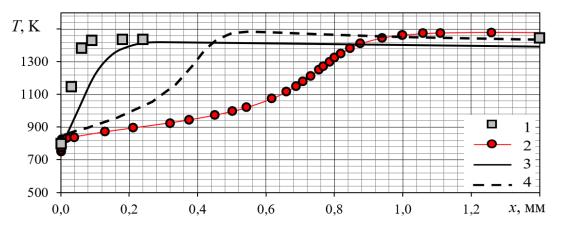


Рисунок 2.1 — Температурный профиль в пламени AP при p=0,6 атм: 1 — расчетные данные Н.Е. Ермолина [26]; 2 — универсальный механизм К.В. Пудуппаккама [101]; 3 — экспериментальные данные [24]; 4 — модернизированный механизм Н.Е. Ермолина [124]

Расчетные данные Н.Е. Ермолина предопределяют больший градиент температуры вблизи поверхности горящего АР по сравнению с

экспериментальными и расчетными результатами с применением универсального механизма К.В. Пудуппаккама и модернизированного механизма Н.Е. Ермолина. Высокое отличие градиента при малом давлении для результатов по температуре, полученных посредством механизмов К.В. Пудуппаккама и Н.Е. Ермолина, обусловлено неидеальностью кинетического механизма и возможным несовпадением граничных условий, например, по составу продуктов газификации и температуре на поверхности АР.

Изменения профилей мольных долей компонентов газовой фазы по расстоянию от поверхности AP при p=0,6 атм, полученные при учете модернизированного механизма H.Е. Ермолина [124], представлены на рисунке 2.2. На рисунке 2.3 показаны расчетные значения H.Е. Ермолина [26]. Изменения профилей мольных долей продуктов химического взаимодействия AP с учетом использования экспериментальных значений температуры от поверхности AP [24] представлены на рисунке 2.4.

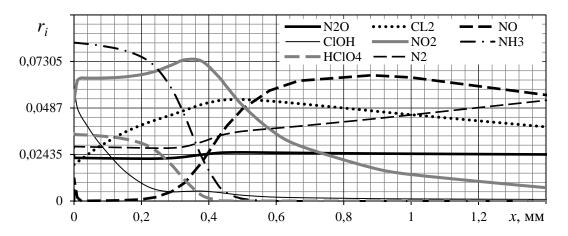


Рисунок 2.2 — Расчетные профили мольных долей компонентов смеси пламени AP (модернизированный механизм Н.Е. Ермолина [124])

Рисунок 2.3 – Экспериментальные концентрационные профили в пламени AP [26]



Рисунок 2.4 — Расчетные профили мольных долей компонентов смеси пламени при экспериментальном профиле температуры от поверхности АР [9]

Расчетные профили компонентов смеси в пламени AP (см. рисунок 2.2) растянуты по сравнению с данными [26]. Профиль температуры отклонен от экспериментальных результатов приблизительно на 0,3 мм, что предопределяет профили изменения состава ПС. Несвоевременное тепловыделение качественно влияет на изменение мольных долей индивидуальных веществ NO₂, N₂ и Cl₂. Данная разница связана с применением в граничных условиях профиля температуры из работы [26]. В работе [24] вещества определялись в соответствии с их молекулярными массами, которые, в свою очередь, могут совпадать, определяя фактор ошибки восприятия данных по набору веществ. В работе [124] выдвигалась

гипотеза о совпадении в работе [24] концентрации O_2 с NH_2O , механизмы взаимодействия которого исследованы недостаточно. Гипотеза заключалась в предположении, что начальная мольная доля O_2 находится в районе $\approx 0,15$, а $r_{NH2O} \approx 0,07$. Данная гипотеза объясняет резкий спад и дальнейшее повышение r_{O2} в приповерхностной зоне AP. Расчетное значение r_{O2} имеет перегиб при x=0,04 см, однако, в работе [26] данный перегиб ограничивается значением в $r_{O2} \approx 0,16$, после чего мольная доля молекулярного кислорода стремится к равновесному значению. При начальном значении $r_{O2} \approx 0,15$ исследование не проводилось.

Сравнение редуцированного механизма реакций в пламени АР (128 реакций) и механизма К.В. Пудуппаккама (613 реакций) проводилось в рамках проточного реактора, где исследовался профиль изменения температуры пламени вблизи поверхности горения АР, и реактора идеального смешения при тех же граничных условиях. Результаты расчетов представлены на рисунках 2.5 - 2.7, где наглядно показано влияние давления на профиль температуры у поверхности АР в зависимости от принимаемых кинетических механизмов. Существенная разница между экспериментальными и расчетными значениями профиля температуры при низких давлениях свидетельствует об определяющем влиянии давления на скорость химических реакций и, как следствие, на механизм реакций. С увеличением давления градиент температуры приближается к поверхности АР и при давлениях выше 60 атм принципиальной разницы в характере профилей не наблюдается. Широкой набор химических реакций в механизмах реакций АР в газовой фазе [26] определяет резкое повышение температуры у поверхности, чему во многом способствует накопление радикала НОО, который, в свою очередь, влияет на скорость реагирования HClO₄. Расчетные значения состава конечных продуктов в пламени АР при разных давлениях представлены на рисунке 2.8.

Рисунок 2.5 — Температурный профиль в пламени AP, полученный с применением модернизированного механизма H.E. Ермолина [124]

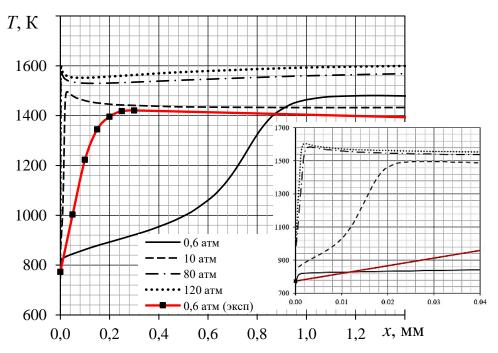


Рисунок 2.6 — Температурный профиль в пламени AP, полученный с применением кинетического механизма К.В. Пудуппаккама [101]

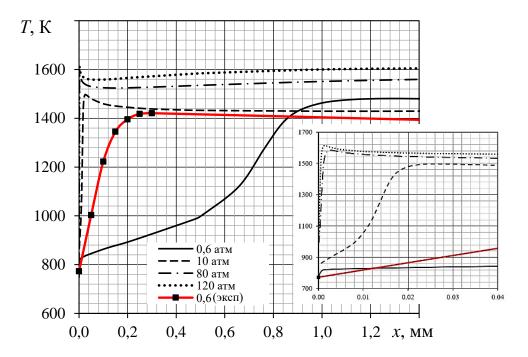


Рисунок 2.7 — Температурный профиль в пламени AP, полученный с применением редуцированного механизма

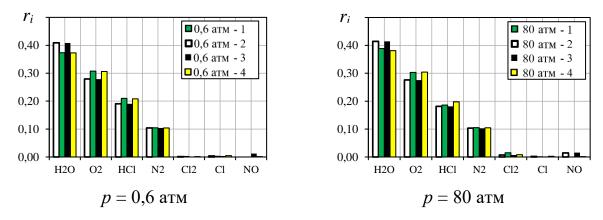


Рисунок 2.8 — Расчетные значения мольных долей конечных продуктов в пламени AP: 1 — термодинамическое равновесие; 2 — универсальный механизм К.В. Пудуппаккама; 3 — редуцированный механизм; 4 — модернизированный механизм Н.Е. Ермолина

Модернизированный механизм Н.Е. Ермолина [124] при повышении давления до 120 атм прогнозирует значения температуры пламени с завышением на $\Delta T \approx 320~\mathrm{K}$ (рисунок 2.9) при наименьшем отклонении мольных долей конечных ПС от равновесных значений. В диапазоне умеренных давлений наиболее предпочтительным механизмом из рассмотренных в данной части является

универсальный механизм К.В. Пудуппаккама [101], который хоть и определяет конечные значения мольных долей H_2O , O_2 , HCl немного завышенными от равновесных, но конечная температура пламени отличается не более, чем на $\Delta T \approx 220$ К. Термодинамическое равновесие пламени NH_4ClO_4 рассчитывалось при энтальпии $I_T = 2519,4$ кДж/кг. При использовании программного обеспечения ПП <ACTPA> [70] значения температуры ниже на $\Delta T \approx 50$ —60 К.

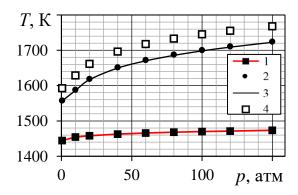


Рисунок 2.9 — Расчетные значения конечных температур пламени: 1 — термодинамическое равновесие; 2 — универсальный механизм К.В. Пудуппаккама [101]; 3 — редуцированный механизм; 4 — модернизированный механизм Н.Е. Ермолина [124]

Сформированный редуцированный механизм химических реакций в пламени АР находит хорошее совпадение (среднеквадратичное отклонение не более 1,5 %) с универсальным механизмом К.В. Пудуппаккама [101]. В большей степени часть реакций из всего механизма в 613 реакций (106 веществ) не имели существенного влияния на процесс горения АР в газовой фазе.

2.3 Выводы по главе 2

В данной главе проведено исследование кинетических механизмов пламени AP при низких и умеренных давлениях. Проведено сравнение расчетных значений по изменению индивидуальных веществ по длине от горящей поверхности AP с экспериментальными профилями.

Получен кинетический механизм, состоящий из 128 химических реакций, позволяющий производить оценку изменения градиента температуры вблизи

горящей поверхности твердого AP в диапазоне умеренных давлений. Результаты, полученные по новому кинетическому механизму, удовлетворительно коррелируют с результатами универсального кинетического механизма К.В. Пудуппаккама, среднеквадратичная ошибка не более 1,5 %.

Глава 3 Влияние взаимодействия продуктов сгорания с продуктами разложения теплозащитного материала дозвуковой части соплового блока на коэффициент расхода и коэффициент сопла

В данную главу включены краткие сведения о тепловых процессах, происходящих во входных участках сопел РДТТ и о взаимодействии ПС с продуктами разложения ТЗП в дозвуковом контуре сопла. Представлены модель теплового баланса на поверхности ТЗП и результаты исследования влияния взаимодействия ПС безметального ТТ с газофазными продуктами разложения ТЗП в дозвуковом контуре утопленного сопла на коэффициент расхода и потери удельного импульса.

3.1 Краткие сведения о тепловых процессах в соплах РДТТ и методе их моделирования

В ракетных двигателях твердом топливе используются на высокоэнергетические топливные заряды, при горении которых выделяется существенное количество энергии, что предполагает наличие тепловой защиты силовой оболочки. Одна из отличительных особенностей РДТТ – наличие аблирующих ТЗП. В КС РДТТ в качестве ТЗП часто используют резиноподобные покрытия с применением каучука, совместимого с топливным зарядом [13, 37, 51, 67, 72, 78]. В сопловом блоке применяются армированные пластмассы на основе угольных, графитовых, кварцевых волокон и эпоксидных, кремнеорганических и фенольных смол [21, 51, 69, 72, 78]. При разложении коксующихся ТЗП выделяются газообразные продукты испарения связующего материала, которые фильтруются через коксовый пористый слой со съемом тепла [31, 51]. Продукты разложения попадают в пограничный слой основного потока, изменяя профили его параметров [39-42]. Изменение характеристик потока влияет на коэффициент расхода дозвукового участка сопла [74], коэффициент сопла, включающий потери из-за рассеяния, трения, химической неравновесности и двухфазности потока, и, соответственно, на тяговые и энергетические характеристики РДТТ [29].

В работе [30] представлено влияние вдува с поверхности сопла до минимального сечения на характеристики основного потока и газодинамическое совершенство входного участка сопла или коэффициент расхода. Однако в работах [30, 31, 106] предполагалось, что рабочим телом являлся нереагирующий газ с теплофизическими характеристиками ПС ТТ без учета догорания продуктов абляции. Такой подход можно считать приближенным с позиции газодинамики реагирующих сред. Состав газообразных продуктов разложения фенольных смол [20],зависит температуры ЧТО говорит o возможных изменениях теплофизических характеристик пограничного слоя во входном участке сопла. Для корректной оценки влияния вдуваемых продуктов разложения фенолформальдегидной смолы (ФФС) на коэффициент расхода дозвукового участка сопла в данной главе использовалась реагирующая среда топливной пары AP/HTPB, описываемая кинетическим механизмом М.Л. Гросса [101] (Приложение Б). Механизм М.Л. Гросса содержит 127 реакций, 38 индивидуальных веществ и углерод в газовой фазе, химическое взаимодействие которого не учитывалось.

Пиролиз ТЗП на основе ФФС начинается при достижении температуры примерно 500 К [20, 69]. За разрушением связей между линейными макромолекулами следует разрыв цепей макромолекул с отщеплением боковых радиальных групп, которые, переходя к поверхности, испаряются и разлагаются при достижении более высоких температур. Таким образом, определяющими для описания состава продуктов разложения и параметров вдува являются температура и тепловой поток, направленный к ТЗП. Наличием коксового слоя в исследовании пренебрегали. Для определения конвективного теплового потока использовалась модель Д.Р. Бартца для сопловых блоков с небольшими углами входных участков [83]:

$$Nu = A \frac{(T_0/T_w)Pr^{7/15}Re^{0.8}}{(l_0/r_{BX})^{0.2}(r_0/r)^{0.05}}; Nu = \frac{\alpha_\kappa 2r}{\lambda};$$

$$q_{\kappa} = \frac{\alpha_\kappa}{c_{pw}} (H_0 - H_w) \left(\frac{\rho_0}{\rho_w}\right)^{0.75} \left(\frac{\mu_0}{\mu_w}\right)^{0.25};$$

$$H_0 = c_{p0}T_0; H_w = c_{pw}T_w,$$

$$(3.1)$$

где Nu, Pr, Re — числа Нуссельта, Прандтля, Рейнольдса; A — коэффициент сопоставления с опытными данными (A=0,026); T — температура газа; l_0 — длина сопла до входа в минимальное сечение; $r_{\rm BX}$ — радиус входного сечения сопла; r — радиус расчетного сечения сопла; $\alpha_{\rm K}$ — коэффициент конвективной теплоотдачи; λ — теплопроводность; $q_{\rm K}$ — удельный конвективный тепловой поток; c_p , — теплоемкость; ρ — плотность; μ — динамическая вязкость; H_0 , H_w — энтальпия; индексы «w», «0» относятся к параметрам на стенке и в невозмущенном поток; параметры с индексом «0» определялись в соответствии с правилом аддитивности между параметрами с индексами «w» и «п», где индекс «п» относится к параметрам в ядре потока.

Модель Д.Р. Бартца не учитывает изменение трения и влияние взаимодействия конденсированной фазы с поверхностью ТЗП, тепловой поток определялся относительно осредненных параметров пограничного слоя для каждого n-го участка дозвукового участка сопла (10 участков). При постоянной температуре вдува ($T_w = 623 - 1073$ К) оценка массы вдуваемых газов с поверхности ТЗП и их линейная скорость уноса определялась соотношениями $\dot{m}_{\rm BД} = x_{\rm c} \, q/H$; $u = \dot{m}/\rho_{\rm CBЯ3}$, где H — тепловой эффект пиролиза связующего; $x_{\rm c}$ — массовая доля газообразных продуктов пиролиза; $\rho_{\rm CBЯ3}$ — плотность связующего. В данной главе рассматривается ТЗП П5-13 [64, 69] с коксовым числом 0,7; доля связующего — 0,4; массовая доля газообразных продуктов пиролиза связующего — 0,12.

Тепловой эффект пиролиза связующего, Дж/кг, определялся в соответствии с соотношением для ФФС [20]:

$$H = 1,2(T-2000)^2 - 0,52(T-2000) + 1820000$$
.

Газообразный состав продуктов разложения ФФС в диапазоне температур 623...1073 К выбирался согласно данным [20]. Основные продукты разложения – вода, водород, оксид углерода, диоксид углерода, метан, углерод.

Температура вдуваемых веществ определялась в соответствии с тепловым балансом между тепловым потоком от ПС q и теплом $q_{\rm тзп}$, которое поглощается ТЗП (разогрев и фазовые преобразования). При допущении, что вдув газа

соответствует критическому вдуву и условию $q = q_{\text{тзп}}$ на поверхности ТЗП, определяется некоторое стационарное значение теплообмена.

Система уравнений теплового баланса:

$$\begin{cases} (\rho RT)_{w} + \frac{\rho_{w}w_{w}^{2}}{2} - p_{\Pi}^{*} = 0; \\ A_{m} \cdot \exp\left(\frac{-E_{a}}{RT_{s}}\right) x_{c} - (\rho w)_{w} = 0; \end{cases}$$
(3.2)

$$q_{\text{T3II}} = c_{p \text{ T3II}} \left(T_{s} - T_{\text{разл}} \right) \dot{m}_{\text{yH}} (1 - x) + \dot{m}_{\text{yH}} x_{c} \Delta H + c_{p \text{ пр.пир}} \left(T_{s} - T_{\text{разл}} \right) \dot{m}_{\text{yH}} x_{c}; \tag{3.3}$$

$$\dot{m}_{\text{yH}} = A_m \cdot \exp\left(\frac{-E_a}{RT_s}\right);$$

$$q = q_{\kappa} + q_{\pi}; \tag{3.4}$$

 $q_{_{\Pi}} = \frac{\varepsilon_{_{\Gamma}}\varepsilon_{_{W}}}{\varepsilon_{_{\Gamma}}+\varepsilon_{_{W}}-\varepsilon_{_{\Gamma}}\varepsilon_{_{W}}}\sigma_{0}\left(T_{_{\Pi}}^{4}-\frac{a_{_{W}}}{\varepsilon_{_{\Gamma}}}T_{_{S}}^{4}\right),$

R – газовая постоянная; p_{Π}^{*} – давление торможения; A_{m} предэкспоненциальный множитель; E_a – энергия активации; $c_{p \text{ пр.пир}}$ – теплоемкость продуктов пиролиза ТЗП; $T_{\text{разл}}$ – температура разложения $\Phi\Phi$ С; $\dot{m}_{\text{ун}}$ – массовая скорость уноса ТЗП; $q_{\scriptscriptstyle \Pi}$ – радиационный тепловой поток к поверхности; $\epsilon_{\scriptscriptstyle \Gamma}$, $\epsilon_{\scriptscriptstyle W}$ – эффективная степень черноты газа и материала стенки; σ_0 – постоянная Стефана-Больцмана; a_w – коэффициент поглощения; индексы «s», «тэп» относятся к параметрам на поверхности ТЗП и к свойствам материала ТЗП. В уравнении (3.3) первое слагаемое определяет количество теплоты, которое поглощается ТЗП в твердой фазе; второе слагаемое определяет долю количества теплоты на химические преобразования при пиролизе; третье слагаемое – количество теплоты, затраченное на разогрев газов пиролиза от температуры разложения до T_s . В уравнении (3.3) в общем виде также должно присутствовать слагаемое, определяющее теплоту, затраченную на разогрев некоторой толщины ТЗП от $T_{\rm нач}$ до $T_{\rm разл}$, но в связи с тем, что данная составляющая играет существенную роль лишь в начальный и конечный моменты времени работы РДТТ, данная теплота не учитывалась.

Система уравнений (3.2) решается для заданных T_w в диапазоне возможных температур, определяя ρ_w , w_w и \dot{m}_{yh} . Уравнения (3.1), (3.3) и (3.4) решаются для заданных T_w , определяя тепловой баланс между тепловым потоком от продуктов

сгорания и теплом, поглощаемым ТЗП, а именно некоторый квазистационарный режим теплообмена на поверхности ТЗП.

В данной части исследования с поверхности ТТ с температурой $T_s = 800 \; {\rm K}$ предварительно перемешанный состав продуктов газификации AP/HTPB 80/20: $H_2O = 0.10456$; $C_4H_6 = 0.07178$; $C_2H_2 = 0.01727$; $H_2 = 0.01003$; $CO_2 = 0.01727$; $C_2H_2 = 0.017$ 0,16057; CO -0,01859; NH₃ -0,05932; ClOH -0,23495; HCN -0,08964; HCLO₄ -0,23329 [128], способствующий определению параметров ПС близкими к равновесию (без учета теплового баланса между фазами). Альтернативным граничным условием в данном случае является состав газификации АР/НТРВ 80/20 (см. таблицу 5) с температурой на поверхности ТТ $T_s = 1053.8$ К при p = 88 атм. Термодинамические свойства индивидуальных веществ, участвующих в механизме горения TT, принимались в соответствии с базами данных JANAF, А. Бурката и М.С. Лина. Вязкость и теплопроводность смеси определялась в соответствии с правилом аддитивности. Сделано допущение, что в продуктах разложения АР/НТРВ конденсированная фаза отсутствует, в процессе перехода от твердой фазы к газообразным продуктам на поверхности ТТ жидкая фаза не учитывалась, исследования проводились только для газовой фазы. Условная формула $TT - N_{6.81}H_{49.42}Cl_{6.81}O_{27.23}C_{14.79}$. Временной шаг определялся как $\Delta \tau = (0.1 - 1) \cdot 10^{-5} \text{ c.}$

Схема расчетной геометрической модели гипотетического РДТТ представлена на рисунке 3.1. Геометрические параметры: $L_{\rm yr}/L_3$ =0,03; $b/r_{\rm min}$ =0,8; $r_3/r_{\rm min}$ =0,1; $r_{\rm K}/r_{\rm min}$ =3,13.

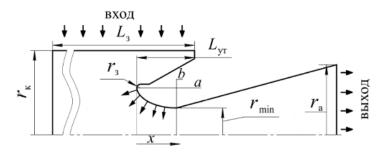


Рисунок 3.1 – Схема исследуемого гипотетического РДТТ

Для корректного определения параметров потока на срезе сопла учитывался дополнительный объем за соплом. Цилиндрическая поверхность в объеме КС имитировала поверхность ТТ. Вдув продуктов разложения ТЗП осуществлялся с дозвуковой поверхности сопла. Дозвуковой профиль сопла спрофилирован в соответствии с рекомендациями [56, 58, 59]. При моделировании процессов в гипотетическом РДТТ сделано допущение, что омываемая поверхность входного участка сопла, покрытая ТЗП, и геометрическая площадь минимального сечения не изменяли своих геометрических размеров.

Коэффициент расхода определялся на основе осредненных параметров в минимальном сечении:

$$\mu_{\rm c} = \frac{\dot{m}}{A(k)p^* F_{\rm min} / \sqrt{RT^*}},$$

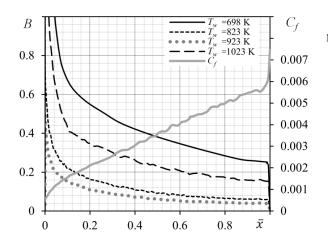
где \dot{m} — суммарный расход смеси через минимальное сечение; p^* — давление торможения в минимальном сечении; T^* — температура торможения ПС в минимальном сечении; F_{\min} — площадь минимального сечения; k — среднее значение отношения теплоемкостей продуктов смеси на входе и в минимальном сечении

сопла;
$$A(k) = \sqrt{k} \left(\frac{2}{k+1} \right)^{\frac{k+1}{2(k-1)}}$$
 – газодинамический комплекс. Параметры

сверхзвукового потока не оказывают принципиального влияния на коэффициент расхода, в связи с чем при расчете не учитывались [55].

Количественная оценка вдуваемых продуктов разложения ФФС определялась в соответствии с параметром вдува [77]:

$$B = \frac{\rho_w W_w}{St_0 \rho W}$$
; $St_0 = 0.5C_f Pr^{2/3}$,


где $\rho_{\it w}$, $\it W_{\it w}$, ρ , $\it W-$ плотность и скорость вдуваемых продуктов и основного потока;

$$C_f = \frac{2\tau_w}{\rho_\infty U_\infty^2}$$
 — коэффициент трения на непроницаемой стенке; τ_w — касательное

напряжение трения на стенке; ρ_{∞} , U_{∞} — плотность и скорость потока вне пограничного слоя; \Pr — число Прандтля для условий пограничного слоя.

3.2 Влияние взаимодействия продуктов сгорания твердого топлива с продуктами разложения теплозащитного покрытия на коэффициент расхода

Изменение коэффициента трения C_f и параметра вдува B по длине входной части сопла (см. рисунок 3.1) при температурах вдува $T_w = 698 - 1023$ К продуктов разложения $\Phi\Phi$ С представлено на рисунке 3.2, где $\bar{x}=x/b$. Тепловой поток, направленный к поверхности входного участка сопла, и расчетное отношение числа Стэнтона St/St_0 приведены на рисунке 3.3.

q, МВт/м² St/St_0 0.96 12 0.94 10 0.92 0.90 0.88 0.86 0.84 St/Sto 0.82 =1023 K 0 0.80 0.6 0.8

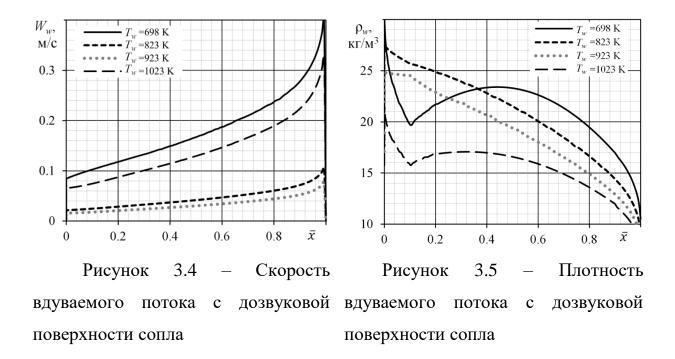

Рисунок 3.2 — Параметр вдува и коэффициент трения по длине дозвукового участка сопла (a/b=2)

Рисунок 3.3 — Тепловой поток к поверхности ТЗП и отношение чисел Стэнтона по длине дозвуковой части сопла (a/b = 2)

Большие расчетные значения тепловых потоков к поверхности ТЗП объясняются малой температурой вдува T_w и, соответственно, стенки ($T_w = 698 - 1023$ K) относительно температуры ПС.

Существенное отличие параметра B от температуры вдува обусловлено составом вдуваемых продуктов разложения, молекулярный вес которых различен. Например, при вдуве при $T_w = 1023$ К и $T_w = 698$ К основными продуктами разложения $\Phi\Phi$ С являются водяной пар, водород, оксид углерода и метан [20]. При минимальном значении теплового потока к поверхности входной части сопла из рассматриваемых вариантов параметр вдува B при $T_w = 1023$ К и $T_w = 698$ К существенно выше значений, соответствующим $T_w = 823$ К и $T_w = 923$ К, что и

объясняется большими значениями скорости (рисунок 3.4) и плотности (рисунок 3.5) потока вдува.

Плотности вдуваемых продуктов разложения ФФС при $T_w=1023$ К и $T_w=698$ К значительно отличаются за счет переменного молекулярного веса. Перегибы при $\overline{x}\approx 0,1$ объясняются самыми минимальными значениями молекулярного веса вдуваемого тела — почти в два раза меньше, чем молекулярный вес ПС ТТ. При $\overline{x}\approx 0,1$ также наблюдались максимальные значения теплоемкости смеси. Двигаясь дальше по потоку $\overline{x}\geq 0,1$, газообразная смесь продуктов разложения диффундирует в основной поток ПС.

На рисунке 3.6 (*a*) представлены профили приведенной скорости потока в сечениях $\overline{x}=0.21$ и $\overline{x}=0.53$ входного участка сопла по сравнению с профилем скорости без вдува, на рисунке 3.6 (б) отражены профили приведенной скорости потока в сечениях $\overline{x}=0.75$ и $\overline{x}=1$. Профили приведенной скорости в минимальном сечении ($\overline{x}=1$) отражены на рисунке 3.7 (*a*), в увеличенном масштабе – на рисунке 3.7 (б).

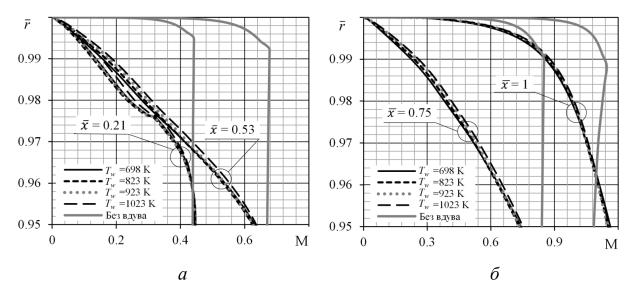


Рисунок 3.6 — Профили приведенной скорости в поперечных сечениях дозвукового участка сопла (a/b=2)

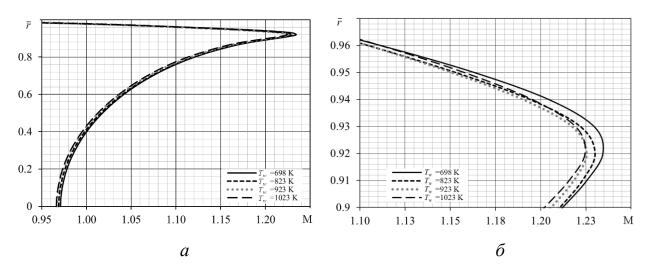


Рисунок 3.7 — Профили приведенной скорости минимальном сечении сопла (a/b=2)

С уменьшением скорости потока в приповерхностной зоне сопла посредством вдува создается завеса охлаждения, способствующая изменению теплового потока, направленного к поверхности ТЗП входного участка сопла. Однако, применяемая модель Д.А. Бартца предназначена для расчетов конвективного теплообмена на гладкой непроницаемой стенке сопла, т.е. без учета влияния вдува. С использованием методики [77] определен параметр учета вдува K_w при разных температурах вдува по длине входного участка сопла, который

представляет собой поправку к тепловому потоку при турбулентном режиме течения. Взаимосвязь соотношений молекулярного веса основного потока ПС и вдуваемых газов с поверхности ТЗП и теплового потока в виде параметра учета вдува K_w представлена на рисунке 3.8.

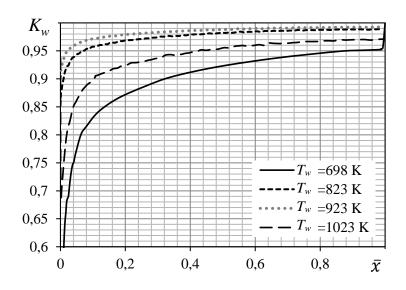
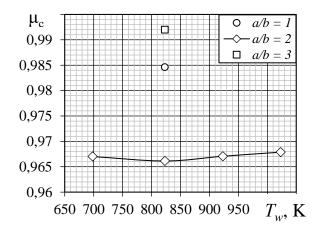


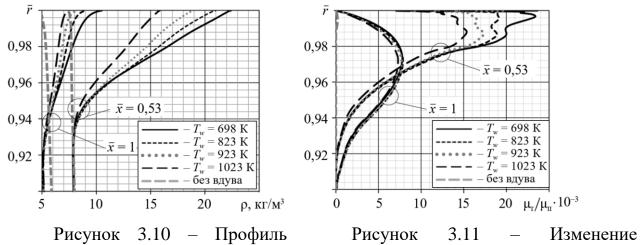
Рисунок 3.8 – Изменение параметра учета вдува по длине дозвукового участка сопла

В соответствии с параметром учета вдува K_w тепловой поток, направленный к поверхности ТЗП, в данной постановке уменьшается более чем на 3 % в случае вдуваемых газообразных продуктов разложения ТЗП (водород и метан). При $T_w = 823$ К и $T_w = 923$ К (продукты разложения ТЗП — оксид углерода, диоксид углерода и углерод) от $\bar{x} = 0.2$ тепловой поток к поверхности ТЗП снижается не более чем на 3 %, что согласуется с данными, представленными в работе [77].

Подвод продуктов разложения ФФС с поверхности ТЗП в зависимости от количественной характеристики вдува способствует изменению профиля скорости. При увеличении вдуваемых газов профиль скорости в минимальном сечении вблизи поверхности ТЗП вытягивается в большей степени. Из-за подвода продуктов разложения переменного состава характеристики по-разному изменяются в пограничном слое у ТЗП, что во многом определяется диффузионными свойствами компонентов. Существенное сужение струи может

негативно влиять на коэффициент расхода μ_c для определенных дозвуковых участков сопла вне зависимости от дополнительного подвода массы к рабочему телу гипотетического РДТТ. На рисунке 3.9 представлено изменение коэффициента расхода для дозвуковых контуров a/b=1; 2 и 3 при $T_w=698-1023$ К.




Рисунок 3.9 – Коэффициент расхода сопла при вдуве продуктов разложения ТЗП ($T_w = 698 - 1023$ K) с дозвуковой поверхности сопла

Немонотонное изменение коэффициента расхода (см. рисунок 3.9) определяется соотношением между подводимой энергией при вдуве продуктов разложения, количеством вдуваемых газов и молекулярным весом смеси. Вдуваемые продукты разложения сужают основной поток смеси (т.е. уменьшают «живое» сечение). Уменьшение газодинамической площади минимального сечения способствует росту давления в КС, которое, в свою очередь, определяет увеличение газоприхода с поверхности ТТ и температуры горения, но данные изменения в проводимых исследованиях не учитывались в связи с их весьма незначительными значениями.

Количество вдуваемого вещества изменяет расход через минимальное сечение сопла, а температура и состав газов вдува влияет на температуру потока в минимальном сечении. Наличие перегиба в зависимости коэффициента расхода при $T_w = 823 \, \mathrm{K}$ определяется наименьшим соотношением энергетических характеристик и количества расхода газов через минимальное сечение сопла. К тому же, вдув углеводородных соединений способствует изменению условной

формулы смеси в пристеночной зоне за счет создания более богатой смеси, что приводит к уменьшению температуры на термохимическом уровне при взаимодействии с ПС ТТ АР/НТРВ 80/20. Вследствие искажения профилей параметров потока с учетом прибавки массы газов пиролиза коэффициент расхода сопла уменьшается на 3,4 % (относительно $\mu_c = 1$) для контура a/b = 2. При этом уровень значений μ_c для a/b = 1 и a/b = 3 существенно выше, что обуславливается характером изменений газодинамической и термохимической структур потока.

На рисунках 3.10-3.12 представлены профили плотности, профили турбулентной вязкости, отнесенные к средней вязкости потока $\mu_{\rm T}/\mu_{\rm H}$, и турбулентной кинетической энергии, отнесенные к диссипации турбулентной энергии k/ϵ , в поперечном сечении дозвукового участка сопла.

плотности смеси в продольных отношения турбулентной вязкости к сечениях дозвукового участка вязкости смеси в продольных сечениях сопла (a/b=2) дозвукового участка сопла (a/b=2)

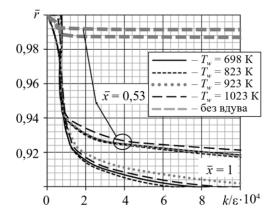


Рисунок 3.12 — Изменение отношение кинетической энергии турбулентности к диссипации в разных сечениях дозвукового участка сопла (a/b = 2)

Согласно полученным результатам ламинарного явно течения пристеночной области не наблюдается. Однако тенденция ламинаризации [10, 32] наблюдается в уменьшении градиентов основных параметров потока. За счет изогнутой поверхности входного дозвукового участка сопла вдув продуктов разложения ТЗП под разными углами в приповерхностной зоне порождает перемешивание слоев потока, что, в свою очередь, способствует турбулизации потока. Условное время жизни вихря определяется отношением k/ϵ , значение которого в пристеночной зоне имеет один порядок на протяжении всего координатах 0.94 - 1.00дозвукового участка сопла в радиальных рассматриваемых вариантов вдува. В минимальном сечении вдув продуктов разложения ТЗП отсутствовал, турбулентная вязкость имеет остаточный характер. Отличие в параметре k/ϵ во многом объясняется значениями вязкой диссипации ϵ , которая определяет пограничную структуру потока в пристеночной области. Перегибы зависимостей k/ϵ и $\mu_{\scriptscriptstyle T}/\mu_{\scriptscriptstyle \Pi}$ для рассматриваемых r сопоставимы.

Уменьшение температуры в приповерхностной зоне влияет и на профиль температуры на срезе сопла, однако интенсификация вдува способствует небольшому увеличению составляющей интегральной скорости потока на выходе из сопла из-за уменьшения «живого» сечения в минимальном сечении сопла, что позволяет при неизменном газодинамическом контуре соплового блока увеличить степень расширения в раструбе сопла.

В рассматриваемой постановке мольные доли продуктов разложения в минимальном сечении при интегральном осреднении по массе изменялись мало, во многом за счет того, что соотношение вдуваемого тела к основному потоку ПС находилось в диапазоне $4...6\cdot 10^{-4}$. Мольные доли продуктов смеси в минимальном сечении представлены на рисунок 3.13.

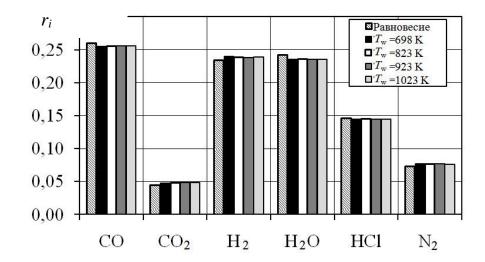


Рисунок 3.13 — Мольные доли продуктов смеси в минимальном сечении утопленного сопла

При одинаковых условиях легкие газы с теплоемкостью выше среднего значения основного потока ПС определяют более высокое значение параметра вдува. С увеличением скорости вдува газифицированных продуктов разложения ФФС ТЗП тепловой поток к поверхности падает, к тому же наличие в составе вдуваемых газов-охладителей способствует в большей мере к уменьшению теплового потока, направленного к поверхности. В пристеночной зоне входного участка сопла до минимального сечения формируется турбулентный пограничный слой, который характеризуется меньшими градиентами основных параметров до $\bar{r}\approx 0.9$ при вдуве газифицированных продуктов разложения ТЗП.

Изменение дозвукового контура способствует изменению газодинамической картины течения при вдуве продуктов газификации ТЗП. Комбинация изменения газодинамических характеристик течения и трения у поверхности ТЗП при вдуве с дозвукового участка сопла способствует качественным изменениям расходной характеристики сопла. Для дозвуковых контуров утопленного сопла a/b = 1; 2 и 3 переменный подвод газоофазных продуктов разложения ТЗП в совокупности приводит к разному распределению газодинамических параметров и к смене знака градиента давления в поперечном сечении дозвукового участка сопла. На рисунке 3.14 наглядно представлены относительные координаты перемены знака

градиента давления при вдуве газофазных продуктов разложения ТЗП при температуре $T_w = 823 \; \mathrm{K}.$

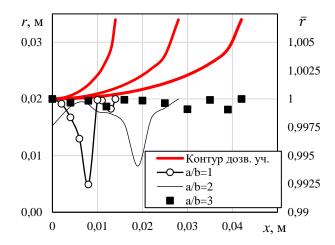


Рисунок 3.14 — Графическое представление смены знака градиента давления в пристеночной зоне дозвукового контура сопла при вдуве продуктов разложения ТЗП в относительных радиальных координатах

Существенное сужение газодинамической струи наблюдается для контуров a/b = 1 и a/b = 2, для дозвукового контура a/b = 3 организуется в большей степени слоистое течение, чем отрывное, что в совокупности определяет высокое значение коэффициента расхода (см. рисунок 3.9).

На рисунке 3.15 продемонстрированы расчетные значения коэффициента расхода при переменной интенсивности вдува газообразных продуктов разложения ТЗП. Интенсивность вдува определялась относительно переменной доли газообразных продуктов разложения связующего в диапазоне $x_c = 0 - 1$. Следует отметить, что согласно теории пограничного слоя физический смысл условной толщины вытеснения соответствует уменьшению расхода из-за образования пограничного слоя. В трудах [21, 77] представлены аналитические выражения μ_c для плавных дозвуковых участков без учета сложных физико-химических взаимодействий смеси. Толщина потери энергии описывает количество теплоты, отданное потоком в стенку на участке от развития пограничного слоя до рассматриваемого сечения, в связи с этим предлагается зависимость для коэффициента расхода с участием толщины потери энергии в пограничном слое

при взаимодействии продуктов течения и продуктов разложения ТЗП при большой интенсивности вдува, характеризуемой отношением вдуваемой массы к массе смеси от $\dot{m}_{\rm вл}/\dot{m}=1,2\cdot 10^{-4}$:

$$\mu_{c} = \frac{\left(r_{\min} - \delta_{T}^{**}\right)^{2}}{r_{\min}^{2}};$$
(3.5)

$$\delta_{\mathrm{T}}^{**} = \int_{0}^{\delta} \frac{\rho_{w} w_{w}}{\rho_{e} w_{e}} \left(1 - \frac{T - T_{w}}{T_{e} - T_{w}} \right) dy,$$

где r_{\min} – радиус минимального сечения; δ_{T}^{**} – толщина потери энергии; ρ_e — плотность потока на границе пограничного слоя; w_e — скорость потока на границе пограничного слоя; Т – температура потока в толщине от вдуваемого потока до границы пограничного слоя; T_e — температура потока на границе пограничного слоя. На рисунке 3.15 также представлены расчетные значения коэффициента расхода (закрашенные условные знаки), полученные посредством уравнения (3.5), которые лежат в качественном согласии для значительной интенсивности вдува. При меньших значениях отношения массовых расходов вероятнее всего существует комбинация влияния толщин потери энергии, потери импульса и вытеснения на коэффициент расхода. В работе [106] представлены результаты расчета коэффициента расхода при вдуве газов пиролиза ТЗП с радиусного дозвукового участка утопленного сопла, полученные без учета химического взаимодействия в приповерхностном слое. На рисунке 3.15 нанесены расчетные значения μ_c (a/b = 1 [106]), которые определяют более интенсивное повышение µс при увеличении интенсивности вдува, что во многом обусловлено отсутствием эндотермических эффектов между ПС ТТ и продуктами разложения ТЗП в приповерхностной зоне дозвукового участка сопла. На рисунках 3.16 и 3.17 представлены профили удельного теплового потока к поверхности дозвукового участка утопленного сопла и параметр вдува, полученные с учетом уравнений теплового баланса (3.1 - 3.4), для разных x_c . Значения расчетных тепловых потоков качественно коррелируются с общепринятыми данными [1, 21, 72].

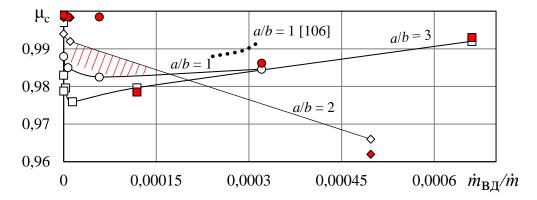


Рисунок 3.15 — Закономерности изменения коэффициента расхода утопленных сопел с эллипсоидными и радиусным дозвуковых участков при переменной интенсивности вдува

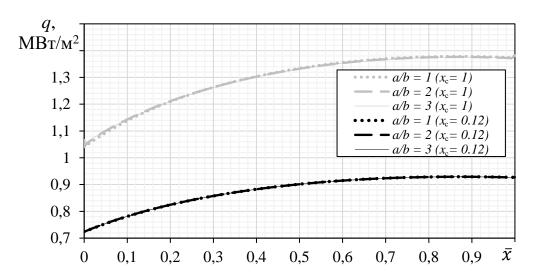


Рисунок 3.16 — Расчетные профили тепловых потоков от ПС ТТ к поверхности ТЗП дозвуковых участков сопла

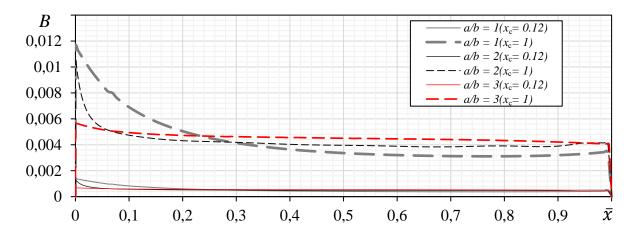


Рисунок 3.17 — Профили параметра вдува по относительной длине дозвукового участка утопленного сопла

Контуры дозвуковой части утопленного сопла ДЛЯ исследуемых соотношений a/b = 1; 2; 3 соответствуют разной площади поверхности участка, что предопределяет переменный расход газа с поверхности ТЗП. В свою очередь, при переменной интенсивности вдува существует качественно разная газодинамическая структура течения в дозвуковой части сопла. По отношению к коэффициенту расхода наиболее стабильным профилем при вдуве газа с поверхности ТЗП является радиусный профиль (a/b = 1), который за счет меньшей площади предопределяет меньший расход газа с поверхности Т3Π и, соответственно, меньшее влияние на газодинамическую структуру течения. Однако, коэффициент расхода для профиля a/b = 1, во многом определяемый плавностью входного участка, находится в диапазоне $\mu_c = 0.983 - 0.987$. Уменьшение коэффициента расхода при превышении интенсивности вдува $\dot{m}_{\rm BH}/\dot{m} = 1,2\cdot 10^{-4}$ для профиля a/b = 2 обусловлено существенным изменением газодинамической структуры течения в дозвуковой части сопла. Заштрихованная область на рисунке 3.15 между линиями, соответствующие профилям a/b = 1 и 2, определяет наиболее высокие значения коэффициента расхода. Обычно для РДТТ при неизменяющейся геометрии дозвуковой части сопла интенсивность вдува с поверхности ТЗП не превышает $\dot{m}_{\rm вл}/\dot{m} = (5-7)\cdot 10^{-5}$, что соответствует для коэффициента профилей a/b = 1 и 2 минимальным значениям расхода $\mu_c = 0.99 - 0.983$. В работах некоторых авторов встречается рекомендуемое соотношение профиля дозвукового участка сопла a/b = 3/2 [13], способствующее определению меньших потерь тяги. Профиль a/b = 3/2, в свою очередь, качественно «располагается» в закрашенной области (см. рисунок 3.15). Профиль дозвукового участка a/b = 3 предопределяет наибольшую из исследуемых площадь поверхности и, соответственно, наибольший газоприход с поверхности ТЗП. При увеличении интенсивности вдува до $\dot{m}_{\rm BH}/\dot{m}=2\cdot10^{-5}$ коэффициент расхода снижается на 2,1 % (до $\mu_c = 0.976$), что связано со значительным изменением газодинамической структуры течения в дозвуковой области утопленного сопла (рисунок 3.18, где представлены профили приведенной скорости в минимальном сечении сопла при вдуве с поверхности ТЗП с разной долей продуктов газификации $\Phi\Phi C$ x_c).

Существенная плавность входа, площадь входа и площадь соприкосновения продуктов вдува с ПС ТТ способствуют растягиванию профиля скорости в пристеночной зоне минимального сечения сопла даже при наименьшем расходе продуктов газификации ТЗП, сужая и интенсивно ускоряя струю в дозвуковой и трансзвуковой частях сопла. Сужение струи способствует интенсивному уменьшению коэффициента расхода, однако при увеличении интенсивности вдува $\dot{m}_{\rm BZ}/\dot{m} > 3\cdot10^{-5}$ коэффициент расхода увеличивается за счет слабого изменения газодинамической структуры течения и увеличения газоприхода с поверхности ТЗП.

Рисунок 3.18 — Профиль приведенной скорости в минимальном сечении при вдуве продуктов разложения ФФС ТЗП при переменной доле газов пиролиза x_c для дозвукового контура a/b=3: $x_c=0$ при $\dot{m}_{\rm BД}/\dot{m}=0$; $x_c=0{,}0001$ при $\dot{m}_{\rm BД}/\dot{m}=6\cdot10^{-9}$; $x_c=0{,}001$ при $\dot{m}_{\rm BД}/\dot{m}=1{,}2\cdot10^{-7}$; $x_c=0{,}025$ при $\dot{m}_{\rm BД}/\dot{m}=3\cdot10^{-6}$; $x_c=0{,}12$ при $\dot{m}_{\rm BД}/\dot{m}=1{,}4\cdot10^{-5}$

Вследствие вдува газофазных продуктов разложения ТЗП с дозвукового контура сопла в поток ПС безметального ТТ происходят сложные физико-химические процессы в дозвуковой и трансзвуковой частях сопла, способствующие изменению коэффициента расхода сопла, который, в свою очередь, имеет одностороннее влияние на тягу РДТТ. Для реальных условий работы РДТТ вследствие интенсивности вдува с дозвуковой поверхности утопленного сопла ($\dot{m}_{\rm BД}/\dot{m}$ <(5–7)·10⁻⁵) рекомендованы профили, располагающиеся между a/b=1 и a/b=2, определяющие коэффициент расхода в диапазоне $\mu_{\rm c}=0.99-0.983$.

3.3 Влияние вдува продуктов газификации теплозащитного материала утопленной части сопла на коэффициент сопла

В данной части главы рассматривается влияние термохимического взаимодействия ПС ТТ на основе АР/НТРВ с соотношением компонентов 80/20 с продуктами разложения ТЗП П5-13 в сверхзвуковой части сопла на потери удельного импульса из-за химической неравновесности. Под потерями из-за химической неравновесности в сопле понимается разница между идеальным преобразованием энергии при расширении и действительной энергией на выходе из сопла, измененной за счет химического взаимодействия продуктов истечения.

Расчетная схема гипотетического РДТТ, включающая дополнительный объем за срезом сопла для обеспечения отсутствия возмущающих факторов на сверхзвуковую струю, имеет аналогичные геометрические параметры (см. рисунок 3.1) при полуугле раскрытия раструба сопла $14,62^{\circ}$, $\overline{F} = 6,25$.

Параметры расширения в сопле при вдуве продуктов разложения ТЗП при $T_w = 698 - 1023$ К, применяемые в одномерных постановках НРИС, PFR и термодинамического равновесия, определялись в соответствии с данными газодинамического моделирования (ГДМ) гипотетического РДТТ. Потери удельного импульса из-за рассеяния и трения, подробно описанные в работах [21, 46], в настоящем исследовании не представлены.

В качестве результатов моделирования химического взаимодействия ПС АР/НТРВ и продуктов разложения ТЗП на рисунке 3.19 представлено сопоставление компонентного состава, полученного путем ГДМ и в приближении НРИС, где состав продуктов разложения соответствовал $T_w = 698$ К [20], давление в камере сгорания $p_{\rm K} = 87,1$ атм [57]. Результаты ГДМ получены осреднением по массе в поперечных сечениях сопла и отражают интегральный характер, учитывающий изменение мольной доли как в ядре потока, так и в пристеночных слоях. Изменение мольных долей основных устойчивых соединений (CO; CO₂; H_2O , H_2 , N_2 и HCl) продуктов смеси показано в виде относительного изменения по отношению к начальной концентрации в минимальном сечении.

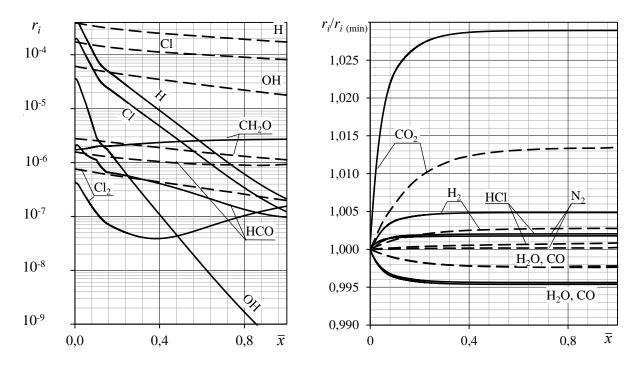


Рисунок 3.19 — Профили мольных долей веществ при взаимодействии в процессе расширении ПС с продуктами разложения ТЗП с параметром вдува B=0,4784 ($T_w=698$ K): сплошная линия — приближение НРИС; пунктирная — ГДМ

Заметное отклонение в содержании химических соединений при разных подходах к моделированию обусловлено наличием вдува продуктов разложения ФФС ТЗП с поверхности входного дозвукового участка сопла, который способствует изменению профиля скорости в минимальном сечении [57]. Соответственно, при вдуве переменной концентрации веществ их содержание изменяется в большей степени в пристеночной области раструба сопла, когда как основное содержание ПС АР/НТРВ находится в ядре потока и в большей степени не перемешивается с вдуваемыми продуктами разложения. В приближении НРИС компоненты усреднены предварительно перемешаны, вследствие И содержание компонентов смеси изменяется более равномерно по всей расчетной области по сравнению с пристеночном вдувом.

Изменение компонентов продуктов истечения от относительной длины сопла при вдуве продуктов разложения для последующих T_w имеет аналогичный характер, количественно мало отличающийся от данных, представленных на рисунке 3.19.

С точки зрения формальной кинетики М.Л. Гросса [101] в сопле раскрываются 2 цепочки реакций:

- 1. Увеличение H_2 и уменьшение H_2O через $H_2 + OH \leftrightarrow H_2O + H$; $HCl + H \leftrightarrow H_2 + Cl$;
- 2. Увеличение CO_2 и уменьшение CO $CO + OH \leftrightarrow CO_2 + H$; $CO + ClO \leftrightarrow CO_2 + Cl$.

Представленные выше реакции связаны между собой химическими уравнениями: $HCl + OH \leftrightarrow Cl + H_2O$ и $Cl_2 + H \leftrightarrow HCl + Cl$, которые нормализуют содержание HCl, Cl и H в системе. В связи с малым временем пребывания в сопле ($\tau \approx 6 \cdot 10^{-5}$ с) компоненты не успевают достичь равновесных значений. Основные ΠC допускается считать замороженными при $\bar{x} = 0,4$. Для достижения приближенных термодинамических значений равновесия по всем компонентам для топливной пары AP/HTPB (80/20) необходимое время пребывания в сопле должно быть на 3 порядка выше.

Для определения потерь тепловой энергии из-за химических превращений целесообразно проводить сравнение энергетических характеристик через энтальпию смеси:

$$\xi_{9} = \left(1 - \sqrt{\frac{i}{i_{\text{pabh}}}}\right) \cdot 100\% ,$$

где i, $i_{\text{равн}}$ — энтальпия ПС на срезе в приближениях НРИС/ГДМ и термодинамического равновесия, соответственно.

Изменение энергетических потерь из-за химических превращений в раструбе сопла при сопоставлении результатов газодинамического моделирования и приближения НРИС представлено на рисунке 3.20. Отклонение между ГДМ и НРИС не превышает 0,17 %, а при отсутствии вдува с поверхности дозвукового участка сопла при адиабатной температуре стенки разница стремится к 0,03 %. Вследствие чего для топливной пары АР/НТРВ допускается использование подхода НРИС для определения параметров химического взаимодействия в раструбе сопла РДТТ.

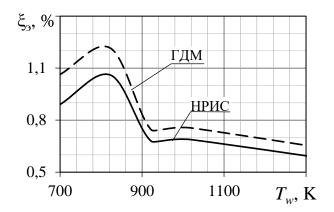


Рисунок 3.20 — Энергетические потери из-за химических превращений в сопле при вдуве продуктов разложения ФФС ТЗП с дозвукового участка сопла

Наибольшие энергетические потери определены при $T_w = 823$ K, что может быть связано с концентрацией C_2 в продуктах разложения ТЗП и балансом между температурой и количеством вдуваемых газов в основной поток ПС АР/НТРВ.

Изменение скорости на срезе сопла при вдуве разных веществ в минимальное сечение сопла оценивалось выражением:

$$\xi_{\text{вд}} = (w_{a \text{ вд}}/w_a - 1) \cdot 100 \%,$$

где $w_{a \text{ вд}}, w_a$ — скорость продуктов сгорания на срезе сопла при наличии и отсутствии вдува.

Посредством одномерного приближения проточного реактора при известных характеристиках потока в минимальном сечении из ГДМ и используя оценку в приближении ГДМ, определены изменения потерь удельного импульса за счет вдува продуктов разложения $\Phi\Phi$ С ТЗП в диапазоне температуры $T_w = 698 - 1023$ K, отображающие тенденцию к уменьшению потерь скорости на срезе при увеличении температуры вдува (см. рисунок 3.21). Коэффициент сопла с учетом вдуваемых газофазных продуктов разложения ТЗП с дозвукового контура утопленного сопла:

$$\varphi_{\text{CBI}} = W_{a \text{ BJ}} / W_a . \tag{3.6}$$

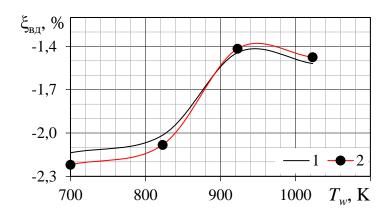


Рисунок 3.21 — Потери скорости потока на срезе сопла (до \overline{F} = 6,25) за счет вдува с дозвукового контура сопла (a/b = 2) в приближениях PFR (1) и ГДМ (2)

Изменение коэффициента сопла для исследуемых дозвуковых участков утопленного сопла с переменной интенсивностью вдува отражено на рисунке 3.22. Уменьшение удельного импульса при дозвуковом контуре a/b = 3 не превышает 0,4 %, что объясняется достижением большей степени расширения при вдуве продуктов разложения ТЗП вследствие сужения газодинамического контура в дозвуковой части, смещения диска маха ближе к входной части сопла и раннего расширения продуктов истечения, которое, в свою очередь, начинается сразу после критического сечения. Снижение коэффициента сопла обусловлено уменьшением градиента скорости в приповерхностной зоне для контура a/b = 3 за счет большего расхода с поверхности ТЗП (см. рисунок 3.23) и уменьшения температуры. Для контуров a/b = 1 и a/b = 2 максимальное уменьшение коэффициента сопла может составлять 1 % и 2,2 %, соответственно, при вдуве продуктов разложения ТЗП с температурой $T_w = 823$ К. При интенсивности вдува меньше $\dot{m}_{\rm вл}/\dot{m} = 1.5 \cdot 10^{-4}$ потери коэффициента сопла не превышают 0,5 %. Потери скорости потока на срезе при вдуве продуктов разложения ТЗП обусловлены следующими изменениями: температуры смеси в пристеночной области; газодинамического контура обтекания; состава смеси в пристеночной области дозвуковой и сверхзвуковой участках сопла за счет химических превращений продуктов течения; профиля скорости в минимальном сечении.

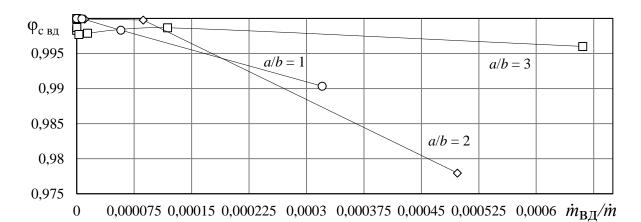


Рисунок 3.22 – Изменение коэффициента сопла для исследуемых дозвуковых участков утопленного сопла с переменной интенсивностью вдува

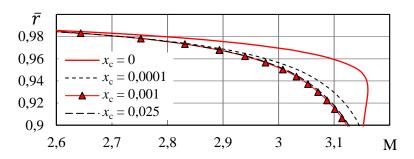


Рисунок 3.23 — Профили приведенной скорости на срезе сопла при вдуве продуктов разложения ТЗП при переменной доле газов пиролиза x_c для дозвукового контура a/b=3 ($\overline{F}=6,25$): $x_c=0$ при $\dot{m}_{\rm BH}/\dot{m}=0$; $x_c=0,0001$ при $\dot{m}_{\rm BH}/\dot{m}=6\cdot10^{-9}$; $x_c=0,001$ при $\dot{m}_{\rm BH}/\dot{m}=1,2\cdot10^{-7}$; $x_c=0,025$ при $\dot{m}_{\rm BH}/\dot{m}=3\cdot10^{-6}$

3.4 Выводы по главе 3

На основе применяемого модельного представления получены закономерности изменения коэффициента расхода сопла вследствие взаимодействия ПС безметального ТТ на основе AP/HTPB с газофазными продуктами разложения ФФС теплозащитного материала дозвукового участка утопленного сопла для трех вариантов дозвуковых входных контуров.

В зависимости от контура дозвукового участка сопла коэффициент расхода может существенно отличатся при переменной интенсивности вдува газофазных продуктов разложения ТЗП. Негативное влияние на коэффициент расхода определяется совокупностью процессов, вследствие которых возможно

интенсивное уменьшение полной температуры и градиентов скорости в пристеночной области дозвукового участка и в минимальном сечении сопла.

Получены закономерности изменения коэффициента сопла за счет вдува продуктов разложения ТЗП с дозвуковых контуров сопел, выполненных в виде радиусного и эллипсоидных входных форм. Уменьшение температуры в минимальном сечении утопленного сопла за счет вдува продуктов разложения ТЗП способствует малому уменьшению удельного импульса. В широком диапазоне интенсивности вдува для исследуемых дозвуковых контуров сопла потери удельного импульса не превышают 0,5 % относительно известного значения без учета вдува.

На основании полученных результатов можно привести основные выводы и рекомендации:

- для радиусного дозвукового контура сопла a/b=1 в широком диапазоне интенсивности вдува с поверхности ТЗП коэффициент расхода мало изменяется и находится в пределах $\mu_c=0.983-0.987$;
- для эллипсоидного дозвукового участка a/b=2 в диапазоне интенсивности вдува от 0 до $\dot{m}_{\rm BZ}/\dot{m}=1,5\cdot 10^{-4}$ коэффициент расхода утопленного сопла составляет $\mu_{\rm c}=0,984-0,99,$ при дальнейшем увеличении интенсивности вдува коэффициент расхода существенно снижается;
- дозвуковой контур эллипсоидной формы a/b = 3 при интенсивности вдува до $\dot{m}_{\rm BJ}/\dot{m} = 2\cdot 10^{-5}$ предопределяет снижение коэффициента расхода на 2,1 %, дальнейшее увеличение вдува способствует плавному росту коэффициента расхода вследствие малого изменения газодинамической структуры течения в дозвуковом контуре сопла и прироста массы продуктов течения;
- более оптимальная форма дозвукового контура утопленного сопла с позиции меньших потерь находится в области контуров a/b = 1 и a/b = 2, предопределяя коэффициент расхода в диапазоне $\mu_c = 0.983 0.99$ для продуктов сгорания безметального твердого топлива на основе AP/HTPB в широких пределах интенсивности вдува продуктов разложения ТЗП до $\dot{m}_{\rm BJ}/\dot{m} \leq (5-7)\cdot 10^{-5}$;

- потери из-за химической неравновесности вследствие вдува продуктов разложения ТЗП с дозвуковых контуров a/b=1 и a/b=2 не превышает 0,3 % для интенсивности вдува до $\dot{m}_{\rm BJ}/\dot{m} \le 7 \cdot 10^{-5}$.

Предложено уравнение, включающее толщину потери энергии в пограничном слое, для описания коэффициента расхода при вдуве продуктов разложения ТЗП с дозвукового контура утопленного сопла при интенсивности вдува $7,1\cdot 10^{-4} \geq \dot{m}_{\rm вд}/\dot{m} \geq 1,2\cdot 10^{-4}$.

Глава 4 Исследование влияния взаимодействия продуктов сгорания с продуктами разложения резиноподобного теплозащитного материала в объеме камеры сгорания на коэффициент расхода и коэффициент сопла

В данной главе рассматривается влияние взаимодействия продуктов разложения резиноподобного ТЗП в объеме КС РДТТ с ПС ТТ, горение которого происходит по торцевой поверхности. Представлены потери коэффициента сопла и коэффициента расхода из-за вдува продуктов разложения ТЗП в газовой и твердой фазах. Приведена оценка потерь коэффициента совершенства тепловых процессов в объеме КС РДТТ.

4.1 Методология расчета

В КС РДТТ в качестве ТЗП используются резиноподобные материалы на основе каучука, совместимого с применяемым ТТ, что связано с прочностными свойствами скрепления ТТ со стенками КС через защитно-крепящий слой [51]. В данном случае подразумевается заполнение ТТ в корпус РДТТ литьевым способом. Физика разложения ТЗП на основе резиноподобного материала схожа с разложением ТЗП на основе ФФС [69]. При термическом нагреве происходит выделением разложение резиноподобного материала \mathbf{c} газовых, конденсированных и твердых веществ. В первую очередь происходит выделение газов, во вторую очередь, как правило, оставшиеся вещества преобразуются в сажу/кокс, который может как вылетать с поверхности ТЗП, так и оседать на ней. Под рабочей поверхностью ТЗП образуется пористый обугленный слой, который под воздействием физико-химических процессов отрывается и уносится с поверхности ТЗП. При очень высоких температурах также возможно испарение минеральных наполнителей, а при сверхвысоких температурах и углерода [67].

Большое количество продуктов разложения резиноподобного ТЗП в объеме КС может способствовать появлению дополнительных потерь преобразования энергии в РДТТ [21, 77]. В данной главе предлагаются результаты исследования взаимодействия ПС ТТ АР/НТРВ 84/16 с продуктами разложения резиноподобного

ТЗП в объеме КС. В качестве исследуемого гипотетического РДТТ выбрана схема КС с ТТ (рисунок 4.1), горение которого происходит по торцевой поверхности. Выбор подобной схемы обусловлен большой открытой поверхностью ТЗП и удобным для анализа законом выгорания ТТ (нейтральный). Рассматриваются несколько вариантов $L/D_{\rm K}$ цилиндрической части КС, на которую действует тепловой поток от ПС ТТ. Основные геометрические параметры гипотетического двигателя: $L/D_{\rm K}=3,6;\,7,15;\,11;\,\overline{F}=8,6;\,R_2=2r_{min};\,R_1=1,5r_{min};\,D_{\rm K}/r_{min}=18,2;\,\alpha=37^\circ;\,\beta=17^\circ.$

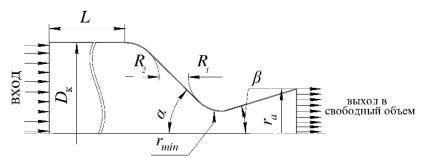


Рисунок 4.1 – Схема гипотетического двигателя с зарядом торцевого горения

В качестве резиноподобного ТЗП принят материал [67] с основными характеристиками: средняя теплоемкость ТЗП при термическом разложении, $c_{p \, \text{тяп cp}} = 2015 \, \text{Дж/кг} \cdot \text{K}$; средняя теплопроводность, $\lambda_{\text{тяп cp}} = 0.22 \, \text{Вт/м} \cdot \text{K}$. В работе [67] предполагалось, что в общем случае материал ТЗП включал в себя полимерную матрицу, частицы диоксида кремния, технический углерод и углеродные волокна. Условная формула каучука $C_{52}H_{102}$; массовая доля неразлагающегося наполнителя 0,23; коксовое число 0,24. По результатам исследования [67] более половины углерода улетучивается вместе с газовой фазой в виде сажи, другая оседает на поверхности ТЗП, доля углерода, осаждающегося на поверхности обугленного слоя, 0,46. В качестве основных компонентов в продуктах разложения этиленпропиленового каучука учитывались CH_4 , C(s), H_2 , C_2H_2 , H, содержание которых получено посредством термодинамических расчетов в диапазоне температур от 600 K до 3600 K. Некоторые результаты расчета [67] совпадают и отличаются от других данных [37, 47].

Тепловой баланс описывался подобно системе, представленной в Главе 3. Конвективная составляющая теплового потока определялась:

$$q_{\kappa} = \alpha_{\kappa}(T_{\Pi} - T_{s});$$

$$Nu = 0.021 \text{ Re}^{0.8} \text{Pr}^{0.43} \varepsilon_t$$

где ε_t – коэффициент, учитывающий характерную длину цилиндрического участка $(L/D_{\rm K})$. Разрешение системы уравнений теплового баланса при температуре ПС АР/НТРВ 84/16 $T_{\rm II} = 2767,7$ K, p = 70 атм и скорости потока $w_{\rm II} \le 10$ м/с определяет среднюю скорость уноса $w_{\rm yh\ cp} = 0,071$ мм/с. Температура на поверхности резиноподобного ТЗП находилась в диапазоне $T_s = 1200 - 1300$ K.

Реагирующая среда описывалась кинетическим механизмом М.Л. Гросса, расчетные значения температуры пламени и состава ПС удовлетворительно коррелируют с результатами термодинамического равновесия (рисунок 4.2). Тепловой баланс между фазами при горении ТТ определялся в соответствии с упрощенным представлением, описанным в Главе 1. Температура на поверхности ТТ АР/НТРВ 84/16 при p=70 атм $T_s=1070$ К. Коэффициент совершенства процессов в КС ϕ_{β} определялся:

$$\varphi_{\beta} = p_{\kappa}^{p} \dot{m}_{\mathrm{T}} / p_{\kappa}^{\mathrm{T}} \dot{m}_{\mathrm{p}}, \tag{4.1}$$

где p_{κ} — давление в камере сгорания; верхние индексы «т» и «р» относятся к теоретическим и расчетным значениям, полученным посредством моделирования в осесимметричном приближении.

Газодинамическое моделирование проводилось в осесимметричной постановке посредством программы ANSYS Fluent. В качестве модели турбулентности использовалась модель k- ω SST, модель горения — Finite-Rate, временной шаг $\Delta \tau = 5 \cdot 10^{-6}$ с.

В задачи исследования входило проведение оценки влияния газовой фазы совместно с нереагирующими частицами сажи на тенденцию изменений μ_c и $\phi_{c \, \text{вд}}$. Изменение μ_c и $\phi_{c \, \text{вд}}$ из-за двухфазности смеси определялось между вариантами $\dot{m}_{\text{вд}}/\dot{m}$ для продуктов разложения ТЗП газ/газ и сажа (соотношение массы частиц к массе газов пиролиза 4,5:1): 0,00406/0,02228; 0,00811/0,04456; 0,01247/0,06812. Также для сравнения влияния наличия или отсутствия частиц сажи рассматривались варианты вдува газа продуктов разложения ТЗП и только сажи

C(s) при $\dot{m}_{\rm BJ}/\dot{m}=0.02228$. Унос твердотельной массы моделировался вылетом с поверхности ТЗП частиц C(s) размером 1000 мкм. Теплообмен между ПС ТТ и сажей определялся в соответствии с классическим выражением $Q_{\rm caжa}=c_{p\;{\rm caжa}}m_{\rm caжa}\Delta T$, где $c_{p\;{\rm caжa}}$ – теплоемкость сажи; $m_{\rm caжa}$ – масса сажи.

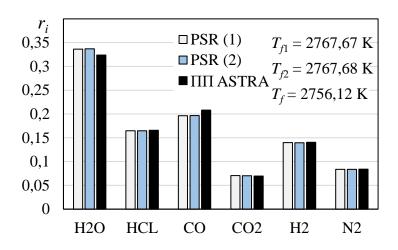


Рисунок 4.2 — Результаты моделирования пламени AP/HTPB 84/16 (p = 70 атм): PSR (1) — механизм М.Л. Гросса [101]; PSR (2) — механизм К.В. Пудуппаккама с поправками М.У. Таннера [128]; ПП ASTRA — термодинамическое равновесие [70]

4.2 Влияние абляции резиноподобного теплозащитного покрытия на коэффициенты расхода и сопла

Согласно термодинамическому расчету [67] в газофазных продуктах разложения резиноподобного ТЗП в большей степени присутствуют СН₄ и Н₂. В зависимости от их количества условная формула смеси существенно изменяется. Рецептура ТТ АР/НТРВ 84/16 приближена к стехиометрическому соотношению компонентов (стехиометрия АР/НТРВ 88/12), однако при введении в смесь углеводородов стехиометрическое соотношение изменяется в сторону обогащения смеси, что предопределяет снижение температуры рабочего газа. Уменьшение работоспособности газа негативно сказывается на коэффициенте совершенства процессов в КС для двух вариантов исследований (рисунок 4.3). В приповерхностной зоне резиноподобного ТЗП имеется тенденция уменьшения температуры продуктов течения, которая сохраняется и в минимальном сечении

(рисунок 4.4). Профиль приведенной скорости в минимальном сечении (рисунок 4.5) слабо изменяется от количества вдува, что обусловлено плавным и классическим профилем дозвукового участка сопла. Вследствие эндотермических реакций в приповерхностной зоне ТЗП в объеме КС коэффициент расхода незначительно увеличивается и имеет уровень $\mu_c \approx 1$ для варианта учета только газовой фазы; твердофазные продукты разложения и уноса резиноподобного ТЗП с поверхности стенок КС увеличивают коэффициент расхода почти пропорционально увеличению массы рабочего тела (рисунок 4.6).

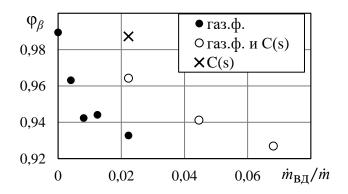


Рисунок 4.3 – Изменение коэффициента совершенства процессов в КС по мере выгорания ТТ и подвода дополнительной массы продуктов разложения резиноподобного ТЗП

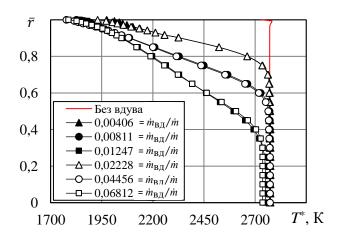


Рисунок 4.4 — Профили температуры торможения в минимальном сечении сопла при вдуве продуктов разложения резиноподобного ТЗП

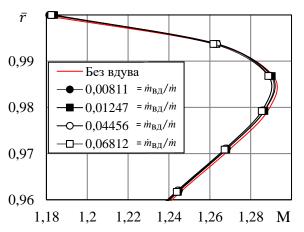


Рисунок 4.5 — Профили приведенной скорости в минимальном сечении сопла при вдуве продуктов разложения резиноподобного ТЗП

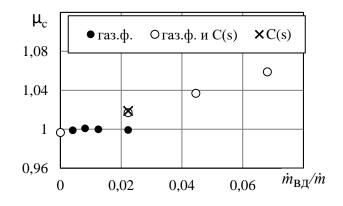


Рисунок 4.6 – Изменение коэффициента расхода при вдуве продуктов разложения резиноподобного ТЗП

Увеличение массы смеси, проходящей через минимальное сечение сопла, способствует увеличению коэффициента расхода даже при существенном уменьшении температуры приповерхностной (рисунок 4.7) В зоне $(T \approx 1700 - 2767 \text{ K})$. В минимальном сечении сопла при увеличении подвода продуктов разложения резиноподобного ТЗП профили индивидуальных веществ смеси также изменяются, как это продемонстрировано ниже на примере молекулярного водорода и углекислого газа (рисунки 4.8 и 4.9). В ядре потока в минимальном сечении сопла наблюдаются равновесные значения мольных долей массы вдува в приповерхностной зоне профили При увеличении растягиваются вследствие химических превращений в объеме КС.

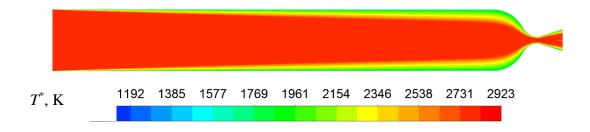
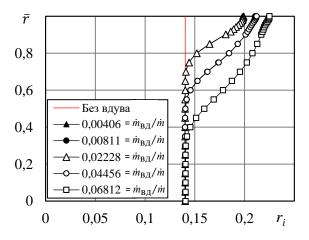
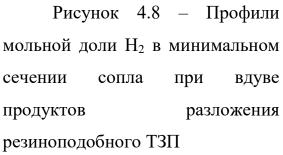




Рисунок 4.7 — Поле температуры торможения в продольном сечении гипотетического РДТТ ($L/D_{\kappa}=7,15$)

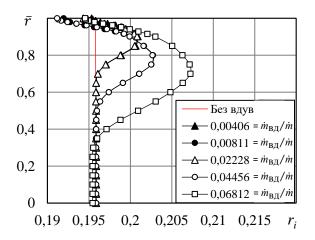


Рисунок 4.9 – Профиль мольной доли СО в минимальном сечении сопла при вдуве продуктов разложения резиноподобного ТЗП

Реакции в приповерхностной зоне КС и сопла, сопровождающиеся затратами тепловой энергии, способствуют уменьшению потенциальной энергии в КС и уменьшению кинетической энергии на срезе сопла (рисунки 4.10 и 4.11). Траектории нереагирующих твердых частиц разложения ТЗП проходили вдоль цилиндрической стенки КС и дозвукового участка сопла, не попадая в ядро потока в объеме КС. Далее вследствие поворота потока (контур дозвукового участка) и инерционных сил частицы направляются к ядру потока, о чем свидетельствует уменьшение скорости в осевой зоне на срезе сопла (рисунок 4.12). Представленные зависимости изменения скорости и температуры ПС свидетельствуют, что наличие инертной двухфазной среды в рамках рассматриваемой задачи не приводит к существенным изменения параметров потока в пристеночной зоне. В целом, уменьшение температуры торможения в минимальном сечении способствует уменьшению абсолютной скорости на срезе сопла по сравнению с вариантом без (рисунок 4.13). Существенное уменьшение температуры в учета вдува минимальном сечении способствует организации работы сопла на режиме перерасширения, увеличивая потери коэффициента сопла. Увеличение массы продуктов разложения ТЗП и вследствие эндотермических реакций способствует

существенному уменьшению скорости на срезе сопла. Наличие твердотельных нереагирующих частиц продуктов разложения резиноподобного ограничиваясь постановкой задачи, определяет уменьшение скорости газового потока не более чем на 1,5 % (рисунок 4.13) при максимальном исследуемом подводе продуктов разложения ТЗП (5 % двухфазного потока, z = 0.05 — частицы 1000 мкм) для газовой и твердой фаз и только газовой фазы (подвод газообразных продуктов разложения ТЗП равен). При размерах 100 мкм траектория частиц значительно изменяется. Вследствие малой массы отдельных частиц в объеме раструба сопла частицы отклоняются на некоторый угол от осевой линии, однако за счет плавного дозвукового участка они все также распределяются кучно. При этом потери среднемассовой скорости на срезе сопла уменьшаются. На рисунке 4.14 представлены потери удельного импульса из-за двухфазности потока $\xi_{2\varphi}$, определяющиеся на основе скорости гетерогенного потока на срезе сопла согласно уравнению (4.2). При увеличении массы инертных частиц сажи потери увеличиваются почти линейно. Исследование изменения скорости потока на срезе сопла при других размерах твердотельных частиц ТЗП в данной работе не рассматривалось. Потери удельного импульса из-за двухфазности потока подробно рассматриваются в работах [7 – 10]. Для исключения учета многофакторности возможных размеров инертных частиц сажи и для упрощения анализа дальнейшее обсуждение будет присуще только газовой фазе.

$$\xi_{2\phi} = \left[1 - \left(\frac{w_a \cdot \dot{m}_{\Gamma,\phi.} + w_{c(s)} \cdot \dot{m}_{c(s)}}{\dot{m}_{\Gamma,\phi.} + \dot{m}_{c(s)}} \right) / w_a \right] \cdot 100 \%, \tag{4.2}$$

где w_a , $\dot{m}_{\text{г.ф.}}$ — скорость и расход газовой фазы на срезе сопла, $w_{c(s)}$, $\dot{m}_{c(s)}$ — скорость и расход инертных частиц на срезе сопла.

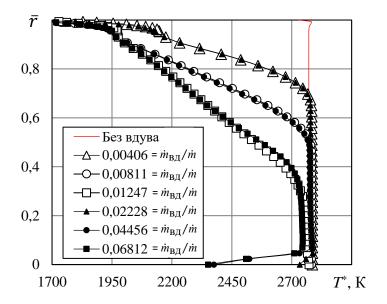


Рисунок 4.10 — Профили температуры торможения на срезе сопла при переменном количестве вдуваемых веществ

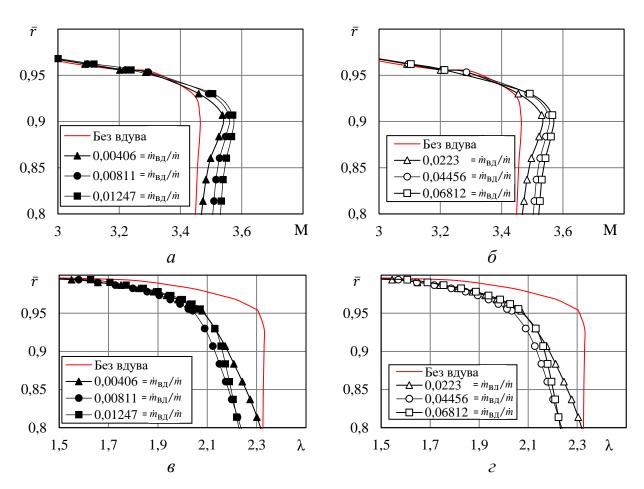


Рисунок 4.11 — Профили приведенной скорости в пристеночной зоне на срезе сопла при вдуве газообразных (a, b) и при вдуве газообразных и твердотельных продуктов разложения резиноподобного ТЗП (δ , ϵ)

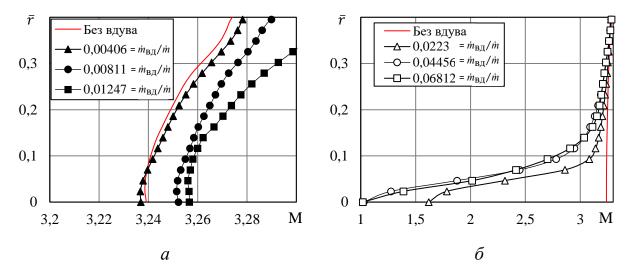


Рисунок 4.12 — Профили приведенной скорости в приосевой зоне на срезе сопла при вдуве газообразных (a) и твердотельных продуктов разложения резиноподобного ТЗП (δ)

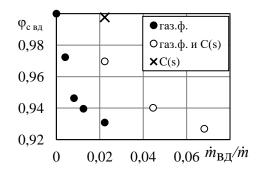


Рисунок 4.13 — Изменение коэффициента сопла вследствие вдува продуктов разложения резиноподобного ТЗП

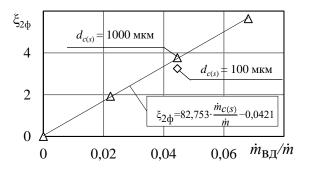


Рисунок 4.14 — Потери удельного импульса из-за двухфазности потока для размеров инертных частиц сажи 1000 и 100 мкм

Вследствие малого времени пребывания и геометрических размеров раструба сопла профили индивидуальных соединений изменяются незначительно (рисунки 4.15 и 4.16). Как и в минимальном сечении, так и на срезе сопла в

пристеночной зоне вследствие вдува и реакций ПС с продуктами разложения резиноподобного ТЗП в объемах КС и дозвуковой части сопла присутствует искажение профилей индивидуальных веществ. Содержание в продуктах разложения резиноподобного ТЗП СН₄ способствует плавному переходу углеводорода в СО₂ и СО в приповерхностной зоне на срезе сопла (рисунок 4.15).

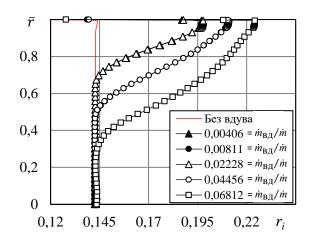


Рисунок 4.15 — Профили мольной доли H_2 на срезе сопла при вдуве продуктов разложения резиноподобного ТЗП

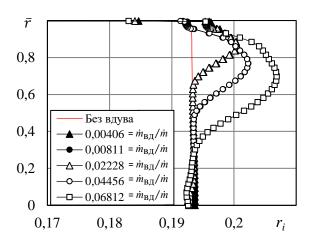


Рисунок 4.16 – Профили мольной доли СО на срезе сопла при вдуве продуктов разложения резиноподобного ТЗП

На рисунках 4.3, 4.6 и 4.13 также показано влияние газовой фазы и сажи на коэффициенты ϕ_{β} , μ_{c} и ϕ_{c} вд. Сравнивая между собой значения коэффициентов, полученные для вдува газовой фазы при $\dot{m}_{\rm BJ}/\dot{m}=0,00406$ и для остальных вариантов расчета при $\dot{m}_{\rm BJ}/\dot{m}=0,02228$, можно утверждать, что затраты энергии на разгон частиц сажи незначительны по сравнению с эндотермическим эффектом при вдуве газообразных продуктов разложения ТЗП. Вдув сажи с поверхности ТЗП незначительно изменяет коэффициенты ϕ_{β} и ϕ_{c} вд, при $\dot{m}_{\rm BJ}/\dot{m}=0,02228$ отличие не более 0,1%. При этом коэффициент расхода μ_{c} увеличивается пропорционально вдуву дополнительной массы C(s). Разница между вдувом сажи и вдувом газа достаточно существенна из-за суммарного эндотермического эффекта реакций

между продуктами разложения ТЗП и ПС ТТ, чем объясняется отличие между значениями $\phi_{\text{с вд}}$ на 6,6 % при $\dot{m}_{\text{вл}}/\dot{m}=0{,}02228$.

4.3 Выводы по главе 4

Исследовано влияние взаимодействия ПС безметального ТТ АР/НТРВ 84/16 с продуктами разложения резиноподобного ТЗП в КС на коэффициенты сопла и расхода. Показано влияние газофазных продуктов разложения ТЗП и влияние газофазных и твердотельных продуктов разложения ТЗП в объеме КС на коэффициенты расхода и сопла. Продемонстрирована оценка изменения коэффициента совершенства процессов в КС гипотетического РДТТ, по результатам которой получено, что при увеличении массы продуктов разложения ТЗП наблюдается уменьшение коэффициента совершенства, обусловленное существенным уменьшением интегральной температуры продуктов течения на выходе из КС.

Существенный подвод газифицированных продуктов разложения ТЗП способствует определению коэффициента расхода $\mu_c \approx 1$ даже при уменьшении интегральной температуры торможения на 350 К. При дополнительном подводе нереагирующих твердотельных частиц, вылетающих с поверхности ТЗП, коэффициент расхода увеличивается почти линейно увеличению массы вдува в рамках гипотетического РДТТ с зарядом, горящим по торцевой постоянной поверхности.

Уменьшение коэффициента сопла за счет вдува во многом объясняется уменьшением потенциальной энергии в КС РДТТ (уменьшение коэффициента совершенства процессов в КС). Введение нереагирующих частиц сажи размером 1000 мкм способствует увеличению потерь скорости из-за двухфазности потока, для z = 0.05 потери скорости газовой фазы и гетерогенной фазы не превышают 1,5 % и 4,1 %, соответственно. При уменьшении размеров частиц сажи потери скорости потока уменьшаются.

Глава 5 Влияние взаимодействия продуктов разложения теплозащитного покрытия с продуктами сгорания безметального твердого топлива на коэффициент удельного импульса

В данной главе представлены результаты влияния взаимодействия ПС безметального ТТ с продуктами разложения резиноподобного ТЗП в КС и продуктами разложения ТЗП в дозвуковом участке утопленного сопла на коэффициент удельного импульса РДТТ. В качестве влияющих параметров рассматривались коэффициент совершенства процессов в КС и коэффициенты расхода и сопла.

5.1 Изменение коэффициента удельного импульса

В главах 3 и 4 подробно представлено влияние вдува продуктов разложения ТЗП с дозвукового контура утопленного сопла и в объеме КС на коэффициенты сопла и расхода. Тяга в пустоте (внутреннего контура) определяется по уравнению: $P_{\Pi} = \dot{m} \; \phi_I \, I_{\text{уд. }\Pi}^{\text{ ид}} + p_a \, F_a,$

где $I_{\rm уд.\ n}^{\rm ид}$ – идеальный пустотный удельный импульс; φ_I – коэффициент удельного импульса [6]. В данном приближении коэффициент удельного импульса, отражающий несовершенство процессов в КС и сопле, оценивался:

$$\varphi_I = \mu_c \, \varphi_\beta \, \varphi_{CBJ}. \tag{5.1}$$

В соответствии с данными, представленными в Главе 3, на коэффициент расхода и коэффициент сопла оказывают влияние следующие основные факторы: уменьшение температуры в приповерхностной зоне дозвукового участка утопленного сопла; сужение струи в минимальном сечение из-за вдува с поверхности входа в горло сопла. Кроме этого, сужение струи в минимальном сечении способствует увеличению давления и изменению коэффициента совершенства процессов в КС ϕ_{β} (4.1) (рисунок 5.1). Характер изменения ϕ_{β} весьма нелинейный, что обусловлено изменением давления в КС из-за уменьшения температуры смеси в минимальном сечении и сужения «живого» сечения вследствие увеличения количества вдуваемых с дозвукового контура утопленного

сопла продуктов пиролиза ТЗП.

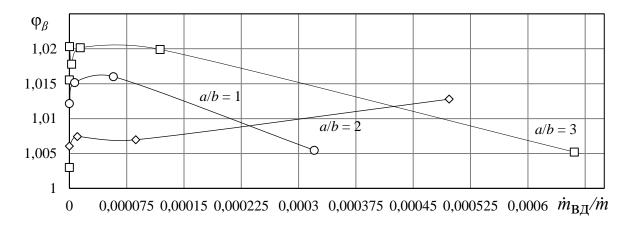


Рисунок 5.1 – Коэффициент совершенства процессов в КС в зависимости от интенсивности вдува газов пиролиза ТЗП с дозвукового контура утопленного сопла

В соответствии с выражениями (5.1) изменение коэффициента удельного импульса гипотетического РДТТ из-за вдува газифицированных продуктов разложения ТЗП на основе ФФС с дозвукового контура утопленного сопла представлено на рисунке 5.2. Вдув продуктов газификации ТЗП на основе фенолформальдегидной смолы с дозвуковых контуров a/b=1; 2; 3 способствует изменению коэффициента удельного импульса с раструбом сопла $\overline{F}=6,25$, что во многом обусловлено комбинацией изменения газодинамических характеристик обтекания и трения между слоями продуктов газификации и ПС в дозвуковой части утопленного сопла.

Для контуров a/b=1 и a/b=2 при интенсивности вдува $0 < \dot{m}_{\rm BД}/\dot{m} \le 9 \cdot 10^{-5}$ коэффициент удельного импульса $\phi_I \ge 0,997$ и $\phi_I \ge 0,995$. В диапазоне интенсивности вдува $0 < \dot{m}_{\rm BД}/\dot{m} \le 1,5 \cdot 10^{-4}$ потери коэффициента удельного импульса: для a/b=1 не превышает 0,5 %; для a/b=2 не превышает 0,8 %. Резкое уменьшение ϕ_I на 0,45 % относительно теоретического значения для контура a/b=3 при интенсивности вдува $\dot{m}_{\rm BД}/\dot{m}=1,4 \cdot 10^{-5}$ обусловлено низкими значениями коэффициента расхода вследствие сильно изменяющегося газодинамического течения относительно варианта без вдува (т.е. наблюдается существенное сужение

«живого» сечения даже при малой интенсивности вдува). В диапазоне интенсивности вдува $1,4\cdot 10^{-5} \le \dot{m}_{\scriptscriptstyle\rm BJ}/\dot{m} \le 7,5\cdot 10^{-5}$ коэффициент удельного импульса почти линейно изменяется в пределах $0.9955 \le \varphi_I \le 0.998$, что обусловлено ростом коэффициента расхода, а именно увеличением массового расхода газа и незначительным изменением газодинамического контура обтекания. образом, вдув газифицированных продуктов разложения ТЗП со стенок дозвукового участка сопла способствует уменьшению коэффициента удельного импульса: при $0 < \dot{m}_{\rm BJ}/\dot{m} \le 9 \cdot 10^{-5}$ потери удельного импульса не превышают 0,3 % (для a/b=1), 0,5 % (a/b=2) и 0,45 % (a/b=3); при $0<\dot{m}_{\scriptscriptstyle \rm BЛ}/\dot{m}\leq 4\cdot 10^{-5}$ потери удельного импульса не превышают 0.1 % (для a/b = 1), 0.25 % (a/b = 2), 0.45 %(a/b = 3).Принимая во внимание технологию изготовления и возможную вариацию размерных позиций, заштрихованная область на рисунке 5.2 представляет наиболее выгодную композицию размеров дозвукового контура утопленного сопла с точки зрения влияния вдува на удельный импульс: при интенсивности вдува $0 < \dot{m}_{\rm BJ} / \dot{m} \le 4.10^{-5}$ рекомендовано соотношение a/b = 1...2.

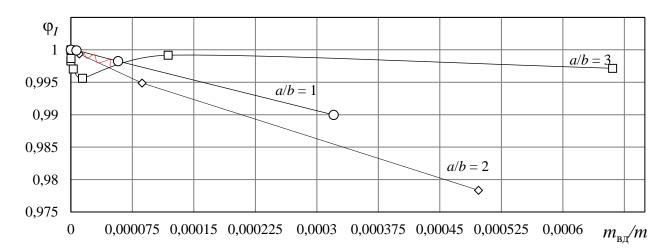


Рисунок 5.2 — Коэффициент удельного импульса в зависимости от интенсивности вдува газифицированных продуктов разложения ТЗП с дозвукового контура утопленного сопла

Сужение струи вследствие вдува является одним из основных факторов уменьшения коэффициента расхода. С точки зрения влияния на коэффициент

удельного импульса изменение коэффициента сопла и потери удельного импульса из-за химической неравновесности объясняются непосредственно составом смеси, температурой и содержанием индивидуальных веществ в пристеночной зоне раструба сопла.

Теоретически, при взаимодействии окислительного состава ПС в приповерхностной зоне дозвукового контура сопла с продуктами разложения ТЗП возможны экзотермические реакции. Повышение энергии в приповерхностном слое поспособствует увеличению теплового потока к ТЗП, вследствие чего расход газа с поверхности должен увеличиться.

Данные по изменению коэффициентов расхода и сопла и коэффициента совершенства процессов в КС при взаимодействии продуктов разложения резиноподобного ТЗП с ПС TT AP/HTPB 84/16, представленные для гипотетического РДТТ с торцевым горением заряда в Главе 4, качественно отражают возможное влияние изменения температуры в объеме КС, в минимальном сечении сопла и общее влияние на коэффициент удельного импульса РДТТ (рисунок 5.3). В связи с изменением потенциальной энергии в КС в оценке коэффициента удельного импульса должно учитываться либо изменение коэффициента сопла, либо коэффициента совершенства процессов в КС. На рисунке 5.3 коэффициент удельного импульса определялся произведением коэффициентов расхода и сопла. Уменьшение коэффициента сопла более интенсивно, чем увеличение коэффициента расхода, что определяет снижение % коэффициента удельного импульса газовой фазы ДЛЯ при $\dot{m}_{\rm BH}/\dot{m} \le 1.5 \cdot 10^{-2}$; для газовой и твердой фаз при соотношении массы частиц к массе газов пиролиза 4,5:1 — до 2,05 % при $\dot{m}_{\rm BH}/\dot{m} \leq 7\cdot 10^{-2}$. Последнее обстоятельство обусловлено тем, что при указанном соотношении массы частиц к массе вдуваемых газов на фоне существенного увеличения продуктов разложения ТЗП сколь значимого уменьшения скорости и температуры по большей площади проходного сечения, включая срез сопла, не наблюдается (см. рисунки 4.10, 4.11).

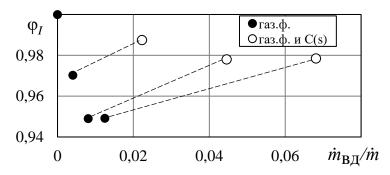


Рисунок 5.3 – Коэффициент удельного импульса от интенсивности вдува продуктов разложения резиноподобного ТЗП с цилиндрических стенок КС

Общее коэффициента снижение удельного импульса обусловлено существенным снижением температуры в пристеночной зоне вдува. Разница между расчетными значениями коэффициентов сопла и расхода в модельных постановках для газовой фазы и газовой/твердой фаз определяется существенным влиянием температуры рабочего тела. На основе проведенного исследования можно предположить, что основные температурные изменения могут быть определены по газовой фазе, так как нереагирующие частицы сажи забирают тепловую энергию рабочего тела соответствии c представлением: В классическим $Q_{\text{сажа}} = c_{p \text{ сажа}} m_{\text{сажа}} \Delta T.$

На рисунке 5.4 представлены результаты изменения температуры пламени при добавлении в ПС ТТ газофазных продуктов разложения резиноподобного ТЗП, полученные посредством одномерного термодинамического приближения и модели PSR для используемых кинетических механизмов.

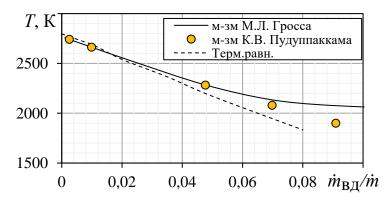


Рисунок 5.4 — Изменение температуры смеси AP/HTPB 84/16 при добавлении газофазных продуктов разложения резиноподобного ТЗП (CH₄ и H₂)

На основе результатов анализа можно сказать, что при взаимодействии ПС ТТ с продуктами разложения ТЗП наиболее определяющими параметрами для коэффициента расхода и коэффициента сопла являются температура и свойства обуславливающие величину потерь состава смеси. удельного импульса теоретического значения. При взаимодействии относительно продуктов индивидуальных веществ в приповерхностной зоне ядро потока сохраняет характеристики равновесного течения. Изменение температуры и свойств смеси, в том числе и молекулярного веса, в приповерхностной зоне РДТТ способствует меньшему переходу потенциальной энергии в кинетическую в сопловом блоке, что объясняется существенными градиентами параметров между ядром потока и стенкой.

Применительно к РДТТ с зарядом, горение которого происходит по торцу, постепенное увеличение открытой площади ТЗП будет способствовать более интенсивному взаимодействию ПС с продуктами разложения в приповерхностной зоне. Реакционная зона характеризуется длиной смешения/взаимодействия, при этом добавление в поток смеси продуктов разложения резиноподобного ТЗП (Н2 и СН₄) даже при уменьшении среднемассового молекулярного веса смеси может способствовать уменьшению скорости на срезе сопла из-за градиентов температуры и скорости в приповерхностной зоне. В данном случае вследствие взаимодействия химического уменьшение молекулярного веса приповерхностной зоне не способствует увеличению скорости на срезе сопла так, как бы это происходило при идеально-перемешанной смеси с такими же интегральными характеристиками потока.

Принципиальное отличие между двумя подходами, а именно между ГДМ и термодинамическим равновесием, представлено на рисунке 5.5. В данном случае под термодинамическим подходом следует понимать, что в одномерном приближении производилась оценка термодинамического равновесия параметров смеси ПС ТТ и продуктов пиролиза резиноподобного ТЗП аналогичного состава. В связи с тем, что при вдуве газов пиролиза для гипотетического РДТТ коэффициент расхода мало отличался (см. рисунок 4.6), для определения ф при

отсутствии вдува значение $\mu_{c=0}=1$. При вдуве газов коэффициент расхода увеличивался линейно относительно дополнительной прибавки массы газов: $\mu_{c}=\mu_{c\;0}\cdot(1+\dot{m}_{\rm BJ}/\dot{m}).$

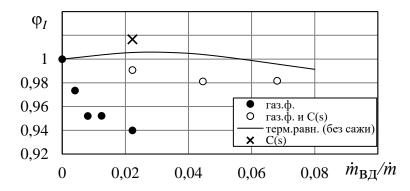


Рисунок 5.5 – Коэффициент удельного импульса в сравнении с подходом, основанном на термодинамическом равновесии

Получено, что при интенсивности вдува $\dot{m}_{\rm BД}/\dot{m} \leq 1,2\cdot 10^{-2}$ между ГДМ и термодинамическим подходом разница для значений коэффициента удельного импульса может достигать 5 % без учета влияния нереагирующих частиц сажи. При этом в данном приближении коэффициент сопла, оцениваемый по уравнению (3.6), также существенно снижается относительно термодинамической оценки без учета вдува (рисунок 5.6). Существенное отклонение (до 5 % при $\dot{m}_{\rm BД}/\dot{m} \leq 1,2\cdot 10^{-2}$) параметров объясняется тем, что в одномерном термодинамическом приближении продукты смеси идеально перемешаны между собой. Приблизительно при интенсивности вдува $\dot{m}_{\rm BД}/\dot{m} = 3\cdot 10^{-2}$ коэффициент сопла $\phi_{\rm c}$ вд начинает уменьшаться более интенсивно (больше, чем увеличение коэффициента расхода), что объясняет немонотонное изменение коэффициента удельного импульса для кривой термодинамического равновесия (см. рисунок 5.5).

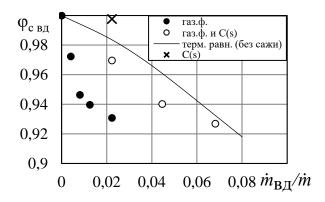


Рисунок 5.6 – Изменение коэффициента сопла в сравнении с подходом, основанном на термодинамическом равновесии

Между одномерной термодинамической оценкой и ГДМ реагирующей среды для смеси ПС ТТ на основе AP/HTPB отклонение в определении скорости на срезе сопла и, соответственно, коэффициента удельного импульса может достигать 5 %. В зависимости от топливной пары и состава газов пиролиза ТЗП суммарный эффект влияния на тягу и скорость на срезе сопла может быть совершенно разный.

В открытой литературе [21] опубликованы результаты другого исследования взаимодействия продуктов разложения ТЗП с ПС TT на основе AP/Al, где представлены расчетные данные изменения термодинамического пустотного удельного импульса в зависимости от количества подмешанного ТЗП, в которых для $\overline{F} = 8,7$ показано, что удельный импульс уменьшается не более чем на 3 % при 8 % подмешанной массы ТЗП. Незначительные потери обусловлены применяемой рецептурой ТТ АР/А1 82/18, при взаимодействии которого с 3 % по массе СН₄ при p = 70 атм адиабатная температура пламени увеличивается на 71,4 К. При взаимодействии с Н₂ (3 %) температура уменьшается на 8,33 К. Смешение ПС AP/A1 82/18 с газами CH_4 и H_2 способствует уменьшению молекулярного веса смеси, что в совокупности при прочих равных условиях увеличивает скорость на срезе сопла. Вдув СО₂ (3 % по массе) способствует уменьшению температуры пламени на 59 К и небольшому увеличению молекулярного веса смеси, предопределяя потери скорости на срезе сопла при $\overline{D} = D_a/D_{\min} = 3$ на 1,15 %. На примере ТТ АР/НТРВ 84/16 при добавлении к ПС 3 % СН₄ и Н₂ температура снижается на 363 К и 415 К, соответственно.

В работе А.М. Губертова, А.С. Коротеева, В.В. Миронова и др. [21] представлена обобщенная зависимость потерь удельного импульса вследствие взаимодействия уносимых продуктов разложения ТЗП с ПС ТТ АР/А1:

$$\xi_{\text{yH}} = k \cdot g_{\text{T3\Pi}} + g_{\text{9CM}},\tag{5.2}$$

где $g_{\text{ТЗП}}$, $g_{\text{ЭСМ}}$ — относительный расход газов пиролиза и эрозионно стойких материалов, k = 0.4 — обобщенный коэффициент влияния вдува газов пиролиза ТЗП. При взаимодействии продуктов разложения резиноподобного ТЗП (с учетом сажи) с ПС ТТ АР/НТРВ 84/16 максимальная величина коэффициента составляет k = 3 (рисунок 5.7). Значения $g_{T3\Pi}$ и $g_{ЭСМ}$ оценивались в соответствии с данными из Главы 4 (см. рисунки 4.6, 5.3). Интенсивность вдуваемых веществ $\dot{m}_{\rm вл}/\dot{m}$ определялась для продуктов разложения ТЗП газ/газ и сажа (соотношение массы частиц к массе газов пиролиза 4,5:1): 0,00406/0,02228; 0,00811/0,04456; 0,01247/0,06812. При этом соотношение вдуваемых газов продуктов пиролиза для вариантов без учета сажи и с учетом вдува сажи оставалось неизменным для каждых свойственных КС значений $L/D_{\rm k}$. Уровень значений обобщенного коэффициента влияния вдува газов пиролиза ТЗП (см. рисунок 5.7) определяется влиянием применяемой рецептуры ТТ, содержанием в ПС ТТ окислительных / восстановительных элементов И экзотермическими эндотермическими эффектами. Потери удельного импульса из-за уноса ТЗП в зависимости от интенсивности вдува представлены на рисунке 5.8. Ограничиваясь применяемой топливной парой АР/НТРВ, низкой температурой горения и тем, что топливо является безметальным, полученные результаты исследования могут быть в большей степени полезными для РДТТ малых габаритных размеров.

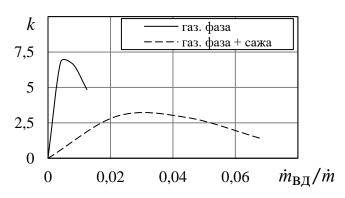


Рисунок 5.7 — Расчетные значения коэффициента k ($\overline{D} = 3$)

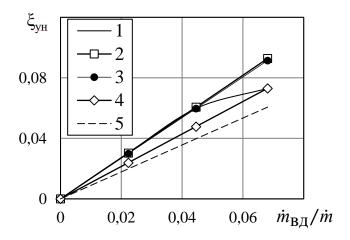


Рисунок 5.8 – Потери удельного импульса из-за уноса ТЗП по уравнению (5.2): 1-k расчетное (см. рис. 5.7); 2-k=3; 3-k=2,87; 4-k=1,4; 5-k=0.4

Таким образом, в зависимости от применяемого ТТ и состава продуктов разложения ТЗП, а также потенциала термохимического взаимодействия ПС TT и продуктов разложения ТЗП влияние на коэффициенты потерь удельного импульса и, соответственно, тяги может быть совершенно разным. Основным фактором изменения потенциальной энергии и, как следствие, кинетической энергии на срезе сопла является температура. На рисунке 5.9 представлено влияние изменения температуры при добавлении газообразных продуктов разложения ТЗП в состав ПС некоторых рецептур ТТ [63]: АР/НТРВ 84/16; АСС (Нитроцеллюлоза 12,5 %; диэтиленгликольдинитрат 5,625 %; триметилолэтантринитрат 31,875 %; гидрид алюминия 29 %; перхлорат нитрония 19,425 % и другие добавки); ПХА-3М (АР/идеализированное углеводородное связующее/А1 66/15/19); $\Pi XA-2$ (АР/нитрозол 60/40). Результаты получены посредством термодинамического приближения в ПП <ASTRA>. Показано, что для всех исследуемых рецептур ТТ вдув СО и СО2 незначительно влияет на изменение температуры смеси, за исключением вдува CO в ПС TT ПХА-2, где вследствие термохимического взаимодействия предопределяется увеличение адиабатной температуры пламени смеси. В основном, вдув веществ Н2, СН4 и С в ПС ТТ способствует уменьшению температуры потока. Интенсивность уменьшения температуры обусловлена составом ПС ТТ.

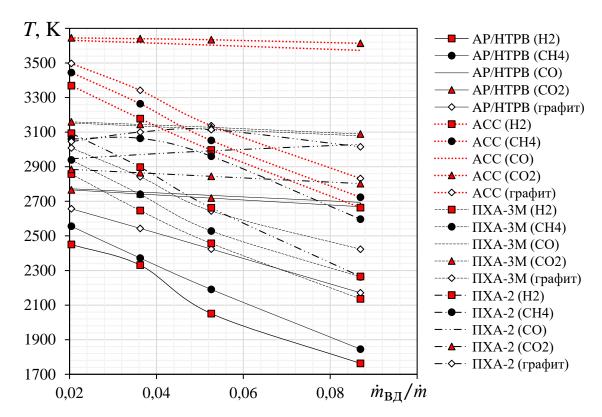


Рисунок 5.9 – Изменение адиабатной температуры пламени при добавлении в состав ПС ТТ некоторых продуктов разложения ТЗП

5.2 Выводы по главе 5

Вдув продуктов газификации ТЗП на основе ФФС с дозвуковых контуров a/b=1; 2; 3 способствует уменьшению коэффициента удельного импульса из-за существенного изменения газодинамических характеристик обтекания и трения между слоями продуктов газификации и ПС в дозвуковой части утопленного сопла.

Для вариаций технологических и конструктивных решений по выполнению контуров дозвуковых участков сопла наименьшие потери коэффициента удельного импульса определены для a/b = 1 и a/b = 2 — при интенсивности $0 < \dot{m}_{\rm BД}/\dot{m} \le 4\cdot 10^{-5}$ не более 0,1 % и 0,25 %. Для наиболее плавного из рассматриваемых контуров a/b = 3 определено интенсивное уменьшение коэффициента удельного импульса до $\phi_I = 0,9955$ ($\dot{m}_{\rm BД}/\dot{m} = 1,4\cdot 10^{-5}$), что обусловлено низкими значениями коэффициента расхода из-за сильно искажающегося газодинамического контура обтекания. При увеличении интенсивности вдува с контура a/b = 3 (до $\dot{m}_{\rm BД}/\dot{m} \le 6,6\cdot 10^{-4}$) вследствие

увеличения приходящей массы с поверхности ТЗП потери коэффициента удельного импульса находятся в диапазоне от 0,2 % до 0,5 %.

В составе гипотетического РДТТ с зарядом ТТ, горящим по торцевой взаимодействия ПС с вследствие продуктами разложения поверхности, резиноподобного ТЗП определяется снижение коэффициента удельного импульса для газовой фазы до 5 % при $\dot{m}_{\rm BJ}/\dot{m} \le 1,5\cdot 10^{-2}$; при увеличении коэффициента расхода потери могут быть меньше. Существенная разница между потерями тяги при характеристиках вдува газа и газ/тв. частицы обусловлена в основном превращений газовой фазе влиянием химических В радиальной И неравномерностью характеристик потока в КС РДТТ.

Данные, полученные при газодинамическом моделировании реагирующей среды, отличаются по потерям удельного импульса от термодинамического подхода в зависимости от интенсивности вдува не более чем на 5 % для ПС ТТ на основе AP/HTPB.

Заключение

Основные теоретические и прикладные результаты работы соответствуют поставленной цели и задачам. По результатам проведенных исследований, касающихся в большей степени малогабаритных РДТТ, можно сделать следующие выводы.

- 1) Получен редуцированный кинетический механизм для пламени AP, состоящий из 128 реакций и учитывающий 27 индивидуальных веществ.
- 2) Получены характерные зависимости изменения коэффициентов расхода и сопла в широком диапазоне интенсивности вдува газов пиролиза теплозащитного материала с дозвукового участка утопленного сопла при взаимодействии с ПС безметального ТТ на основе АР/НТРВ. Определены границы изменения коэффициентов расхода и сопла, при которых оптимальным соотношением размеров дозвукового участка сопла, обеспечивающих технологические и конструктивные вариации, по отношению к изменению коэффициента расхода является диапазон a/b = 1...2. При интенсивности вдува $\dot{m}_{\scriptscriptstyle \mathrm{RII}}/\dot{m} \leq 1,5\cdot 10^{-4}$: для a/b=1 и $a/b=2-\mu_{\rm c} \geq 0,983$; $\phi_{\rm c} \geq 0,995$; для $a/b=3-\mu_{\rm c} \geq 0,976$; $\varphi_c \ge 0.997$.
- 3) Определены характерные границы изменения коэффициентов расхода и сопла при абляции резиноподобного ТЗП и взаимодействии продуктов пиролиза и сажи при соотношении массы частиц к массе газов 4,5:1 с ПС безметального ТТ АР/НТРВ в объеме камеры сгорания РДТТ. При взаимодействии газов пиролиза с интенсивностью вдува $\dot{m}_{\rm BJ}/\dot{m} \leq 0,012$: $\mu_{\rm c} \approx 1$; $\phi_{\rm c} \geq 0,94$. При взаимодействии газов пиролиза и сажи при $\dot{m}_{\rm BJ}/\dot{m} \leq 0,068$: $1 \leq \mu_{\rm c} \leq 1,06$; $\phi_{\rm c} \geq 0,928$.
- 4) Определены характерные границы изменения коэффициента удельного импульса при взаимодействии продуктов сгорания безметального ТТ АР/НТРВ с продуктами разложения ТЗП в дозвуковом участке сопла и камере сгорания. Определен оптимальный диапазон размеров контуров дозвукового участка сопла, обеспечивающий наименьшие потери коэффициента удельного импульса при абляции ТЗП, a/b = 1...2 при интенсивности вдува $0 < \dot{m}_{\rm вл}/\dot{m} \le 4.10^{-5}$ ($\phi_I \ge 0.9975$).

Для дозвукового контура a/b=3 потери удельного импульса не превышали 0,5 % во всем исследуемом диапазоне интенсивности вдува. Нижние границы коэффициента удельного импульса при абляции резиноподобного ТЗП в объеме камеры сгорания при взаимодействии газов пиролиза с интенсивностью вдува $\dot{m}_{\rm BJ}/\dot{m} \le 0,012$ составляет $\phi_I \ge 0,95$; при взаимодействии газов пиролиза и сажи с $\dot{m}_{\rm BJ}/\dot{m} \le 0,068 - \phi_I \ge 0,98$ ($1 \le \mu_{\rm c} \le 1,06$).

- 5) Определено различие между подходами газодинамического моделирования реагирующей среды и термодинамическим равновесием. Расхождение между определением потерь коэффициента удельного импульса при использовании термодинамического подхода может достигать 5 % для ТТ на основе АР/НТРВ по сравнению с результатами газодинамического моделирования реагирующей среды.
- 6) Использовать подход химической кинетики в описании взаимодействия ПС ТТ с продуктами разложения ТЗП необходимо после предварительной оценки на основе термодинамического равновесия. Если посредством термодинамического расчета определено существенное изменение температуры и свойств смеси, то неучет химических реакций взаимодействия ПС ТТ с продуктами разложения ТЗП может повлечь неточность определения удельного импульса, при этом ошибка может достигать 5–6 % при вдуве продуктов разложения ТЗП 2–6 % от расхода ТТ.

Список сокращений и условных обозначений

```
Принятые сокращения:
      TT — твердое топливо;
      РДТТ – ракетный двигатель твердого топлива;
      КС – камера сгорания;
      ПС – продукты сгорания;
      ТЗП – теплозащитное покрытие;
      PSR (РИС) – (plug-stirred reactor) реактор идеального смешения;
      PFR – (plug-flow reactor) проточный реактор;
      НРИС – нестационарный реактор идеального смешения;
      AP – (ammonium perchlorate) перхлорат аммония;
      HTPB – (hydrocxyl-terminated polybutadiene) – полибутадиеновый каучук с
гидроксильными концевыми группами;
      ФФС – фенолформальдегидное связующее;
      SST – (Shear-Stress Transport) модель сдвиговых напряжений Ментера.
      Условные обозначения:
      \tau – время;
      Re – число Рейнольдса;
      Nu – число Нуссельта;
      Pr – число Прандтля;
      St – число Стэнтона;
      М – число Маха;
      p — давление, Па;
     w, U – скорость газовой смеси, [м/с, мм/с];
      T – температура, [K];
      \rho – плотность, \lceil \Gamma/\text{см}^3, \, \text{кг/м}^3 \rceil;
      P_{\Pi} –тяга в пустоте, [H];
      \mu_c – коэффициент расхода;
      фс – коэффициент сопла;
```

```
φ<sub>β</sub> – коэффициент совершенства процессов в камере сгорания;
      \dot{m} – секундный массовый расход, [кг/с];
      \dot{m}_{
m yH} — массовая скорость уноса теплозащитного покрытия, [кг/(м²·с)];
      \dot{m}_{\scriptscriptstyle \mathrm{BJ}} — секундный массовый расход вдува продуктов пиролиза, [кг/с];
       r_i — мольные доли;
      g_i — массовые доли;
      Q – количество теплоты, [Дж/кг];
      c_p – изобарная теплоемкость, [Дж/кг K];
      k — отношение изобарной и изохорной теплоемкостей;
      F – площадь, [м<sup>2</sup>];
      \overline{F} – относительная площадь;
      R – равновесное значение газовой постоянно, [Дж/(моль·К)];
      E_a – энергия активации, [кал/моль, Дж/моль];
      R – радиус, [м];
      \overline{R} – относительный радиус;
      D – диаметр, [м];
      \overline{D} – относительный диаметр;
      L, l, x - длина, [м];
       \bar{x} – относительный параметр длины;
       q – удельный тепловой поток, [Bт/м<sup>2</sup>];
      q_{\rm K} – удельный конвективный тепловой поток, [Bт/м<sup>2</sup>];
      q_{\pi} – удельный лучистый тепловой поток, [Bт/м<sup>2</sup>];
      q_{\text{тзп}} – удельное количество теплоты, затраченное на прогрев ТЗП с учетом
преобразования газообразных продуктов разложения, [Вт/м²];
      \alpha_{\kappa} — коэффициент конвективной теплоотдачи, [Bt/(м²·K)];
      A(k) – газодинамический комплекс;
      B — параметр вдува;
      I_{\scriptscriptstyle 
m T} – энтальпия топлива;
       \varepsilon_{\Gamma} – эффективная степень черноты газа;
      \varepsilon_w – эффективная степень черноты материала стенки;
```

 σ_0 – постоянная Стефана-Больцмана;

```
a_w – коэффициент поглощения
      x_{\rm c} – массовая доля газообразных продуктов пиролиза связующего;
      C_f – коэффициент трения на непроницаемой стенке;
      K_w – параметр учета вдува;
      \mu – вязкость;
      \mu_{\rm T} – турбулентная вязкость;
      \mu_{\text{п}} – средняя вязкость потока;
      k – турбулентная кинетическая энергия;
      ε – энергия вязкой диссипации;
      \delta_T^{**} – толщина потери энергии;
      \xi_{c} – потери удельного импульса в сопле;
      \varepsilon_t – коэффициент, учитывающий характерную длину цилиндрического
участка;
      z — массовая доля двухфазного потока;
      a-1 радиус эллипса;
      b-2 радиус эллипса;
      \alpha, \beta – угол, [°].
      Подстрочные нижние индексы:
      тв – параметры твердого тела;
      ж – параметры жидкого тела;
      s — параметры на стенке;
      w — параметры вдува;
      \Pi — параметры потока;
      0 – параметры, полученные по правилу аддитивности;
      \infty – параметры потока вне пограничного слоя;
      вх – параметры на входе;
      a – срез сопла;
      к – камера сгорания;
      р – рассеивание;
```

```
тр – трение;
```

 $2 \varphi -$ двухфазность;

 ϕ – многофазность;

н – химическая неравновесность;

реак – реакция;

пр – прочие.

Надстрочные верхние индексы:

* - параметры торможения;

р – расчетные параметры;

т – теоретические параметры;

Список литературы

- 1. Абугов, Д.И. Теория и расчет ракетных двигателей твердого топлива. Учебник для машиностроительных вузов / Д.И. Абугов, В.М. Бобылев. - М.: Машиностроение, 1987. - 272 с.
- 2. Александров, В.Н. Интегральные прямоточные воздушно-реактивные двигатели на твердых топливах. Основы теории и расчета. / В.Н. Александров, В.М. Быцкевич, В.К. Верхоломов [и др.]; под ред. Л.С. Яновского. М.: Академкнига, 2006. 343 с.
- 3. Алемасов, В.Е. Математическое моделирование высокотемпературных процессов в энергосиловых установках / В.Е. Алемасов, А.Ф. Дрегалин, В.Г. Крюков [и др.]. М.: Наука, 1989. 256 с.
- 4. Алемасов, В.Е. Основы теории физико-химических процессов в тепловых двигателях и энергоустановках / В.Е. Алемасов, А.Ф. Дрегалин, А.С. Черенков. М.: Химия, 2000. 520 с.
- 5. Алемасов, В.Е. Теория ракетных двигателей / В.Е. Алемасов, А.Ф. Дрегалин, А.П. Тишин. М.: Машиностроение, 1989. 464 с.
- 6. Алемасов, В.Е. Теория ракетных двигателей / В.Е. Алемасов, А.Ф. Дрегалин, А.П. Тишин; под ред. В.П. Глушко. М.: Машиностроение, 1980. 533 с.
- 7. Алемасов, В.Е. Термодинамические и теплофизические свойства продуктов сгорания Справочник. Т.1 / В.Е. Алемасов, А.Ф. Дрегалин, А.П. Тишин [и др.]; под ред. В.П. Глушко. М.: АН СССР ВИНИТИ, 1971. 268 с.
- 8. Ассовский, И.Г. Физика горения и внутренняя баллистика / И.Г. Ассовский; под ред. А.М. Липанова. М.: Наука, 2005. 357 с.
- 9. Белов, Г.В. Развитие средств термодинамического расчета характеристик ракетного двигателя с использованием языка программирования Julia / Г.В. Белов // Вестник МГТУ им. Н.Э. Баумана, Сер. Машиностроение. 2021. № 4. С. 80–93.
- 10. Бондаренко, А.А. Ламинаризация пограничного слоя на перфорированной поверхности с глухими демпфирующими полостями в

- ускоряющемся потока / А.А. Бондаренко, Е.Н. Коврижных, Н.Н. Ковальногов // Изв. вузов. Авиационная техника. 2011. № 1. С. 41–44.
- 11. Брюстер, М.К. Скорость горения алюминизированных смесевых топлив с широким распределением частиц окислителя по размерам / М.К. Брюстер, Дж.К. Муллер // Физика горения и взрыва. 2011. № 2. С. 81–92.
- 12. Васильев, А.П. Основы теории и расчета жидкостных ракетных двигателей. В 2 кн. Кн. 1. Учеб. для авиац. спец. вузов / А.П. Васильев, В.М. Кудрявцев, В.А. Кузнецов [и др.]; под ред. В.М. Кудрявцева. М.: Высшая школа, 1993. 383 с.
- 13. Виницкий, А.М. Конструкция и отработка РДТТ / А.М. Виницкий, В.Т. Волков, И.Г. Волковицкий [и др.]; под ред. А.М. Виницкого. М.: Машиностроение, 1980. 320 с.
- 14. Волков, В.Т. Исследование и стендовая отработка ракетных двигателей на твердом топливе / В.Т. Волков, Д.А. Ягодников. М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. 296 с.
- 15. Волков, К.Н. Газовая динамика утопленного сопла при его смещении в радиальном направлении / К.Н. Волков, С.В. Денисихин, В.Н. Емельянов // Инженерно-физический журнал. 2017. Т. 90. № 4. С. 979–987.
- 16. Волков, К.Н. Стохастическая модель движения конденсированной частицы в канале с проницаемыми стенками / К.Н. Волков, В.Н. Емельянов // Математика. Моделирование. 1999. Т. 11. № 3. С. 105–111.
- 17. Волков, К.Н. Турбулентные течения в каналах со вдувом. Результаты расчетов по методу крупных вихрей и двухпараметрической модели турбулентности / К.Н. Волков, В.Н. Емельянов // Изв. РАН Механика жидкости и газа. 2008. № 4. С. 82–93.
- 18. Волков, К.Н. Газовая динамика утопленного сопла при его смещении в радиальном направлении / К.Н. Волков, С.В. Денисихин, В.Н. Емельянов // Инженерно-физический журнал. 2017. Т. 90. № 4. С. 979–987.
- 19. Волков, К.Н. Турбулентные течения в каналах со вдувом. Результаты расчетов по методу крупных вихрей и двухпараметрической модели

- турбулентности / К.Н. Волков, В.Н. Емельянов // Изв. РАН Механика жидкости и газа. 2008. № 4. С. 82–93.
- 20. Грибанов, В.М. Расчетно-экспериментальный метод определения энергозатрат на физико-химические превращения в полимерных материалах / В.М. Грибанов, С.С. Слободчиков, А.И. Потапенко [и др.] // Вопросы электромеханики. Труды ВНИИЭМ. 2012. Т. 130. № 5. С. 51–57.
- 21. Губертов, А.М. Газодинамические и теплофизические процессы в ракетных двигателя твердого топлива / А.М. Губертов, В.В. Миронов, Д.М. Борисов [и др.]; под ред. А.С. Коротеева. М.: Машиностроение, 2004. 512 с.
- 22. Евстратова, К.И. Физическая и коллоидная химия / К.И. Евстратова, К.И. Купина, Е.Е. Малахова. М.: Высшая школа, 1990. 487 с.
- 23. Ермолин, Н.Е. Горение газофазных и конденсированных систем. Методы расчета. Структура пламен / Н.Е. Ермолин, В.М. Фомин. М.: Физматлит, 2022. 520 с.
- 24. Ермолин, Н.Е. Измерение профилей концентраций реагирующих компонентов и температуры в пламени перхлората аммония / Н.Е. Ермолин, О.П. Коробейничев, А.Г. Терещенко и др. // Физика горения и взрыва. 1982. № 1. С. 46–49.
- 25. Ермолин, Н.Е. Исследование структуры пламен смесевых твердых топлив на основе перхлората аммония и полибутадиенового каучука / Н.Е. Ермолин, О.П. Коробейничев, В.М. Фомин и др. // Физика горения и взрыва. 1992. №4. С. 59–65.
- 26. Ермолин, Н.Е. Модель кинетики химических реакций в пламенах хлорной кислоты с аммиаком / Н.Е. Ермолин // Физика горения и взрыва. 1995. № 5. С. 58–69.
- 27. Ерохин, Б.Т. Теория внутрикамерных процессов и проектирование РДТТ: Учебник для высших технических учебных заведений / Б.Т. Ерохин. М.: Машиностроение, 1991. 560 с.

- 28. Ерохин, Б.Т. Теория и проектирование ракетных двигателей: Учебник / Б.Т. Ерохин. СПб.: Лань, 2015. 680 с.
- 29. Каун, Ю.В. Влияние газопроницаемых конструкционных материалов на тягу сопла внешнего расширения широкодиапазонного ракетного двигателя / Ю.В. Каун, М.В. Чернышов // Известия Российской Академии Ракетных и Артиллерийских наук. 2022. № 4. С. 117–123.
- 30. Кириллова, А.Н. Влияние вдува продуктов разложения тепловой защиты на коэффициент расхода утопленного сопла в зависимости от формы входного участка / А.Н. Кириллова, А.Н. Сабирзянов // Инженерно-физический журнал. 2022. № 5. С. 1266–1276.
- 31. Кириллова, А.Н. Влияние вдува продуктов разложения теплозащитного покрытия на коэффициент расхода утопленного сопла / А.Н. Кириллова, А.Н. Сабирзянов // Изв. вузов. Авиационная техника. 2021. № 2. С. 129–135.
- 32. Ковальногов, Н.Н. Течение и сопротивление трения турбулентного потока в перфорированной трубе с демпфирующими полостями / Н.Н. Ковальногов, Л.В. Хахалева // Изв. вузов. Авиационная техника. 2002. № 3. С. 19–21.
- 33. Кононов, Д.С. Упрощенные кинетические модели горения метана для расширения возможностей пакета OpenFOAM и физико-химических библиотек / Д.С. Кононов, В.Ю. Гидаспов, С.В. Стрижак // Труды института системного программирования РАН. 2021. Т. 33. № 6. С. 229–240.
- 34. Коробейничев, О.П. Исследование кинетики и механизма химических реакций в пламени смесевого состава на основе ПХА и полибутадиенового каучука / О.П. Коробейничев, А.А. Чернов, И.Д. Емельянов и др. // Физика горения и взрыва. 1990. № 3. С. 46–55.
- 35. Коробейничев, О.П. Исследование структуры пламени слоевых систем на основе ПХА / О.П. Коробейничев, А.Г. Терещенко, В.М. Шварцберг [и др.] // Физика горения и взрыва. 1990. № 2. С. 53–58.

- 36. Коробейничев, О.П. Структура пламени, кинетика и механизм химических реакций в пламени смесевого состава на основе перхлората аммония и полибутадиенового каучука / О.П. Коробейничев, Н.Е. Ермолин, А.А. Чернов [и др.] // Физика горения и взрыва. 1992. № 4. С. 53–59.
- 37. Кошлаков, В.В. Экспериментальные исследования разбросов теплозащитных характеристик резиноподобной теплозащиты / В.В. Кошлаков, В.В. Миронов, К.А. Чумакин [и др.] // Теплофизика высоких температур. 2020. Т. 58. № 2. С. 266–274.
- 38. Лавров, Л.Н. Конструкции ракетных двигателей на твердом топливе / Л.Н. Лавров, А.А. Болотов, В.И. Гапаненко [и др.]; под ред. Л.Н. Лаврова. М.: Машиностроение. 1993. 215 с.
- 39. Леонтьев, А.И. Исследование сжимаемого ламинарного пограничного слоя на проницаемой пластине с однородным вдувом для чисел Прандтля газа Pr = 0.1..1.0 / A.И. Леонтьев, В.Г. Лущик, М.С. Макарова // Доклады РАН. Физика, технические науки. 2022. Т. 502. С. 50–54.
- 40. Леонтьев, А.И. Коэффициент восстановления температуры в пограничном слое на проницаемой пластине / А.И. Леонтьев, В.Г. Лущик, М.С. Макарова // Теплофизика высоких температур. 2017. Т. 55. № 2. С. 255–261.
- 41. Леонтьев, А.И. Сжимаемый турбулентный пограничный слой на проницаемой пластине при вдуве инородного газа / А.И. Леонтьев, В.Г. Лущик, А.Е. Якубенко // Теплофизика высоких температур. 2007. Т. 45. № 4. С. 543–551.
- 42. Леонтьев, А.И. Особенности теплообмена на проницаемой поверхности в потоке сжимаемого газа / А.И. Леонтьев, В.Г. Лущик, М.С. Макарова // Доклады Академии наук. 2018. Т. 482. № 1. С. 38–41.
- 43. Лепихов, А.В. Упрощенная кинетическая схема горения смеси RP-1/O2 для CFD-расчетов ракетных двигателей / А.В. Лепихов // Физико-химическая кинетика в газовой динамике. 2016. Т. 16. № 1. URL: http://chemphys.edu.ru/issues/2016-17-1/articles/626 (дата обращения 22.08.2024).

- 44. Липанов, А.М. Проектирование ракетных двигателей твердого топлива / А.М. Липанов, А.В. Алиев. М.: Машиностроение, 1995. 400 с.
- 45. Мадорский, С.Л. Термическое разложение органических полимеров / С.Л. Мадорский; под ред. С.Р. Рафикова; пер. с англ. Д.Г. Вальковского [и др.]. М.: Мир, 1967. 328 с.
- 46. Милехин, Ю.М. Энергетика ракетных двигателей на твердом топливе / Ю.М. Милехин, А.Н. Ключников, Г.В. Бурский [и др.]. М.: Наука, 2013. 207 с.
- 47. Миронов, В.В. Состав и свойства газообразных продуктов деструкции резиноподобной теплозащиты / В.В. Миронов, М.А. Толкач // Теплофизика высоких температур. 2021. Т. 59. № 5. С. 747–754.
- 48. Наумов, В.Н. Влияние формы входного контура на газодинамику утопленного сопла РДТТ / В.Н. Наумов // РК научно-технический сборник. Серия IV Ракетные двигатели и энергетические установки РДТТ. 1977. № 42. С. 119–129.
- 49. Пирумов, У.Г. Газовая динамика сопел / У.Г. Пирумов, Г.С. Росляков. М.: Наука, 1984. 319 с.
- 50. Полежаев, Ю.В. Сопряженные и нестационарные задачи механики реагирующих сред / Ю.В. Полежаев, А.М. Гришин, В.М. Фомин. Новосибирск: Наука, 1984. 319 с.
- 51. Полежаев, Ю.В. Тепловая защита / Ю.В. Полежаев, Ф.Б. Юревич.- М.: Энергия, 1976. 392 с.
- 52. Пономарев, А.А. Исследование потерь удельного импульса тяги из-за неоднородностей состава продуктов сгорания / А.А. Пономарев, Н.Б. Пономарев // Вестник Московского авиационного института. 2010. Т. 17. № 6. С. 66–71.
- 53. Присняков, В.Ф. Динамика ракетных двигателей твердого топлива / В.Ф. Присняков. М.: Машиностроение, 1984. 248 с.
- 54. Раздан, М.К. Экспериментальная проверка модели эрозионного горения смесевых твердых топлив / М.К. Раздан, К.К. Куо // Ракетная техника и космонавтика. 1980. Т. 18. № 7. С. 78–89.

- 55. Сабирзянов, А.Н. Применение RANS моделей турбулентности для расчета коэффициента расхода в расходомере со стандартной диафрагмой / А.Н. Сабирзянов, В.Б. Явкин // Вестник Удмуртского университета «Математика. Механика. Компьютерные науки». 2010. № 2. С. 109–116.
- 56. Сабирзянов, А.Н. Влияние геометрических параметров входного участка утопленного сопла на коэффициент расхода / А.Н. Сабирзянов, А.Н. Кириллова, Ч.Б. Хаматнурова // Вестник МАИ. 2020. № 2. С. 140 148.
- 57. Сабирзянов, А.Н. Влияние некоторых факторов разложения теплозащитного материала на коэффициент расхода утопленного сопла / А.Н. Сабирзянов, Р.А. Шайдуллин // Изв. вузов. Авиационная техника. 2023. № 3. С. 85–92.
- 58. Сабирзянов, А.Н. Многофакторность влияния степени утопленности сопла на коэффициент расхода / А.Н. Сабирзянов, А.Н. Кириллова // Вестник Концерна ВКО «Алмаз Антей». 2018. № 1. С. 43–50.
- 59. Сабирзянов, А.Н. Моделирование коэффициента расхода сопла ракетного двигателя / А.Н. Сабирзянов, А.И. Глазунов, А.Н. Кириллова и др. // Изв. вузов. Авиационная техника. 2018. № 2. С. 105–111.
- 60. Санин, Ф.П. Твердотопливные ракетные двигатели. Материалы и технологии / Ф.П. Санин, Л.Д. Кучма, Е.А. Джур, А.Ф. Санин. Днепропетровск: Изд-во Днепропетровского ун-та, 1999. 320 с.
- 61. Сидоренко, В.В. Определение потерь в камере РДТТ, связанных с неполнотой тепловыделения и сублимацией бронировки / В.В. Сидоренко, А.И. Тулупов, Б.В. Киссин // Оборонная техника. Ракеты и ракетные двигатели. 1966. № 5. С. 11–15.
- 62. Синдицкий, В.П. Горение смесей перхлората аммония с высококалорийными горючими / В.П. Синдицкий, А.Н. Черный, С.Х. Чжо [и др.] // Успехи химии и химической технологии. 2016. № 8. С. 18–80.
- 63. Соколов, Б.И. Термодинамические и теплофизические свойства твердых ракетных топлив и их продуктов сгорания / Б.И. Соколов, А.С. Черенков,

- А.И. Саломынов; под ред. В.Е. Алемасова. М.: Министерство обороны СССР, 1977. 318 с.
- 64. Соколовский, М.И. Конструкция ракетных двигателей твердого топлива: монография. Ч. 1. Конструирование ракетных двигателей твердого топлива / М.И. Соколовский, А.Ю. Лузенин. -Пермь: Изд-во ПНИПУ, 2019. 432 с.
- 65. Соколовский, М.И. Конструкция ракетных двигателей твердого топлива: монография. Ч. 2: Инженерные методы расчета ракетных двигателей твердого топлива / М.И. Соколовский, А.Ю. Лузенин. Пермь: Изд-во ПНИПУ, 2019. 138 с.
- 66. Сорокин, В.А. Ракетно-прямоточные двигатели на твердых и пастообразных топливах. Основы проектирования и экспериментальной отработки / В.А. Сорокин, Л.С. Яновский, В.А. Козлов, [и др.]; под ред. Ю.М. Милехина и В.А. Сорокина. М.: Физматлит, 2010. 320 с.
- 67. Страхов, В.Л. Математическое моделирование высокотемпературных теплофизических характеристик резино-подобных теплозащитных материалов / В.Л. Страхов, Ю.М. Атаманов, И.А. Кузьмин // Теплофизика высоких температур. 2017. Т. 55. №. 4. С. 528–536.
- 68. Суржиков, С.Т. Вычислительные модели горения неметаллизированного гетерогенного ракетного топлива / С.Т. Суржиков, Х. Краер // Теплофизика высоких температур. 2003. Т. 41. № 1. С. 106–142.
- 69. Товстоног, В.А. Экспериментальные исследования и анализ механизмов термического разрушения армированных пластиков при нагреве излучением / В.А. Товстоног // Вестник МГТУ им. Н.Э. Баумана. Сер. «Машиностроение». 2007. № 2. С. 15–34.
- 70. Трусов, Б.Г. Моделирование химических и фазовых равновесий при высоких температурах <ACTPA.4> / Б.Г. Трусов. М.: МГТУ им. Н.Э. Баумана, 1991. 40 с.
- 71. Уайт, Дж.Л. Полиэтилен, полипропилен и другие полиолефины / Дж.Л. Уайт, Д.Д. Чой; пер. с англ. под ред. Е.С. Цобкалло. СПб.: Профессия, 2006. 256 с.

- 72. Фахрутдинов, И.Х. Конструкция и проектирование ракетных двигателей твердого топлива: Учебник для машиностроительных вузов / И.Х. Фахрутдинов, А.В. Котельников. М.: Машиностроение, 1987. 328 с.
- 73. Фролов, Ю.В. Горение перхлората аммония в слоевой системе /
 Ю.В. Фролов, А.А. Зенин, В.Я. Яковлев // Физика горения и взрыва. 1969. № 4.
 С. 544–549.
- 74. Шайдуллин, Р.А. Влияние закрутки потока на входе в сопло ракетного двигателя на коэффициент расхода / Р.А. Шайдуллин, А.Р. Бекеров, А.Н. Сабирзянов // Вестник Московского авиационного института. 2021. Т. 28. № 2. С. 142 151.
- 75. Шайдуллин, Р.А. Моделирование горения твердого топлива на основе перхлората аммония и полибутадиена в условиях гипотетического двигателя / Р.А. Шайдуллин, А.Н. Сабирзянов // Тепловые процессы в технике. 2023. № 6. С. 276–287.
- 76. Шайдуллин, Р.А. Численное исследование кинетических механизмов пламени перхлората аммония / Р.А. Шайдуллин, А.Н. Сабирзянов // Вестник Московского авиационного института. 2023. Т. 30. № 2. С. 131–138.
- 77. Шишков, А.А. Рабочие процессы в ракетных двигателях твердого топлива. Справочник / А.А. Шишков, С.Д. Панин, Б.В. Румянцев. М.: Машиностроение, 1989. 240 с.
- 78. Штейнберг, А.С. Быстрые реакции в энергоемких системах: высокотемпературное разложение ракетных топлив и взрывчатых веществ / А.С. Штейнберг. М.: Физматит, 2006. 208 с.
- 79. Штиллер, В. Уравнение Аррениуса и неравновесная кинетика / В. Штиллер; пер. с англ А.В. Хачояна; под ред. Л.С. Полака. М.: МИР, 2000. 176 с.
- 80. Шумахер, И.С. Перхлораты. Свойства, производство и применение. Под ред. Л.С. Генина. / И.С. Шумахер; пер. с англ под ред. Л.С. Генин. М.: ГХИ, 1963. 274 с.

- 81. ANSYS Chemkin Theory Manual 17.0. San Diego: Reaction Design. 2015. 412 p.
- 82. Arden, E.A. Observations on the burning rate of ammonium perchlorate / E.A. Arden, J. Powling, W.A.W. Smith // Combustion and Flame. 1962. No. 1. pp. 21–33.
- 83. Bartz, D.R. Turbulent boundary-layer heat transfer from rapidly accelerating flow of rocket combustion gases and of heated air / D.R. Bartz // Pasadena: Jet Propulsion Laboratory. 1963. 132 p.
- 84. Beck, W.H. Pyrolysis studies of polymetric materials used as binder in composite propellants: a review / W.H. Beck // Combustion and Flame. 1987. Vol. 70. Is. 2. pp. 171–190.
- 85. Beckstead, M.W. A model of composite solid propellant combustion based on multiple flames / M.W. Beckstead, R.L. Derr, C.F. Price // AIAA Journal. 1970. Vol. 8. No. 4. pp. 2200 2207.
- 86. Beckstead, M.W. Modeling and simulation of combustion of solid propellant ingredients using detailed chemical kinetics / M.W. Beckstead, K. Puduppakkam, V. Yang // 40th AUAA Joint Propulsion Conference and Exhibit. 2004. URL: https://doi.org/10.2514/6.2004-4036 (дата обращения 01.06.2024).
- 87. Beckstead, M.W. Modeling of combustion and ignition of solid-propellant ingredients / M.W. Beckstead, K. Puduppakkam, P. Thakre, V. Yang // Progress in Energy and Combustion Science. 2007. Vol. 33. No. 6. pp. 497–551.
- 88. Behrens, R. Thermal decomposition behavior of ammonium perchlorate and of a ammonium-perchlorate-based composite propellant / R. Behrens, L. Minier // 33th JANNAF Combustion Meeting. 1996. CPIA #654. pp. 1–19.
- 89. Bouck, L. Pyrolysis and oxidation of polymers at high heating rates / L. Bouck, A. Baer, N. Rayn // Symposium (International) on Combustion. 1973. Vol. 14. Is. 1. pp. 1165–1176.
- 90. Burcat, A. Third millennium ideal gas and condensed phase thermochemical database for combustion with updates from active thermochemical tables / A. Burcat, B. Ruscic // Chicago: The University of Chicago. 2005. 418 p.

- 91. Burcat, A. Ideal gas thermodynamic data in polynomial form for combustion and air pollution use. URL: http://garfield.chem.elte.hu/Burcat/burcate.html (дата обращения 14.06.2024).
- 92. Burkholder, J.B. Kinetic, thermochemical, and Spectroscopic study of Cl2O3 / J.B. Burkholder, R.L. Mauldin III, R.J. Yokelson and et. al. // The Journal of Physical Chemistry. 1993. Vol. 97. pp. 7597 7605.
- 93. Cai, W.D. Model of AP/HTPB composite propellant combustion in rocket motor environments / W.D. Cai, P. Tharke, V. Yang // Combustion Science and Technology. 2008. Vol. 180. pp. 2143–2169.
- 94. Davidson, J.E. Combustion modeling of RDX, HMX, and GAP with detailed kinetics: Ph. D. Dissertation. Department of Chemical Engineering Brigham Young University, Provo, UT. 1997. 173 p.
- 95. Esker, D.R. Laser pyrolysis of hydroxyl-terminated polybutadiene / D.R. Esker, M.Q. Brewster // Journal of Propulsion and Power. 1996. Vol. 12. No. 2. pp. 296–301.
- 96. Gardiner, W.C. Jr. Combustion chemistry / W.C.Jr. Gardiner, A. Burcat, G. Dixon-Lewis and et.al // New York: Springer. 1984. 522 p.
- 97. Gran, I.R. A numerical study of a bluff-body stabilized diffusion flame. Part 1. Influence of turbulence modeling and boundary conditions / I.R. Gran, B.F. Magnussen // Combustion Science and Technology. 1996. Vol. 119. pp. 171–190.
- 98. Gran, I.R. A numerical study of a bluff-body stabilized diffusion flame. Part 1. Influence of combustion modeling and finite-rate chemistry / I.R. Gran, B.F. Magnussen // Combustion Science and Technology. 1996. Vol. 119. pp. 191–217.
- 99. Gross, M.L. Diffusion flame calculations for composite propellants predicting particle-size effects / M.L. Gross, M.W. Beckstead // Combustion and Flame. 2010. Vol. 157. No. 5. pp. 864–873.
- 100. Gross, M.L. Steady-state combustion mechanism of ammonium perchlorate composite propellants / M.L. Gross, M.W. Beckstead // Journal of Propulsion and Power. 2011. Vol. 27. No. 5. pp. 1064–1078.

- 101. Gross, M.L. Two-dimensional modeling of AP/HTPB utilizing a vorticity formulation and one-dimensional modeling of AP and ADN: Ph. D. Dissertation. Department of Chemical Engineering, Brigham Young University, Provo, UT. 2007. 244 p.
- 102. Guirao, C. A model for ammonium perchlorate deflagration between 20 and 100 atm / C. Guirao, F.A. Williams // AIAA Journal. 1971. Vol. 9. No. 7. pp. 1345–1356.
- 103. Hightower, J.D. Combustion of ammonium perchlorate / J.D. Hightower, Price E.W. // Symposium (International) on Combustion. 1967. Vol. 11. pp. 463 472.
- 104. Jackson, T.L. Heterogeneous propellant combustion / T.L. Jackson, J. Buckmaster // AIAA Journal. 2002. Vol. 40. No. 6. pp. 1122–1130.
- 105. Jepsson, M.B. A kinetic model for the premixed combustion of a fine AP/HTPB composite propellant / M.B. Jeppson, M.W. Beckstead, Q. Jing // 36th Aerospace Sciences Meeting & Exhibit, AIAA-98-0447. 1998. URL: https://arc.aiaa.org/doi/10.2514/6.1998-47 (дата обращения 22.08.2024).
- 106. Kirillova, A.N. Various Factors Influence of Heat-Shielding Material Decomposition on Flow Rate Coefficient of Recessed Nozzle / A.N. Kirillova, A.N. Sabirzyanov, V.V. Kuzmin // Proc.of the International Scientific and Technical Engine Conference. 2021. pp. 38–39.
- 107. Kishore, K. Solid propellant chemistry. Condensed phase behavior of ammonium perchlorate-based solid propellants / K. Kishore, K. Sridhara // New Delhi: DESIDOC. 1999. 252 p.
- 108. Knott, G.M. Modeling the combustion of propellant sandwiches / G.M. Knott, M.Q. Brewster // Combustion Science and Technology. 2002. Vol. 174. pp. 61–90.
- 109. Liau, Y.C. Analysis of RDX monopropellant combustion with two-phase subsurface reactions / Y.C. Liau, V. Yang // Journal of Propulsion and Power. 1995. Vol. 11. pp. 729–739.
- 110. Lin, M.C. Lin's chemical kinetics research group. URL: http://mc2.chem.emory.edu (дата обращения: 14.08.2024).

- 111. Lu, T. A directed relation graph method for mechanism reduction / T. Lu, Ch.K. Law // Proceedings of the Combustion Institute. 2005. Vol. 30. Is. 1. pp. 1333–1341.
- 112. Luca, L.D. Combustion mechanism of a RDX-based composite propellant /
 L.D. Luca, F. Cozzi, G. Germiniasi and el. al // Combustion and Flame. 1999.
 Vol. 118. pp. 248 261.
- 113. Malcom, W.C.Jr. NIST-JANAF Thermochemical Tables Fourth Edition / W.C.Jr. Malcom / Journal of Physical and Chemical Reference Data. 1998. 1951 p.
- 114. Menter, F.R. Two-equation eddy-viscosity turbulent models for engineering applications / F.R. Menter // AIAA Journal. 1994. Vol. 32. No. 8. pp. 1598–1605.
- 115. Miller, R.R. A framework for a totally statistical composite propellant combustion model / R.R. Miller // 19th JANNAF Combustion Meeting. 1982. CPIA #366. pp. 81–92.
- 116. Narahari, H.K. A model of combustion monopropellants (AP) with complex gas phase kinetics / H.K. Narahari, H.S. Mukunda, V.K. Jain // 12th Symposium (International) on Combustion. 1984. pp. 2073–2082.
- 117. Ninan, K.N. Thermal decomposition kinetics of polybutadiene binders / K.N. Ninan, K. Krishnan // Journal of Spacecraft and Rocket. 1982. Vol. 19. No. 1. pp. 92–94.
- 118. Peters, N. Reduced kinetic mechanisms for applications in combustion system, volume 15 of Lecture Note in Physics / N. Peters, B. Rogg // New York: Springer. 1993. 361 p.
- 119. Powling, J. Measurement of the burning surface temperatures of propellant composition by infra-red emission / J. Powling, W.A.W. Smith // Combustion and Flame. 1962. Vol. 6. pp. 173–181.
- 120. Powling, J. The surface temperature of burning ammonium perchlorate / J. Powling, W.A.W. Smith // Combustion and Flame. 1963. Vol. 7. pp. 269–275.
- 121. Sarner, S.F. Propellant Chemistry / S.F. Sarner // New York: Reinhold Publishing Corporation. 1966. 417 pp.

- 122. Selzer, H. The temperature profile beneath the burning surface of a composite ammonium perchlorate propellant / H. Selzer // Symposium (International) on Combustion. 1967. Vol. 11. Is. 1. pp. 439–446.
- 123. Smith, J.M. Chemical engineering kinetics / J.M. Smith // New York: McGraw-Hill Book company. 1981. 676 p.
- 124. Smyth, D.A. Modeling solid propellant ignition events: Ph. D. Dissertation. Department of Chemical Engineering, Brigham Young University, Provo, UT. 2011. 202 p.
- 125. Spalding, D.B. Combustion and mass transfer / D.B. Spalding // New York: Elsevier. 1979. 418 p.
- 126. Sung, H.G. Unified analysis of internal flowfield in an integrated rocket ramjet engine. I: Transition from rocket booster to ramjet sustainer / H.G. Sung, V. Yang // Journal of Aerospace Engineering. 2014. Vol. 27. pp. 390–397.
- 127. Sung, H.G. Unified analysis of internal flowfield in an integrated rocket ramjet engine. II: Ramjet sustainer / H.G. Sung, V. Yang // Journal of Aerospace Engineering. 2014. Vol. 27. pp. 398–403.
- 128. Tanner, M.W. Multidimensional modeling of solid propellant burning rates and aluminum agglomeration and one-dimensional modeling of RDX/GAP and AP/HTPB: Ph. D. Dissertation. Department of Chemical Engineering, Brigham Young University, Provo, UT. 2008. 244 p.
- 129. Thakre, P. Chemical erosion of refractory-metal nozzle insert in solid-propellant rocket motors / P. Thakre, P. Yang // Journal of Propulsion and Power. 2009. Vol. 25. No. 1. pp. 40–50.
- 130. Thakre, P. Mechanical erosion of graphite nozzle in solid-propellant rocket motor / P. Thakre, R. Rawat, R. Clayton // Journal of Propulsion and Power. 2013. Vol. 29. No. 3. pp. 593–601.
- 131. Thakre, P. Mitigation of graphite nozzle erosion by boundary-layer control in solid rocket motors / P. Thakre, V. Yang // Journal of Propulsion and Power. 2009. Vol. 25. No. 5. pp. 1079–1085.

- 132. Thakre, P. Modeling of ammonium dinitramide (AND) monopropellant combustion with coupled condensed and gas phase kinetics / P. Thakre, Y. Duan, V. Yang // Combustion and Flame. 2014. Vol. 161. pp.347–362.
- 133. Timnat, I. Advanced chemical rocket propulsion / I. Timnat // London: Academic press. 1987. 286 p.
- 134. Warnats, J. Combustion. Physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation / J. Warnats, U. Maas, R.W. Dibble / New York: Springer Science & Business Media. 2006. 378 p.
- 135. Zhu, R.S. Ab initio studies of ClOx reactions. VII. Isomers of Cl2O3 and their roles in the ClO + OClO reaction / R.S. Zhu, M.C. Lin // The Journal of Chemical Physics. 2003. Vol. 118. pp. 8645–8655.

УТВЕРЖДАЮ

Проректор по научной и Инновационной деятельности КНИТУ-КАИ Д.т.н., доцент В.М. Бабушкин 16.10 2024 г.

AKT

О внедрении результатов диссертационной работы

Шайдуллина Руслана Айратовича

в научно-исследовательский процесс
федерального государственного бюджетного образовательного
учреждения высшего образования «Казанский национальный
исследовательский технический университет им. А.Н. Туполева – КАИ»

Настоящим подтверждаю, что за период выполнения диссертационной работы Шайдуллина Р.А. в научно-исследовательский процесс КНИТУ-КАИ внедрены следующие результаты:

- методика расчета теплового баланса на поверхности аблирующего ТЗП дозвукового участка сопла и камеры сгорания, используемая при выполнении курсовых проектов и выпускных квалификационных работ с развитой научно-исследовательской частью;
- кинетический механизм для моделирования пламенных реакций перхлората аммония, используемый при выполнении курсовых проектов и выпускных квалификационных работ с развитой научно-исследовательской частью.

Директор Института авиации, наземного транспорта и энергетики к.т.н., доцент Allaf

А.Ф. Магсумова

Приложение Б Кинетический механизм М.Л. Гросса.

No	Реакция	A	b	E_a	$Q_{ m peak}$, кДж/моль
1	$HClO_4 = ClO_3 + OH$	1,00.1014	0	39100	-224,8
2	$HClO_4+HNO = ClO_3+NO+H_2O$	3,00.1013	0	6000	65,32
3	$HClO_4+HCO = ClO_3+CO+H_2O$	5,00.1013	0	0	210
4	$HClO_4+HCO = ClO_2+CO_2+H_2O$	1,50.1012	0	0	573,8
5	$ClO_3 = ClO + O_2$	1,70.1013	0,5	0	63,18
6	$Cl_2+O_2+M = ClO_2+Cl+M$	6,00.1008	0	11200	-225,8
7	$ClO+NO = Cl+NO_2$	$6,78 \cdot 10^{12}$	0	311	58,07
8	$CIOH+CIO = Cl_2+HO_2$	1,00.1011	0	10000	37,27
9	$CIOH+OH = CIO+H_2O$	$1,80 \cdot 10^{13}$	0	0	84,18
10	$HCl+OH = Cl+H_2O$	5,00.1011	0	750	67,17
11	$Cl_2+H = HCl+Cl$	8,40·10 ¹³	0	1150	189
12	$NH_3+ClO = NH_2+ClOH$	6,00.1011	0,5	6400	-39,69
13	$NH_3+Cl = NH_2+HCl$	4,50·10 ¹¹	0,5	100	-22,68
14	$NH_3+OH=NH_2+H_2O$	$5,00\cdot10^{07}$	1,6	955	44,49
15	$NH_2+O_2 = HNO+OH$	$3,00\cdot10^{09}$	0	0	51,82
16	$NH_2+NO = N_2+H_2O$	$6,20\cdot10^{15}$	-1,3	0	522,5
17	$NH_2+NO_2 = H_2O+N_2O$	4,50·10 ¹¹	0	0	383.2
18	HNO+OH = NO+H2O	$1,30 \cdot 10^{07}$	1,9	-950	290,1
19	HNO+O1 = NO+H2O $HNO+O2 = NO2+OH$	$1,50\cdot 10$ $1,50\cdot 10^{13}$	0	10000	27,5
20		$4,50\cdot10^{11}$	0,7		227,3
21	$HNO+H = H_2+NO$	8,90.10		740	
	NO+H+M = HNO+M		-1,3		208,7
22	N ₂ +HO ₂ = HNO+NO	$2,70\cdot10^{10}$	0,5	41800	-179,4
23	$NO+HO_2 = NO_2+OH$	$2,11\cdot10^{12}$	0	480	28,67
24	$NO_2+H = NO+OH$	$3,47 \cdot 10^{14}$	0	1480	121,8
25	$H_2+OH=H_2O+H$	$2,16\cdot10^{12}$	1,50	3430	62,81
26	$C_2H_3+O_2 = CH_2O+HCO$	3,98·10 ¹²	0	-240	358,6
27	$C_2H_2+H(+M) = C_2H_3(+M)$	5,60·10 ¹²	0	2400	158,5
28	$C_2H_2+OH=CH_3+CO$	4,84.10-4	4	-2000	230,6
29	$H_2+CO(+M) \leftrightarrow CH_2O(+M)$	4,30·10 ⁰⁷	1,5	79600	5,402
30	$CH_4+Cl = CH_3+HCl$	2,50·10 ¹³	0	3830	-6,97
31	CH ₄ +ClO = CH ₃ +ClOH	6,00.1011	0,5	5700	-23,98
32	$CH_4+H=CH_3+H_2$	6,60.1008	1,6	10840	-2,612
33	$CH_4+OH=CH_3+H_2O$	$1,00\cdot10^{08}$	1,6	3120	60,2
34	$CH_3+H(+M)=CH_4(+M)$	1,27·10 ¹⁶	-0,6	383	438,6
35	HCO+M = CO+H+M	1,87·10 ¹⁷	-1	17000	63,96
36	$HCN+OH = NH_2+CO$	$1,62 \cdot 10^{02}$	2,6	9000	92,54
37	$CO+OH = CO_2+H$	4,76.1007	1,2	70	322
38	$CO+CIO = CO_2+CI$	3,00.1012	0	1000	283,9
39	$CO+ClO_2 = CO_2+ClO$	1,00.1010	0	0	265,4
40	$C_2H_4 + OH = H_2O + C_2H_3$	3,60.1006	2	2500	619,5
41	$C_4H_6+OH = 2C_2H_2+H_2+OH$	5,00.1012	0,7	1100	-307,2
42	$C_4H_6+ClO=2C_2H_2+ClOH+H$	5,00.1012	0,5	6400	-328,6
43	$C_4H_6+Cl=2C_2H_2+HCl+H$	$6,75 \cdot 10^{12}$	0,5	100	-310,7
44	$C_4H_6=2C_2H_3$	$2,50\cdot10^{13}$	0	100000	-426,2
45	$H+O_2 = O+OH$	$8,30\cdot10^{13}$	0	14413	-70,21
46	$C_2H_2+O=CH_2+CO$	$1,02 \cdot 10^{07}$	2	1900	199,5
47	$CH_2+H_2=CH_3+H$	5,00.1005	2	7230	23,32
48	$CH_2+H (+M) = CH_3 (+M)$	$2,50\cdot10^{16}$	-0,8	0	459,3
49	$CH_4+O=CH_3+OH$	$1,02 \cdot 10^{09}$	1,5	600	-10,38

Продолжение приложения Б

№	Reaction	A	b	E_a	$Q_{ m p}$, кДж/моль
50	$CH_3+O=CH_2O+H$	$8,43\cdot10^{13}$	0	0	292,8
51	$CH_2+O = H+HCO$	8,00.1013	0	0	374,7
52	$CH_3+O_2 = OH+CH_2O$	3,60·10 ¹⁰	0	8940	222,6
53	$OH+CH_3 = CH_2+H_2O$	5,60·10 ⁰⁷	1,6	5420	39,49
54	$OH+CH_2 = H+CH_2O$	$2,00\cdot10^{13}$	0	0	323,9
55	$CH_2+O_2 = OH+HCO$	$1,32 \cdot 10^{13}$	0	1500	304,5
56	$C_2H_4+O_2 = 2CO+2H_2$	1,80.1014	0	35500	273,5
57	$O_2+HNO = NO+HO_2$	$1,00 \cdot 10^{13}$	0	13000	-1,169
58	$NH_2+NO_2 = 2HNO$	$1,40 \cdot 10^{12}$	0	0	24,32
59	$NH_2+ClO = HNO+HCl$	$2,50 \cdot 10^{12}$	0	0	305,3
60	H+Cl+M=HCl+M	$5,30 \cdot 10^{21}$	-2	-2000	431,6
61	$C1+HO_2 = C1O+OH$	$2,47 \cdot 10^{13}$	0	894	-29,4
62	CIO+O = CI+O2	$6,60 \cdot 10^{13}$	0	440	250,1
63	HCl+H = H2+Cl	$7,94 \cdot 10^{12}$	0	3400	4,358
64	HCl+O = OH+Cl	$2,30\cdot10^{11}$	0,6	900	-3,406
65	$Cl_2+O=Cl+ClO$	$2,50^{\circ}10^{\circ}$ $2,51\cdot10^{12}$	0,0	2720	
66	$N_2O(+M) = N_2+O(+M)$	$6,20\cdot10^{14}$	0	56100	5,738 167,1
67	` ' '	$2,00\cdot10^{12}$	0		
	$N_2O+OH=N_2+HO_2$	$2,00\cdot10^{13}$ $2,90\cdot10^{13}$	0	21060	110,6
68	$N_2O+O=NO+NO$			23150	150,7
69	$N_2O+O=N_2+O_2$	1,40.1012	0	10810	331,3
70	$N_2O+H=N_2+OH$	4,40.1014	0	18880	261,1
71	$C_4H_6+H = C_2H_3+C_2H_2+H_2$	$2,30\cdot10^{12}$	0	20000	-148,7
72	$Cl+Cl+M = Cl_2+M$	3,34·10 ¹⁴	0	-1800	242,6
73	C1+CH2O = HCO+HCl	5,00.1013	0	500	54,2
74	$ClO+CH_3 = CH_2O+H+Cl$	3,33.1011	0,5	30	44,49
75	$ClO+CH_3 = CH_2O+HC1$	3,47·10 ¹⁸	-1,8	2070	476,1
76	$2H+M=H_2+M$	1,00.1018	-1	0	436
77	$2H+H_2=2H_2$	$9,00\cdot10^{16}$	-0,6	0	436
78	$2H+H_2O=H_2+H_2O$	$6,00\cdot10^{19}$	-1,3	0	436
79	$2H+CO_2 = H_2+CO_2$	$5,50\cdot10^{20}$	-2	0	436
80	$H+HCO = H_2+CO$	$7,34 \cdot 10^{13}$	0	0	372
81	$H+CH_2O = HCO+H_2$	$2,30\cdot10^{10}$	1,1	3275	58,56
82	$H+C_2H_3 = H_2+C_2H_2$	$3,00\cdot10^{13}$	0	0	277,5
83	$H+C_2H_4 = C_2H_3+H_2$	$1,33 \cdot 10^{06}$	2,5	12240	-15,82
84	$C_2H_4(+M) = H_2+C_2H_2(+M)$	$8,00\cdot10^{12}$	0,4	88770	-17,43
85	$ClO_2+NO = ClO+NO_2$	$1,00\cdot10^{11}$	0	0	39,58
86	$Cl+ClO_2 = ClO+ClO$	$5,00\cdot10^{13}$	0	6000	-18,49
87	$ClO+ClO = Cl_2+O_2$	$1,00\cdot10^{11}$	0	0	244,3
89	$Cl+HO_2 = HCl+O_2$	$1,80\cdot10^{13}$	0	0	224,1
90	$Cl+O_2+M = ClO_2+M$	8,00.1006	0	5200	16,75
91	$ClOH+O = HCl+O_2$	1,20.1014	0	0	267,1
92	$NO_2+O = NO+O_2$	$1,00\cdot10^{13}$	0	600	192
93	$HNO+HNO = H_2O+N_2O$	$3,95 \cdot 10^{12}$	0	5000	358,9
94	$NO_2+NO_2 = NO+NO+O_2$	$1,00 \cdot 10^{14}$	0	25000	-114,4
95	$Cl+N_2O = ClO+N_2$	1,20.1014	0	33500	81,19
96	$HClO_4+HNO = ClO_2+H_2O+NO_2$	$2,00\cdot10^{13}$	0	6000	203,3
97	$OH+OH=H_2O+O$	6,00.1008	1,3	0	70,57
98	$HNO+NH_2 = NH_3+NO$	5,00.1011	0,5	1000	245,6
99	$ClOH+HCl = CL_2+H_2O$	4,00.1012	0	10000	75,03
100	$HClO_4+NH_2 = ClO_2+H_2O+HNO$	$1,00 \cdot 10^{12}$	0	0	227,6
101	$HClO_4+NH_2 = ClOH+HNO+HO_2$	1,00.1011	0	0	154,4
102	$HClO_4+NO = ClO+HO_2+NO_2$	$1,00\cdot10^{13}$	0	10000	-75,84

Продолжение приложения Б

No॒	Reaction	A	b	E_a	$Q_{ m p}$, кДж/моль
103	$ClO_2+ClO_2 = ClO+ClO_3$	$1,80 \cdot 10^{13}$	0	18000	-98,42
104	ClO+HNO = HCl+NO ₂	$3,00\cdot10^{12}$	0	0	281
105	$HCl+HO_2 = ClO+H2O$	$3,00\cdot10^{12}$	0	0	37,774
106	$NH_2+NO = H+N_2+OH$	$6,30\cdot10^{19}$	-2,5	1900	23,72
107	$NH_2+OH = H_2O+NH$	$4,00\cdot10^{06}$	2	1000	114,7
108	$NH_2+NH_2=NH+NH_3$	$5,00\cdot10^{13}$	0	10000	-21,64
109	$NH+NO = N_2+OH$	$1,00\cdot10^{13}$	0	0	407,8
110	$NH+NO = H+N_2+O$	$2,30\cdot10^{13}$	0	0	-20,37
111	$ClO_2+NH=ClO+HNO$	$1,00\cdot 10^{14}$	0	0	239,3
112	$HClO_4+NH=ClO_2+HNO+OH$	$1,00\cdot10^{14}$	0	0	113
113	$N+NO_2 = NO+NO$	$1,00\cdot10^{14}$	0	0	325,1
114	$N+N_2O=N_2+NO$	$5,00\cdot10^{13}$	0	0	464,4
115	$NH+OH = H_2O+N$	$5,00\cdot10^{11}$	0,5	2000	164,7
116	$NH+OH = H_2+NO$	$1,60\cdot10^{12}$	0,6	1500	305,2
117	$NH+NH_2 = N+NH_3$	$1,00\cdot10^{13}$	0	2000	120,2
118	$NH+NH_2 = H+N_2H_2$	$5,00\cdot10^{13}$	0	0	115,9
119	$NH_2 + NH_2 = H_2 + N_2H_2$	$5,00\cdot10^{11}$	0	0	167,8
120	$N_2H_2+NO=N_2O+NH_2$	$3,00\cdot10^{12}$	0	0	30,82
121	$ClOH+H = ClO+H_2$	$6,00\cdot10^{12}$	0	0	21,37
122	$HClO_4+NH=ClO_3+H_2O+N$	$1,00\cdot10^{14}$	0	11000	-60,09
123	$HO_2+CH_3=O_2+CH_4$	$1,00\cdot10^{12}$	0	0	231
124	$CH_2+CH_4=2CH_3$	$2,46\cdot10^{06}$	2	8270	20,71
125	$CH_3+HCO = CH_4+CO$	$2,65\cdot10^{13}$	0	0	374,6
126	$CH_3+CH_2O = HCO+CH_4$	$3,32 \cdot 10^{03}$	2,8	5860	61,17
127	$CH_3+C_2H_4 = C_2H_3+CH_4$	$2,27 \cdot 10^{05}$	2	9200	-13,21

Примечание – Единицы изменения: моль, см, с, К и кал.

Приложение В Редуцированный кинетический механизм реакций в пламени AP

No	Реакция	A	n	$E_{\rm a}$				
1	O+H ₂ O=2OH	2,97E+06	2,02	1,34E+04				
_	2O+M=O ₂ +M	6,17E+15	-0,5	0				
2	H ₂ O/12.0/							
3	H+O ₂ =O+OH	1,94E+14	0	1,64E+04				
	$H+O_2(+M)=HO_2(+M)$	4,52E+13	0	0				
	H ₂ O/12.0/							
4	LOW/6.7E19/-1,42E+00/0.0E0/							
	TROE/1.0E0/1,00E-90/1.0E90/							
_	OH+H+M=H ₂ O+M	2,21E+22	-2	0				
5	H ₂ O/12.0/							
6	HO ₂ +O=O ₂ +OH	1,75E+13	0	-3,97E+02				
7	HO ₂ +H=2OH	1,69E+14	0	8,74E+02				
8	$HO_2+OH=H_2O+O_2$	1,90E+16	-1	0				
9	N+O ₂ =NO+O	6,40E+09	1	6,28E+03				
10	N+OH=NO+H	3,80E+13	0	0				
11	N+HO ₂ =NO+OH	1,00E+13	0	2,00E+03				
12	N+NO=N ₂ +O	3,27E+12	0,3	0				
13	N+NO ₂ = ₂ NO	4,00E+12	0	0				
14	N+NO ₂ =N ₂ O+O	5,00E+12	0	0				
15	N+NO ₂ =N ₂ +O ₂	1,00E+12	0	0				
16	N+HNO=N ₂ O+H	5,00E+10	0,5	3,00E+03				
17	$N+N_2O=N_2+NO$	1,00E+13	0	1,99E+04				
18	NO+M=N+O+M	9,64E+14	0	1,48E+05				
10	$N_2/1.5/$							
	$NO+O(+M)=NO_2(+M)$	1,30E+15	-0,75	0				
19	LOW/4.72E24/-2,87E+00/1.551E3/							
	TROE/9.57E-1/1,00E-90/8.322E3/	TROE/9.57E-1/1,00E-90/8.322E3/						
	NO+H(+M)=HNO(+M)	1,52E+15	-0,41	0				
20	LOW/8.96E19/-1,32E+00/7.352E2/							
	TROE/8.2E-1/1,00E-90/1.0E90/							
	NO+OH(+M)=HONO(+M)	1,99E+12	-0,05	-7,21E+02				
21	H ₂ O/5.0/							
21	LOW/5.08E23/-2,51E+00/-6.756E1/							
	TROE/6.2E-1/1,00E-90/1.0E90/							
22	HO ₂ +NO=NO ₂ +OH	2,11E+12	0	-4,79E+02				
23	NO ₂ +O=O ₂ +NO	3,91E+12	0	-2,38E+02				
24	NO ₂ +H=NO+OH	1,32E+14	0	3,62E+02				
25	2NO ₂ =2NO+O ₂	1,63E+12	0	2,61E+04				
26	NH ₂ +O ₂ =HNO+OH	1,78E+12	0	1,49E+04				
27	NH ₂ +O=HNO+H	6,63E+14	-0,5	0				
28	NH ₂ +N=N ₂ +2H	7,20E+13	0	0				
29	NH ₂ +NO=NNH+OH	2,80E+13	-0,55	0				
30	$NH_2+NO=N_2+H_2O$	1,30E+16	-1,25	0				

Продолжение приложения В

No	Реакция		n	E_{a}		
31	NH ₂ +NO=N ₂ +H ₂ O	-2,80E+13	-0,55	0		
32	NH ₂ +NO ₂ =N ₂ O+H ₂ O	3,28E+18	-2,2	0		
33	NH ₃ +M=NH ₂ +H+M	2,20E+16	0	9,35E+04		
34	NH ₃ +O=NH ₂ +OH	9,40E+06	1,94	6,46E+03		
35	NH ₃ +OH=NH ₂ +H ₂ O	2,04E+06	2,04	5,66E+02		
36	NH ₂ +HO ₂ =NH ₃ +O ₂	1,00E+13	0	0		
37	NNH+M=N ₂ +H+M	1,00E+14	0	3,00E+03		
38	NNH+O=N ₂ O+H	1,00E+14	0	0		
39	NNH+OH=N ₂ +H ₂ O	5,00E+13	0	0		
40	NNH+NO=N ₂ +HNO	5,00E+13	0	0		
41	NNH+NH ₂ =N ₂ +NH ₃	5,00E+13	0	0		
42	HNO+O ₂ =NO+HO ₂	1,00E+13	0	2,50E+04		
43	HNO+O=OH+NO	1,81E+13	0	2,30E+04		
44	HNO+OH=H ₂ O+NO	1,00E+13	0	9,94E+02		
	HNO+NO=N ₂ O+OH	· ·		·		
45 46	HNO+NO=N ₂ O+OH HNO+NO ₂ =HONO+NO	2,00E+12 6,02E+11	0	2,60E+04 1,99E+03		
				· ·		
47	HNO+NH ₂ =NO+NH ₃	2,00E+13	0	1,00E+03		
48	2HNO=H ₂ O+N ₂ O	8,51E+08	0	3,08E+03		
49	HONO+O=OH+NO ₂	1,20E+13	0	5,96E+03		
50	HONO+OH=H ₂ O+NO ₂	1,26E+10	1	1,35E+02		
~ 1	N ₂ O(+M)=N ₂ +O(+M)	7,91E+10	0	5,60E+04		
51	H ₂ O/7.5/ NO/2.0/					
~	LOW/9.13E14/0,00E+00/5.769E4/	1.007.11		2 007 04		
52	N ₂ O+O=O ₂ +N ₂	1,00E+14	0	2,80E+04		
53	N ₂ O+O=2NO	1,00E+14	0	2,80E+04		
54	N ₂ O+H=N ₂ +OH	2,53E+10	0	4,55E+03		
55	N ₂ O+H=N ₂ +OH	2,23E+14	0	1,68E+04		
56	N ₂ O+OH=HO ₂ +N ₂	2,00E+12	0	4,00E+04		
57	H+2O ₂ =HO ₂ +O ₂	2,08E+19	-1,24	0		
58	H+HO ₂ =O+H ₂ O	3,97E+12	0	6,71E+02		
59	NNH=N ₂ +H	3,30E+08	0	0		
60	NNH+O ₂ =HO ₂ +N ₂	5,00E+12	0	0		
61	NNH+O=OH+N ₂	2,50E+13	0	0		
62	$H+O_2+H_2O=HO_2+H_2O$	1,13E+19	-0,76	0		
63	$H+O_2+N_2=HO_2+N_2$	2,60E+19	-1,24	0		
64	$N_2+M=2N+M$	3,71E+21	-1,6	2,25E+05		
65	$N_2O+H=N_2+OH$	2,53E+10	0	4,55E+03		
66	$N_2O+H=N_2+OH$	2,23E+14	0	1,68E+04		
67	$N_2O+NO=N_2+NO_2$	4,29E+13	0	4,71E+04		
68	$3NO=N_2O+NO_2$	1,07E+10	0	2,68E+04		
69	NNH=N ₂ +H	3,00E+08	0	0		
70	NH ₂ +NO ₂ =H ₂ NO+NO	6,56E+16	-1,5	2,68E+02		
71	H ₂ NO+H=NH ₂ +OH	5,00E+13	0	0		
72	H ₂ NO+M=HNO+H+M	1,69E+32	-5	6,23E+04		
73	H ₂ NO+NH ₂ =HNO+NH ₃	3,00E+12	0	1,00E+03		

Продолжение приложения В

74 75 76 77 78 79	H ₂ NO+NO=2HNO H ₂ NO+NO ₂ =HONO+HNO H ₂ NO+O=HNO+OH H ₂ NO+O=NH ₂ +O ₂	2,00E+07 6,00E+11 3,00E+07	2 0	1,30E+04			
76 77 78	H ₂ NO+O=HNO+OH H ₂ NO+O=NH ₂ +O ₂		0				
77 78	H ₂ NO+O=HNO+OH H ₂ NO+O=NH ₂ +O ₂			2,00E+03			
78	$H_2NO+O=NH_2+O_2$		2	2,00E+03			
		4,00E+13	0	0			
	HONO+H=HNO+OH	5,64E+10	0,9	4,97E+03			
	HONO+H=NO+H ₂ O	8,13E+06	1,9	3,85E+03			
80	2HONO=NO+NO ₂ +H ₂ O	9,69E+10	0	1,41E+04			
81	NH ₂ +HO ₂ =H ₂ NO+OH	2,50E+13	0	0			
82	NNH=N ₂ +H	1,00E+06	0	0			
83	NH ₃ +NO ₂ =NH ₂ +HONO	2,45E+11	0	2,51E+04			
84	H ₂ NO+OH=HNO+H ₂ O	2,00E+07	2	1,00E+03			
	HCLO ₄ (+M)=>OH+CLO ₃ (+M)	1,45E+17	0	5,27E+04			
85	LOW/2.04E54/-1,09E+01/5.8477E4			0,272.01			
86	OH+CLO ₃ =>HCLO ₄	1,17E+60	-15,3	1,10E+04			
87	OH+CLO ₃ =HO ₂ +CLO ₂	1,26E+14	0,09	3,58E+01			
88	OH+CLO=HO ₂ +CL	2,05E+11	0,3	-1,44E+03			
89	OH+CLO=HCL+O ₂	3,52E+05	1,67	-3,83E+03			
	$CLO_3(+M) => O + CLO_2(+M)$	1,50E+20	-1,1	3,65E+04			
90	LOW/3.76E25/-3,28E+00/2.7599E4/						
91	O+CLO ₂ =>CLO ₃	2,41E+25	-6,16	8,01E+02			
92	O+CLO ₂ =CLO+O ₂	5,23E+07	1,45	8,76E+02			
93	OH+CLO ₂ =>HO ₂ +CLO	7,35E+01	2,75	-3,34E+03			
94	OH+CLO ₂ =CLOH+O ₂	3,29E+04	2,07	-4,10E+03			
95	OH+CLO ₂ =HCLO ₃	3,01E+58	-22,36	1,95E+04			
	$OH+CLO_2(+M)=>HCLO_3(+M)$	1,95E+13	0,28	3,58E+01			
96	LOW/1.06E35/-8,42E+00/2.285E4/		0,20	5,5 02 1 01			
97	2CLO=CL ₂ +O ₂	6,56E+10	0,66	3,76E+03			
98	2CLO=CLO ₂ +CL	3,77E+13	0,01	5,75E+03			
99	HO ₂ +CLO=CLOH+O ₂	9,88E+13	-0,64	-2,13E+02			
100	HO ₂ +CLO=CLOH+O ₂	7,83E+03	2,37	5,11E+03			
101	HO ₂ +CLO=CLOH+O ₂	8,37E+02	2,26	-4,49E+02			
102	HO ₂ +CLO=>CLO ₂ +OH	1,34E+03	2,32	5,10E+03			
102	$O+CLO(+M)=>CLO_2(+M)$	2,61E+13	0,03	-8,55E+01			
103	LOW/3.12E27/-4,10E+00/8.345E2/						
104	$CLO_2(+M) = > CLO + O(+M)$	1,11E+16	-0,28	5,87E+04			
104	LOW/9.88E-24/1,10E+01/3.308E4/						
105	O+CLO=>CL+O ₂	2,48E+13	-0,06	-8,35E+01			
106	CLO+CLO ₃ =2CLO ₂	8,55E+05	2,11	5,70E+03			
107	CL+NH ₃ =NH ₂ +HCL	5,49E+05	2,47	1,44E+03			
108	CLO+NH ₃ =NH ₂ +CLOH	1,13E+00	3,85	8,63E+03			
109	CLO ₃ +NH ₃ =NH ₂ +HCLO ₃	8,19E+09	1,01	4,48E+03			
110	CLO+NH ₂ =HCL+HNO	2,83E+16	-1,08	2,56E+02			
111	CLO+NH ₂ =CL+H ₂ NO	1,02E+15	-0,62	4,77E+01			
112	$HCLO_3(+M) => CLO_2 + OH(+M)$	4,07E+21	-1,62	3,45E+04			
112	LOW/7.59E40/-7,60E+00/3.5245E4	4/	•	•			

Продолжение приложения В

No॒	Реакция	A	n	$E_{\rm a}$
113	H+HCLO ₄ =OH+HCLO ₃	2,00E+06	2,02	1,37E+04
114	CLO+NO=CL+NO ₂	3,12E+11	0,39	-7,61E+02
115	CLO ₂ +NH ₂ =CLOH+HNO	2,14E-01	2,98	-1,75E+03
116	CLO ₂ +NH ₂ =CLO+H ₂ NO	1,70E+03	2,55	-1,48E+03
117	CLO ₃ +NH ₂ =CLO ₂ +H ₂ NO	5,96E+15	-0,47	4,77E+01
118	$2NO=N_2+O_2$	1,30E+14	0	7,55E+04
119	NOCL+M=CL+NO+M	2,00E+17	0	3,77E+04
120	CL ₂ +NO=CL+NOCL	2,70E+12	0	1,99E+04
121	CLOH+HNO=H ₂ O+NOCL	3,00E+12	0	0
122	CLO+NOCL=CL ₂ +NO ₂	1,50E+12	0	0
123	OH+HCL=H ₂ O+CL	1,08E+12	0	4,77E+02
124	CL+HO ₂ =HCL+O ₂	1,08E+13	0	-3,40E+02
125	CLOH+O=HCL+O ₂	1,20E+14	0	0
126	CLOH+HCL=CL ₂ +H ₂ O	4,00E+12	0	1,00E+04
127	CL ₂ +H=HCL+CL	8,40E+13	0	1,15E+03
128	HCL+O=CL+OH	2,30E+11	0,64	9,00E+02

Примечание – Единицы изменения: моль, см, с, К и кал.