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Введение

В рамках диссертационной работы изучается динамика космического ап-

парата (КА) с солнечным парусом (СП), перемещающегося вдоль троса, концы

которого закреплены на двух тяжелых космических станциях, описывающих

одну круговую гелиоцентрическую орбиту.

Актуальность темы исследования. Задачи динамики орбитального

и относительного движения космической системы представляют значительный

практический интерес для планирования будущих миссий как в околоземном

пространстве, так и дальнем космосе. В настоящее время для реализации пе-

релетов в космической среде используются различные типы ракетных движи-

телей [1,2]. Кроме традиционных химических двигателей, требующих больших

затрат топливных ресурсов, существуют проекты альтернативных установок:

ядерных, электрических [3], плазменных и фотонных. Для обеспечения энерго-

независимых перелетов на КА можно установить СП, создающий тягу благода-

ря отражению фотонов солнечного излучения [4], при этом отсутствие рабочего

тела позволит увеличить полезную нагрузку за счет ликвидации топливного от-

сека.

Впервые идея полета с СП была сформирована в 1920-х годах российским

учёным Фридрихом Артуровичем Цандером [5] и получила развитие в много-

численных теоретических разработках, связанных с математическим моделиро-

ванием [6, 7], управлением [8–12] и стабилизацией [13–15] движений КА, также

проводились опыты по развертыванию СП [16], установленного на борту косми-

ческого судна. Успешные эксперименты по эксплуатации КА IKAROS [17, 18],

NanoSail-D [19], LightSail-2 [20, 21], проектирование Sunjammer [22] и исследо-

вания в области совершенствования технологий [23,24] доказали работоспособ-

ность и функциональную значимость СП для космических путешествий [25–27].

Анализ опубликованной научной литературы установил возможность примене-

ния СП для реализации межпланетных перелетов [28–32], для коррекции ор-
4
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бит [33–36], для стабилизации характерных движений КА, в частности, для

удержания их в окрестности неустойчивых точек либрации [37–39].

Обладая множеством преимуществ по сравнению с другими движителя-

ми, СП имеет некоторые недостатки. Например, с его помощью невозможно со-

здавать ускорение, направленное под тупым углом по отношению к солнечным

лучам, то есть без дополнительного ограничения СП не может способствовать

движению в сторону Солнца. Описанную проблему позволяет решить устрой-

ство, аналогичное килю морского парусного судна, организующее перемещение

«против солнечного ветра». В качестве такого приспособления достаточно ис-

пользовать трос, концы которого закреплены на космических объектах. Факти-

чески он реализует ограничение, называемое леерной связью [40–42], которую

можно рассматривать как одну из математических моделей космической тро-

совой системы [43,44].

Идею создания гибкой связи в космосе впервые предложил Константин

Эдуардович Циолковский в 1895-х годах [45]. Возникновению и детальной про-

работке концепции «космического лифта», состоящей из естественного небес-

ного тела, соединенного при помощи троса с рукотворным КА, человечество

обязано советскому инженеру Арцутанову Юрию Николаевичу, опубликовав-

шему в 1960-х годах журнальную заметку [46] на данную тематику. Постепен-

но мысль развивалась, появлялись разнообразные конструкции, основанные на

применении троса [43,44,47–49]. Условно космические тросовые системы на се-

годняшний день классифицируются по их основополагающим свойствам: «ста-

тические» служат для обеспечения устойчивого вертикального положения на

орбите, «динамические» необходимы для регулирования взаимного положения

и ориентации аппаратов, «электромагнитные» становятся источником электри-

ческой энергии и могут быть использованы для создания силы тяги [50]. Ранее

проводились многочисленные теоретические исследования, в которых решались

задачи развертывания тросов [51–55], разработки космического лифта [56–65],

устойчивости и стабилизации объектов на орбите [66–77], динамики тросовой

системы [41, 42, 78–81], управления движением космических тел [82–91], удале-
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ния космического мусора [40, 92], генерации электроэнергии [93–96], а также

были подготовлены для испытаний на практике проекты Союз, Трос, Вулкан,

TSS, CHARGE, SEDS, OEDIPUS и другие, доказывающие эффективность при-

менения тросовых систем в космическом пространстве. До настоящего момента

ни одна из проектируемых долговременных космических тросовых систем до-

статочно больших размеров так и не была развернута.

Кроме упомянутых тематических направлений научных исследований

существуют работы, комбинирующие тросовые системы с солнечными пару-

сами. В некоторых научных статьях изложен синергетический подход, где трос

используется для стабилизации или развертывания солнечных парусов, либо

для создания крупномасштабных космических структур [97]. На данный мо-

мент объединение этих отраслей еще не приобрело широкое распространение,

однако первые шаги в сторону организации движения были сделаны россий-

скими и китайскими учеными [11,12].

Цель работы заключается в исследовании динамики КА с СП, осу-

ществляющего движение вдоль леерной связи, а также в установлении возмож-

ности перемещения между станциями при достаточно простых законах управ-

ления ориентацией СП. Для достижения поставленной цели в диссертационной

работе решаются следующие задачи:

1) Описание математической модели движения механической системы,

состоящей из КА с СП, перемещающегося вдоль троса, соединяющего две тя-

желые космические станции.

2) Вычисление оптимального угла наклона СП, необходимого для созда-

ния максимального ускорения КА в каждой точке траектории.

3) Анализ динамики КА с СП в модельной задаче о движении вдоль

леерной связи между тяжелыми гелиоцентрическими станциями.

4) Вывод и доказательство необходимых и достаточных условий суще-

ствования движений с натянутым тросом между точками леерной связи.

5) Поиск всех пар точек на эллипсе, ограничивающем связное движение,

между которыми возможно перемещение с неизменно направленной нормалью
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к СП при нулевых начальной и конечной скоростях.

6) Построение алгоритмов исследования динамики полета КА вдоль ле-

ерной связи, предусматривающих перемещение с неизменно ориентированным

или корректируемым положением СП.

7) Разработка методик и программного комплекса, необходимых для вы-

числения и анализа основных динамических характеристик при движении меж-

ду двумя произвольными точками леерной связи.

Методы исследования. Для решения поставленных задач использова-

лись аналитические методы классической и небесной механики, а также числен-

ные методы решения обыкновенных дифференциальных уравнений, собствен-

ных и несобственных интегралов. При разработке алгоритмов для проведения

вычислительных экспериментов применялись современные системы компью-

терной математики.

Объектом исследования является система управления движением

космического аппарата (КА), оснащенного СП, принцип действия которого ос-

нован на передаче импульса отдельных фотонов солнечного радиационного из-

лучения, и способного перемещаться вдоль троса, концы которого закреплены

на тяжелых космических объектах, например, на больших исследовательских

или промышленных космических станциях.

Предметом исследования предполагается теоретический и

программно-математический аппарат, позволяющий осуществлять аналитиче-

ские и численные расчеты, определять основные динамические характеристики

перелета КА с СП по траектории, ограниченной леерной связью.

Достоверность результатов обеспечивается корректным использова-

нием методов классической и небесной механики, подтверждение полученных

теоретических результатов происходит путем сравнения численных и аналити-

ческих решений.

Научная новизна диссертационной работы состоит в следующем:

1) Предложен энергонезависимый способ перемещения КА с СП вдоль

троса между космическими объектами, двигающимися по одной гелиоцентри-
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ческой круговой орбите.

2) В рамках математической модели леерной связи выписаны уравнения

движения и неравенства, описывающие ограничения, возникающие при движе-

нии КА с СП.

3) Выведены условия нахождения на связи КА, доказана возможность

перемещения с натянутым тросом между двумя точками границы леерной связи

и найдено множество пар таких точек.

4) Описаны методы вычисления динамических характеристик перелета с

постоянным и корректируемым положением СП относительно солнечных лучей.

5) Разработаны алгоритмы для решения задач динамики относительного

движения КА с СП в рамках космической тросовой системы.

Теоретическая значимость. Найдены способы управления движени-

ем КА с СП, позволяющие совершать перемещение между произвольными точ-

ками за приемлимое с практической точки зрения время, равное нескольким

часам. Разработаны методики, реализующие такой вид перемещения при со-

хранении ориентации СП под неизменным углом к солнечным лучам или при

повороте СП до оптимального угла наклона, создающего максимальное ускоре-

ние в каждой точке траектории.

Практическая значимость. Разработаны алгоритмы управления дви-

жением КА при постоянно ориентированном и корректируемом положении СП

в зависимости от создания максимального ускорения в каждой точке траек-

тории. Создан программный комплекс для решения задач динамики относи-

тельного движения КА с неидеально отражающим СП в рамках космической

тросовой системы, обеспечивающий вычисление основных характеристик пе-

ремещения между двумя произвольными точками леерной связи. Результаты

позволят оценивать и проводить в дальнейшем проектирование транспортных

миссий КА с помощью СП и троса без затрат топливных ресурсов.

Апробация работы и публикации. Материалы диссертационной ра-

боты были представлены на научных семинарах и следующих конференциях:

1) XLVIII международная молодёжная научная конференция «Гагарин-
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ские чтения» (Москва, 2022) [98];

2) 21-я международная конференция «Авиация и космонавтика»

(Москва, 2022) [99];

3) XLVII академические чтения по космонавтике «Королевские чтения»

(Москва, 2023) [102];

4) 22-я международная конференция «Авиация и космонавтика»

(Москва, 2023) [100];

5) 036w международная научная конференция «Регулярная и хаотиче-

ская динамика» (Адлер, 2023) [104];

6) XLVIII академические чтения по космонавтике «Королевские чтения»

(Москва, 2024) [103];

7) 23-я международная конференция «Авиация и космонавтика»

(Москва, 2024) [101];

8) X международная научная конференция по механике «Поляховские

чтения» (Санкт Петербург, 2024) [105].

Результаты опубликованы в рецензируемых научных журналах из пе-

речня ВАК [106–110], в том числе две статьи [106,107] проиндексированы меж-

дународными базами данных Scopus и Web of Science. Разработано и зареги-

стрировано программно-математическое обеспечение «Программный комплекс

для решения задач динамики относительного движения космического аппа-

рата с солнечным парусом в рамках космической тросовой системы», свиде-

тельство о государственной регистрации программы для ЭВМ №2025683410 от

03.09.2025 [111].

Положения, выносимые на защиту:

1) Математическая модель движения механической системы, состоящей

из КА с СП, перемещающегося вдоль троса, соединяющего две тяжелые кос-

мические станции.

2) Способ вычисления оптимального угла наклона СП относительно сол-

нечных лучей, необходимый для создания максимального ускорения КА в каж-

дой точке траектории.



—10—

3) Анализ динамики КА с СП в модельной задаче о его движении вдоль

леерной связи между тяжелыми гелиоцентрическими станциями.

4) Необходимые и достаточные условия существования связного движе-

ния между точками леерной связи.

5) Описание множества пар точек эллипса, ограничивающего движение

КА в плоскости гелиоцентрической орбиты, между которыми возможно пере-

мещение с натянутым тросом и неизменно ориентированным СП при нулевых

начальной и конечной скоростях.

6) Алгоритмы исследования динамики полета КА вдоль леерной связи,

предусматривающие наиболее простой способ управления ориентацией СП и

коррекцию его положения в каждой точке траектории.

7) Примеры вычислений основных динамических характеристик переме-

щения между двумя произвольными точками с использованием соответствую-

щих методик и программного комплекса.

Личный вклад автора. Автором проведены теоретические исследова-

ния, вычислительные эксперименты и анализ полученных результатов, в про-

цессе которых найдены основные динамические характеристики движения КА

при различных законах управления СП, в том числе учитывалось ограничиваю-

щее воздействие троса, закрепленного на космических станциях. В качестве вы-

числительных мощностей были использованы системы компьютерной алгебры,

включающие две среды программирования Matlab [113] и Maple [112]. Публика-

ции научных статей подготовлены самостоятельно или при непосредственном

участии автора, в некоторых случаях для связности изложения описываются

также результаты, полученные совместно с А.В. Родниковым. Разработаны ме-

тодика и программно-математическое обеспечение для решения задач перелета

КА между произвольными точками леерной связи при неизменно ориентиро-

ванном и корректируемом положении СП, позволяющем совершать достаточно

быстрое перемещение.

Соответствие паспорту специальности. Результаты исследования

соответствуют следующим пунктам паспорта специальности 1.1.7 – «Теоретиче-



—11—

ская механика, динамика машин»: п. 5 «Управление движением, наблюдаемость

и идентификация механических систем», п. 9 «Небесная механика, астродина-

мика», п. 10 «Динамика летательных аппаратов и космических конструкций»,

п. 13 «Динамика систем, состоящих из абсолютно твердых и деформируемых

тел, в том числе машин, приборов и конструкций», п. 14 «Математическое и

компьютерное моделирование кинематики и динамики механических систем, в

том числе машин, приборов и их элементов при динамических, статических,

тепловых и других видах воздействий».

Структура и объём диссертации. Диссертация содержит введение,

три главы, заключение, список литературы и приложения. Общий объем работы

составляет 96 страниц, включая 29 рисунков и 6 таблиц.

В первой главе вводится математическая модель СП, учитывающая

как полное отражение, так и частичное поглощение солнечной радиации. Опре-

деляются понятия базовой и производной калибровочной характеристик, зави-

сящих от величины и проекции на касательную вектора силы солнечной ра-

диации. Вычисляется оптимальный угол наклона СП, позволяющий создавать

максимальное ускорение в каждой точке траектории. Приводится математиче-

ская модель космической тросовой системы, называемой леерной связью. В этом

случае ограничение, накладываемое на движение КА в пространстве, позволя-

ет осуществлять перелет только внутри и на границе некоторого эллипсоида

вращения с фокусами в точках закрепления троса. В частности, рассматрива-

ется перемещение в плоскости орбиты космических станций, когда трос при-

нимается идеальной односторонней леерной связью. Математическое описание

такого движения КА с СП определяется в виде условия нахождения на связи.

Предполагается, что время перелета между станциями достаточно мало, что-

бы можно было пренебречь неинерциальностью орбитальной системы отсчета с

началом в центре эллипса. Проводится анализ динамики КА и оцениваются си-

лы, действующие на механическую систему. Формулируется модельная задача,

предполагающая, что нормаль к СП, постоянно параллельна плоскости орбиты

станций, для которой записываются уравнения движения в общем виде, когда
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интегральное многообразие 𝑧 = 0. Обобщенные уравнения движения и теорема

об изменении кинетической энергии модифицируются с учетом особенностей

расположения СП, координат начальной и конечной точек перемещения.

Во второй главе рассматривается задача о движении КА с постоян-

но ориентированным СП вдоль троса, соединяющего две тяжелые космические

станции, вращающиеся по одной круговой гелиоцентрической орбите. Устанав-

ливается возможность осуществления маятниковых колебаний между точками

леерной связи при нулевых начальной и конечной скоростях. Выводятся и дока-

зываются необходимые и достаточные условия существования такого движения.

Анализируются диаграммы пар точек при различных эксцентриситетах эллип-

са, между которыми возможно перемещение. Разрабатывается алгоритм иссле-

дования динамики полета КА с постоянно ориентированным СП. Реализуется

перемещение между наиболее удаленными и произвольными точками леерной

связи при нулевых начальных и конечных скоростях. Оцениваются динамиче-

ские характеристики. Для реальных КА вычисляются предполагаемая длина

нити, продолжительность перелета, максимальные относительная скорость и

натяжение троса.

Во третьей главе решается задача о движении КА с управляемым СП

вдоль леерной связи. Оптимальный угол наклона нормали СП к направлению

солнечных лучей, найденный в главе 1, используется для создания максималь-

но возможного ускорения в каждой точке траектории. Как и в предыдущем

случае, трос связывает две тяжелые гелиоцентрические космические станции

и КА, однако коррекция положения СП позволяет осуществлять более быст-

рый перелет. Излагается методика вычисления динамических характеристик

при изменении ориентации СП в процессе движения при нулевых начальных

и конечных скоростях. Для того, чтобы конечная скорость оказалась нулевой,

определяется точка переключения ускорения, которая делит путь на участки

разгона и торможения. Записывается теорема об изменении кинетической энер-

гии на каждом из этих участков, откуда удается установить координаты точки

переключения и продолжительность перемещения. Разрабатывается алгоритм
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исследования динамики полета КА с управляемым СП, предполагающим из-

менение положения в зависимости от максимально создаваемого ускорения.

Рассматривается перемещение между наиболее удаленными точками леерной

связи только при нулевой начальной скорости, а также при нулевых начальной

и конечной скоростях. Изучается перемещение между произвольными точка-

ми леерной связи при нулевых начальной и конечной скоростях. Оцениваются

динамические характеристики и сравниваются с предыдщим способом пере-

движения. Для реальных КА вычисляются те же размерные величины: время

перелета, максимальные относительная скорость и натяжение троса.

В заключении приведены основные научные результаты, полученные

автором работы и перспективы их развития.



Глава 1. Постановка модельной задачи о движении

космического аппарата с солнечным пару-

сом вдоль леерной связи

Целью данной главы является построение математических моделей эле-

ментов механической системы, состоящей из КА с СП, перемещающегося вдоль

троса, закрепленного на космических станциях, вращающихся по одной круго-

вой гелиоцентрической орбите. Для решения поставленной задачи проводится

анализ сил, влияющих на относительное движение КА. Записываются основные

уравнения, характеризующие динамику системы, а также интеграл энергии при

различных начальных условиях.

В разделе 1.1. описана математическая модель СП, предполагающая как

полное отражение, так и частичное поглощение солнечной радиации. Для ис-

следования возможностей управления КА вычислен оптимальный угол наклона

нормали СП к направлению солнечных лучей, позволяющий создавать макси-

мально возможное относительное касательное ускорение КА в каждой точке

траектории. В разделе 1.2. введено понятие базовой калибровочной характе-

ристики, определяющей величину силы солнечной радиации, которую спосо-

бен создавать поток солнечной энергии при воздействии на СП в зависимости

от угла между его нормалью и направлением солнечных лучей. В разделе 1.3.

предложено понятие производной калибровочной характеристики, отражающей

возможности СП создавать ускорение при движении по заданной траектории.

Эта характеристика зависит от угла между касательной к траектории и силой

солнечной радиации, а также от базовой калибровочной характеристики. В раз-

деле 1.4. представлена математическая модель космической тросовой системы,

включающей леерную связь. В разделе 1.5. выведено условие нахождения на

связи. В разделе 1.6. осуществлен анализ сил, определяющих динамику КА.

Выявлено, что в основном на движение оказывает воздействие только солнеч-

ная радиация, а натяжение троса преимущественно зависит от центростреми-

14
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тельного ускорения. В разделе 1.7. поставлена модельная задача описания дви-

жения КА с СП вдоль леерной связи. В разделе 1.8. выведены общие уравнения

движения и интеграл энергии при различных начальных условиях. В разделе

1.9. сформулированы выводы по главе 1.

1.1. Математическая модель солнечного паруса

Концепция СП предполагает передачу импульса фотонов поверхности,

поглощающей или отталкивающей частицы. Подобный принцип действия осно-

ван на эффекте Лебедева, преобразующем силу солнечной радиации в движу-

щую силу [113], то есть под воздействием солнечного давления КА с СП может

совершать перемещение. Пусть поглощаемый фотон передает импульс как при

абсолютно неупругом, а отражаемый – как при абсолютно упругом ударе.

Оптические и динамические характеристики СП определяются некото-

рым коэффициентом, равным отношению количества отраженных фотонов к

количеству всех фотонов. Если коэффициент отражения равен единице, то СП

называется идеальным, а его поверхность – идеальным зеркалом. Такому СП

соответствуют максимально возможные величины силы солнечного давления

и наилучшие показатели управляемости, однако его невозможно изготовить из

существующих материалов.

Рассматриваемая модель СП, проиллюстрированная на рис. 1.1, выгля-

дит следующим образом

F = 𝑃𝑆
𝑅2

0

𝑅2

(︂
𝑘(n, e𝑥)

2n+
1− 𝑘

2
(n, e𝑥)e𝑥

)︂
, (1.1)

где 𝑃 – характерная величина солнечного давления на расстоянии

𝑅0 от Солнца, 𝑆 – площадь СП, 𝑅 – актуальное расстояние до Солнца,

𝑘 – коэффициент отражения СП, n = (𝑛𝑥, 𝑛𝑦, 𝑛𝑧)
T – нормаль СП в единичном

базисе e = (𝑒𝑥, 𝑒𝑦, 𝑒𝑧)
T системы координат 𝑂𝑥𝑦𝑧. 𝑂𝑥 сонаправлена с линией дей-

ствия солнечных лучей, 𝑂𝑦 соответствует направлению движения космических

станций 𝐹1 и 𝐹2 по круговой гелиоцентрической орбите, 𝑂𝑧 перпендикулярна

плоскости 𝑂𝑥𝑦 в связанной с КА системе координат 𝑂𝑥𝑦𝑧, где 𝑂 – середина

отрезка, соединяющего станции.
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Рисунок 1.1. Математическая модель СП

Принимая максимально возможное значение силы солнечной радиации

𝐹 , равным единице, можно переписать математическую модель (1.1) в безраз-

мерных переменных

F =
2

1 + 𝑘

(︂
𝑘𝑛2

𝑥n+
1− 𝑘

2
𝑛𝑥e𝑥

)︂
, (1.2)

где 0 ⩽ 𝑘 ⩽ 1.

Заметим, что идеальный СП, соответствующий коэффициенту отраже-

ния 𝑘 = 1, является частным случаем неидеальной модели (1.2).

Для упрощения вычислений будем использовать модель СП в безразмер-

ной форме, однако для обратного перехода к традиционным единицам измере-

ния применимо равенство

𝐹 * =
1 + 𝑘

2
𝑃𝑆

𝑅2
0

𝑅2
𝐹, (1.3)

где 𝑃 = 9 · 10−6 Н/м2 – характерная величина солнечного давления на

расстоянии 𝑅0 = 1 а.е., 𝑆 – площадь выбираемого СП (см. в таблице 1.1),

𝐹 * – размерная величина силы солнечной радиации.
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Таблица 1.1. Основные характеристики в реализованных и планировавшихся
миссиях КА c СП

Космический Площадь Масса КА
аппарат паруса 𝑆,м2 с парусом 𝑚, кг
IKAROS 200 320

NanoSail 10 4

LightSail-2 32 5

Sunjammer 1200 54

Helios 990 23

Одним из важнейших показателей, влияющим на силу солнечной ради-

ации, является угол наклона 𝛼 нормали СП n по отношению к направлению

солнечных лучей, отсчитываемый против часовой стрелки (рис. 1.2) и способ-

ный принимать значения −𝜋
2
⩽ 𝛼 ⩽ 𝜋

2
.

Рисунок 1.2. Угол наклона СП

Если в орбитальной системе отсчета задана траектория КА с СП, то

можно в каждой ее точке выбирать угол 𝛼 так, чтобы относительное касатель-

ное ускорение было максимально возможным. Пусть соответствующий угол 𝛼

называется оптимальным углом наклона 𝛼𝑜𝑝𝑡.

Прежде, чем выбирать 𝛼𝑜𝑝𝑡, необходимо определить, какие значения мо-

жет принимать 𝛼, чтобы перемещение КА с СП было возможно.
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Предположим, например, что КА движется по некоторому эллипсу, боль-

шая ось которого перпендикулярна местной вертикали. Если нормаль СП n

и радиус-вектор КА r заданы параметрически через угол нормали СП к на-

правлению солнечных лучей 𝛼, эксцентрическую аномалию 𝜓 и эксцентриситет

эллипса 𝑒, что более подробно будет описано в разделе 1.5, в виде

n = (𝑛𝑥, 𝑛𝑦)
T = (cos𝛼, sin𝛼)T , (1.4)

r = (𝑥, 𝑦)T =
(︁√

1− 𝑒2 sin𝜓, cos𝜓
)︁T

,

то координаты и длину вектора скорости КА можно записать как

v = (𝑣𝑥, 𝑣𝑦)
T =

(︁√
1− 𝑒2𝜓̇ cos𝜓,−𝜓̇ sin𝜓

)︁T
𝑣 = |𝜓̇|

√︀
1− 𝑒2 cos2 𝜓,

тогда единичный вектор касательной к траектории, направленный в сто-

рону возрастания 𝜓, определяется следующим образом

𝜏 =
1√︀

1− 𝑒2 cos2 𝜓

(︁√
1− 𝑒2 cos𝜓,− sin𝜓

)︁T
.

Рисунок 1.3. Проекция силы солнечной радиации на касательную

Проекция силы солнечной радиации на касательную 𝐹𝜏 в некоторой точ-

ке траектории показана на рис. 1.3. В общем виде для неидеального СП проек-

ция этой силы будет выглядеть как

𝐹𝜏 =
2

1 + 𝑘

(︃(︀
𝑘 cos3 𝛼 + 1−𝑘

2
cos𝛼

)︀√
1− 𝑒2 cos𝜓 − 𝑘 cos2 𝛼 sin𝛼 sin𝜓

1− 𝑒2 cos2 𝜓

)︃
. (1.5)
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Поскольку оптимальный угол наклона 𝛼𝑜𝑝𝑡 достигается при максималь-

ном значении проекции силы солнечной радиации на касательную, имеет смысл

воспользоваться необходимым условием существования экстремума функции.

Если угол наклона СП соответствует локальному экстремуму функции 𝐹𝜏 , то

частная производная по переменной 𝛼 равна нулю, то есть

𝜕𝐹𝜏
𝜕𝛼

= 0.

В результате некоторых алгебраических преобразований равенство мо-

жет быть представлено как кубическое уравнение относительно tg𝛼, содержа-

щее взаимосвязанные углы 𝛼 и 𝜓,

tg3 𝛼− 4𝑘

1− 𝑘
· tg𝜓√

1− 𝑒2
tg2 𝛼 +

5𝑘 + 1

1− 𝑘
tg𝛼 +

2𝑘

1− 𝑘
· tg𝜓√

1− 𝑒2
= 0, (1.6)

коэффициенты которого содержат 𝑘 и 𝜓.

Отметим, что в точках при 𝜓 = 0 и 𝜓 = 𝜋
2
уравнение (1.6) решается очень

просто, поэтому можно установить соответствующие значение оптимального

угла наклона СП

при 𝜓 = 0, 𝛼𝑜𝑝𝑡 = 0,

при 𝜓 =
𝜋

2
, 𝛼𝑜𝑝𝑡 = ± arctg

1√
2
.

Если КА движется в сторону возрастания 𝜓, то разгон осуществляется

только при 𝐹𝜏 > 0, что возможно не при всех значениях эксцентрической анома-

лии. Если 𝐹𝜏 = 0, то проекцию силы солнечной радиации (1.5) можно привести

к равенству

tg2 𝛼− 2𝑘

1− 𝑘

tg𝜓√
1− 𝑒2

tg𝛼 +
2𝑘

1− 𝑘
+ 1 = 0.

После умножения этого равенства на tg𝛼, являющийся корнем кубиче-

ского уравнения, и вычитания результата из (1.6), получится соотношение, рас-

скрывающее связь между углами 𝛼 и 𝜓

tg𝜓√
1− 𝑒2

= − 2 tg𝛼

1− tg2 𝛼
. (1.7)

Используя соотношение (1.7), можно исключить tg𝜓 и превратить куби-

ческое уравнение (1.6), зависящее от угол наклона СП 𝛼, в биквадратное

tg4 𝛼− 2𝑘

𝑘 − 1
tg2 𝛼 +

𝑘 + 1

𝑘 − 1
= 0. (1.8)
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При движении в сторону увеличения 𝜓 КА может разгоняться только,

когда 𝛼 ⩽ 0, поэтому

tg𝛼 = −
√︂

1 + 𝑘

1− 𝑘
.

Как следует из соотношение (1.7),

tg𝜓 = −
√
1− 𝑒2

√
1− 𝑘2

𝑘
.

Чтобы обеспечить максимально возможное касательное ускорение КА,

для определения 𝛼𝑜𝑝𝑡 нужно выбирать корень кубического уравнения (1.6), при-

надлежащий

при 0 ⩽ 𝜓 ⩽ 𝜋 − arctg

√
1− 𝑘2

√
1− 𝑒2

𝑘
, − arctg

√︂
1 + 𝑘

1− 𝑘
⩽ 𝛼𝑜𝑝𝑡 ⩽ 0,

при 𝜋 − arctg

√
1− 𝑘2

√
1− 𝑒2

𝑘
⩽ 𝜓 ⩽ 𝜋, 𝛼𝑜𝑝𝑡 =

𝜋

2
.

При достаточно больших значениях эксцентрической аномалии 𝜓 угол

𝛼𝑜𝑝𝑡 является постоянным, поскольку нужно направлять СП таким образом,

чтобы ускорение не было отрицательным.

Если СП является идеальным, вычисление оптимального угла наклона

𝛼𝑜𝑝𝑡, позволяющего создавать максимальное относительное касательное ускоре-

ние, существенно упрощается.

Проекция силы солнечной радиации в этом случае записывается анало-

гично (1.5)

𝐹𝜏 =

√
1− 𝑒2 cos𝜓 cos3 𝛼− sin𝜓 sin𝜓 sin𝛼 cos2 𝛼√︀

1− 𝑒2 cos2 𝜓
. (1.9)

При коэффициенте отражения 𝑘 = 1 кубическое уравнение (1.6) преоб-

разуется в квадратное

tg2 𝛼− 3
√
1− 𝑒2 ctg𝜓

2
tg𝛼− 1

2
= 0, (1.10)

один из корней которого соответствует углу 𝛼𝑜𝑝𝑡, обеспечивающему наи-

более оптимальную ориентацию идеального СП, зависящую от эксцентрической
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аномалии

при 𝜓 = 0, 𝛼𝑜𝑝𝑡 = 0,

при 0 < 𝜓 < 𝜋, 𝛼𝑜𝑝𝑡 = arctg
3
√
1− 𝑒2 cos𝜓 −

√︀
9(1− 𝑒2) cos2 𝜓 + 8 sin2 𝜓

4 sin𝜓
,

при 𝜓 = 𝜋, 𝛼𝑜𝑝𝑡 = −𝜋
2
.

Максимальное значение проекции силы солнечной радиации будет поло-

жительным как при движении «от Солнца», когда 0 ⩽ 𝜓 ⩽ 𝜋
2
, так и при дви-

жении «к Солнцу», когда 𝜋
2
⩽ 𝜓 < 𝜋, то есть трос выполняет ту же функцию,

что и киль морского парусного судна.

Замечание 1.1. При неизменно направленном СП, расположенном
перпендикулярно солнечным лучам, угол наклона остается постоянным и при-
нимает значение 𝛼 = 0.

1.2. Базовая калибровочная характеристика

Для удобства проведения вычислений введем понятие базовой калибро-

вочной характеристики 𝐹 (𝛾), которая определяет зависимость величины силы

солнечной радиации 𝐹 от угла 0 ⩽ 𝛾 ⩽ 𝛾𝑚𝑎𝑥 между вектором этой силы и

направлением солнечных лучей (рис. 1.4).

Рисунок 1.4. К понятию базовой калибровочной характеристики

Физический смысл 1.1. Базовая калибровочная характеристика по-
казывает, какую силу может создавать поток солнечной радиации при воздей-
ствии на СП.
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Определение 1.1. Базовой калибровочной характеристикой называет-
ся зависимость величины силы солнечной радиации от угла, который эта сила
составляет с направлением солнечных лучей.

Основные свойства базовой калибровочной характеристики 𝐹 = 𝐹 (𝛾):

1. Угол 𝛾 между вектором силы солнечной радиации и направлением

солнечных лучей ограничен значениями 0 ⩽ 𝛾 ⩽ 𝛾𝑚𝑎𝑥, где 𝛾𝑚𝑎𝑥 ⩽ 𝜋
2
.

Замечание 1.2. Для неидеального СП, определяемого моделью (1.2),
максимальное значение угла 𝛾𝑚𝑎𝑥 = arcsin 𝑘, а для идеального СП 𝛾𝑚𝑎𝑥 =

𝜋
2
.

2. Максимальная сила солнечной радиации max
𝛾

𝐹 = 𝐹 (0).

Замечание 1.3. В рассматриваемых моделях соотношение оправдыва-
ется тем, что проекция силы солнечной радиации на направление, перпендику-
лярное солнечным лучам, максимальна, если нормаль к СП параллельна сол-
нечным лучам.

3. В частном случае, когда СП считается идеальным, базовая калибро-

вочная характеристика может быть найдена по формуле 𝐹 (𝛾) = cos2 𝛾.

4. В безразмерных единицах измерения максимальная сила солнечной

радиации, выраженная через базовую калибровочную характеристику 𝐹 (0) = 1.

Как было указано выше, для неидеального СП, учитывающего частич-

ное поглощение фотонов, максимальный угол, при котором определена базовая

калибровочная характеристика, равен 𝛾𝑚𝑎𝑥 = arcsin 𝑘, где 𝑘 – коэффициент

отражения материла. Для дальнейших вычислений удобно выразить силу сол-

нечной радиации как через угол наклона СП 𝛼, так и через угол 𝛾 между этой

силой и линией действия солнечных лучей. Для проекций силы солнечной ра-

диации F на оси 𝑂𝑥 и 𝑂𝑦 справедливо равенство

F = (𝐹𝑥, 𝐹𝑦)
T = (𝐹 cos 𝛾, 𝐹 sin 𝛾)T,

откуда с учетом соотношений (1.2),(1.4), можно вывести зависимость

ctg 𝛾 − ctg𝛼 =
1− 𝑘

𝑘 sin 2𝛼
,
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которая перепишется в виде

sin (2𝛼− 𝛾) =
sin 𝛾

𝑘
.

После проведения некоторых преобразований из зависимостей можно по-

лучить явные выражения для 𝛼 и 𝛾

𝛾 = arcctg

(︂
1− 𝑘 cos 2𝛼

𝑘 sin 2𝛼

)︂
(1.11)

и

𝛼 =

⎧⎪⎪⎨⎪⎪⎩
1

2
arcsin

(︂
sin 𝛾

𝑘

)︂
+
𝛾

2
,

𝜋

2
− 1

2
arcsin

(︂
sin 𝛾

𝑘

)︂
+
𝛾

2
.

(1.12)

Наибольшей величине силы солнечной радиации соответствует первое

значение из выражения (1.12), ограниченное отрезком 0 ⩽ 𝛼 ⩽ 𝜋
2
, так что для

перемещения необходимо выбирать

𝛼𝑚𝑎𝑥 =
1

2
arcsin

(︂
sin 𝛾

𝑘

)︂
+
𝛾

2
.

Используя тригонометрические формулы и считая 𝛾 > 0, можно также

вывести, что

cos 2𝛼 =

√︂
1− sin2 𝛾

𝑘2
cos 𝛾 − sin2 𝛾

𝑘2
.

С учетом предположений (1.11) и (1.12) для основной модели СП вычис-

ляется итоговое значение силы солнечной радиации, выраженное через углы 𝛼

и 𝛾 по формуле

𝐹 (𝛾) =
√︀
𝐹𝑥 + 𝐹𝑦 =

1

(1 + 𝑘)
√
𝑘

√︃
𝐿

(︂
𝐿+

1

2
(1− 𝑘)2

)︂
, (1.13)

где

𝐿 = 𝑘 +

√︁
𝑘2 − sin2 𝛾 cos 𝛾 − sin2 𝛾 = 2𝑘 cos2 𝛼.

1.3. Производная калибровочная характеристика

Если движение КА с СП ограничено некоторой связью, то для описа-

ния действующих на систему сил может быть полезна производная калибро-

вочная характеристика 𝐹𝜏 (𝛿), представляющая собой зависимость максимума
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проекции силы солнечной радиации, записанной через базовую калибровочную

характеристику 𝐹 (𝛾), на касательную к траектории, от угла 0 ⩽ 𝛿 ⩽ 𝛿𝑚𝑎𝑥, опре-

деляющего наклон этой касательной к направлению солнечных лучей (рис. 1.5).

Рисунок 1.5. К понятию производной калибровочной характеристики

Физический смысл 1.2. Производная калибровочная характеристи-
ка определяет возможности СП для создания ускорения при движении вдоль
заданной траектории.

Замечание 1.4. Рассматривается ситуация, когда траектория относи-
тельного движения КА задана наложенными связами, например леерной свя-
зью.

Определение 1.2. Производной калибровочной характеристикой на-
зывается зависимость максимума проекции силы солнечной радиации на за-
данное направление от угла между этим направлением и линией действия сол-
нечных лучей.

Согласно определению производной калибровочной характеристики мак-

симальную проекцию силы солнечной радиации на касательную к траектории

можно найти по формуле

𝐹𝜏 (𝛿) =

⎧⎪⎨⎪⎩
max
𝛾

(𝐹 (𝛾) cos(𝛿 − 𝛾)) , 0 ⩽ 𝛿 ⩽ 𝛿𝑚𝑎𝑥,

0, 𝛿𝑚𝑎𝑥 < 𝛿 < 𝜋,

(1.14)

где 0 ⩽ 𝛾 ⩽ 𝛾𝑚𝑎𝑥 – угол между вектором силы солнечной радиации 𝐹 (𝛾)

и направлением солнечных лучей, 𝛿𝑚𝑎𝑥 = 𝜋
2
+𝛾𝑚𝑎𝑥 – максимальный угол между
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касательной к траектории и направлением солнечных лучей, при превышении

которого проекция 𝐹𝜏 не может быть положительной.

Основные свойства производной калибровочнной характеристики 𝐹𝜏 = 𝐹𝜏 (𝛿):

1. Угол между касательной к траектории и направлением солнечных лу-

чей при положитнльном 𝐹𝜏 ограничен значениями 0 ⩽ 𝛿 ⩽ 𝛿𝑚𝑎𝑥, где 𝛿𝑚𝑎𝑥 < 𝜋,

причем 𝛿𝑚𝑎𝑥 = 𝛾𝑚𝑎𝑥 +
𝜋
2
.

Замечание 1.5. Для неидеального СП максимальное значение угла вы-
бирается в зависимости от конкретных оптических характеристик как
𝛿𝑚𝑎𝑥 = 𝜋 − arccos 𝑘, для идеального СП 𝛿𝑚𝑎𝑥 = 𝜋.

2. Максимальная проекция силы солнечной радиации на касательную к
траектории max

𝛿
𝐹𝜏 = 𝐹𝜏 (0).

Замечание 1.6. По крайней мере такое соотношение выполняется в
рассматриваемых моделях.

3. Для гладкой выпуклой ситуации производная калибровочная характе-

ристика может быть вычислена по формуле

𝐹𝜏 (𝛿) =
𝐹 2(𝛾)√︀

𝐹 ′2(𝛾) + 𝐹 2(𝛾)
,

причем

𝛿 = arcctg
𝐹 ′(𝛾) tg 𝛾 + 𝐹 (𝛾)

𝐹 (𝛾) tg 𝛾 − 𝐹 ′(𝛾)
.

В частном случае, когда СП принимается идеальным,

𝐹𝜏 (𝛿) =
1

(1 + tg2 𝛾)
√︀
1 + 4 tg2 𝛾

,

где

tg 𝛾 =
−3 ctg 𝛿 ±

√︀
9 ctg2 𝛿 + 8

4
,

при этом выбирается наибольший корень, поскольку tg 𝛾 ⩾ 0.

Запись производной калибровочной характеристики в явном виде от угла

𝛿 будет выглядить следующим образом

𝐹𝜏 (𝛿) =
8
√
2

3
√
3

sin3 𝛿(︀
4− cos2 𝛿 − cos 𝛿

√
8 + cos2 𝛿

)︀√︀
2 + cos2 𝛿 − cos 𝛿

√
8 + cos2 𝛿

.
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4. СП может создавать любое ускорение в пределах 0 ⩽ 𝑟𝜏 ⩽ 𝐹𝜏 (𝛿).

5. В безразмерных единицах измерения максимальная проекция силы

солнечной радиации на касательную к траектории, выраженная через произ-

водную калибровочную характеристику 𝐹𝜏 (0) = 1.

На рис. 1.6 показаны графики зависимостей калибровочных характери-

стик, отмечены максимальные углы 𝛾𝑚𝑎𝑥 и 𝛿𝑚𝑎𝑥 между осью 𝑂𝑥 и соответству-

ющими прямыми. Базовая калибровочная хакрактеристика 𝐹 (𝛾) изображена

сплошной линией, а производная калибровочная характеристика 𝐹𝜏 (𝛿) обозна-

чена пунктиром.

Рисунок 1.6. Базовая и производная калибровочные характеристики для
a) неидеального и б) идеального СП

Замечание 1.7. При неидеальном СП график базовой калибровочной
характеристики одним концом лежит на оси 𝑂𝑥, а другим на луче, определя-
емом углом 𝛾𝑚𝑎𝑥. При идеальном СП график базовой калибровочной характе-
ристики одним концом также лежит на оси 𝑂𝑥, а другим совпадает с началом
координат 𝑂𝑥𝑦.

Замечание 1.8. Как при неидеальном, так и при идеальном СП график
производной калибровочной характеристики одним концом лежит на оси 𝑂𝑥, а
другим совпадает с началом координат 𝑂𝑥𝑦.
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1.4. Математическая модель леерной связи

Существуют различные виды тросовых систем, наиболее распространен-

ными считаются такие, где гибкая связь соединяет твердое тело и материаль-

ную точку. При этом встречаются конструкции, когда материальная точка спо-

собна передвигаться вдоль троса, концы которого закреплены на твердых те-

лах [57]. Невесомый, нерастяжимый и абсолютно гибкий трос, длина которого

превосходит расстояние между космическими объектами, в этом случае реали-

зует ограничение, называемое идеальной односторонней леерной связью.

В качестве примера можно рассматривать механическую систему, состо-

ящую из КА массы 𝑚, оснащенного СП площади 𝑆, способного передвигаться

вдоль троса длины 2𝑎 с концами, закрепленными в точках 𝐹1 и 𝐹2, находя-

щихся на расстоянии 2𝑐 друг от друга и принадлежащих соответственно двум

тяжелым космическим станциям, описывающим одну круговую гелиоцентриче-

скую орбиту. Будем предполагать, что влияние КА на движение станций незна-

чительно, то есть точки 𝐹1 и 𝐹2 неподвижны в орбитальной системе отсчета

𝑂𝑥𝑦. Постановка данной задачи возможна, если оснастить станции некоторы-

ми компенсирующими устройствами [11]. В этом случае движение КА будет

ограничено эллипсоидом вращения с фокусами 𝐹1 и 𝐹2, большой полуосью 𝑎 и

эксцентриситетом 𝑒.

Если прямая 𝐹1𝐹2 всегда перпендикулярна солнечным лучам, то для опи-

сания движения КА относительно станций будем использовать правую декар-

тову прямоугольную систему координат 𝑂𝑥𝑦𝑧, где 𝑂 – середина отрезка 𝐹1𝐹2.

𝑂𝑥 расположена аналогично распространению солнечных лучей, 𝑂𝑦 направле-

на по прямой 𝐹1𝐹2 в сторону движения космических станций, причем точка 𝐹1

имеет положительную координату по этой оси (рис. 1.7).
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Рисунок 1.7. Математическая модель леерной связи

Координаты КА r = (𝑥, 𝑦, 𝑧)T все время движения должны подчиняться

характеризующему эллипсоид вращения неравенству

𝑓(𝑥, 𝑦, 𝑧) =
𝑥2

𝑏2
+
𝑦2

𝑎2
+
𝑧2

𝑏2
⩽ 1, (1.15)

где 𝑎 – половина длины троса, 𝑏 =
√
𝑎2 − 𝑐2 – малая полуось, причем

𝑐 = 𝑎𝑒 – половина расстояния между станциями, 𝑒 – эксцентриситет.

Если считать, что 𝑎 = 1, то можно переписать математическую модель

леерной связи (1.15) в безразмерных переменных

Для перехода от безразмерных значений к традиционным единицам из-

мерения применимо соотношение

r* = 𝑎r, (1.16)

где r – безразмерный радиус-вектор КА, r* – тот же вектор в размерных

единицах.

𝑓(𝑥, 𝑦, 𝑧) =
𝑥2

𝑏2
+ 𝑦2 +

𝑧2

𝑏2
⩽ 1. (1.17)

Будем предполагать, что рукотворные космические объекты находятся

на расстоянии порядка 1 а.е. от Солнца, дистанция между ними не превышает

нескольких километров.
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1.5. Связное движение космического аппарата

Использование леерной связи позволяет осуществлять движение только

внутри и на поверхности некоторого эллипсоида с фокусами в точках закреп-

ления троса. Если нормаль СП всегда параллельна плоскости орбиты станций

𝑂𝑥𝑦, когда 𝑛𝑧 = 0, то уравнения движения допускают интегральное много-

образие 𝑧 = 0, предполагающее движение КА только в этой плоскости. Если

трос постоянно натянут, то говорят, что КА находится на связи или соверша-

ет связное движение непосредственно на границе эллипса. В этом случае его

безразмерные координаты описываются уравнением

𝑓(𝑥, 𝑦) =
𝑥2

1− 𝑒2
+ 𝑦2 = 1. (1.18)

Рисунок 1.8. Положение КА на эллипсе

При связном движении КА в орбитальной системе отсчета 𝑂𝑥𝑦 его по-

ложение задается радиус-вектором 𝑟, который может быть представлен в пара-

метрическом виде

r = (𝑥, 𝑦)T =
(︁√

1− 𝑒2 sin𝜓, cos𝜓
)︁T

(1.19)
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где 𝑒 – эксцентриситет эллипса, 𝜓 – эксцентрическая аномалия актуаль-

ного положения [115,116].

На рис. 1.8 показаны геометрические соотношения, в частности зависи-

мость положения КА от эксцентриситета эллипса и его эксцентрической ано-

малии.

1.6. Анализ сил, действующих на космический аппарат

Для обоснования упрощений, принятых в задаче, приведем анализ сил

(рис. 1.9), действующих на КА с СП, тем самым подтвердив разумность сле-

дующих предположений. Наибольшее влияние на динамику полета оказывают

силы солнечной радиации и натяжения троса, в то время как воздействие силы

Кориолиса оказывается незначительным, а гравитационное притяжение Солнца

практически компенсируется переносной силой инерции.

Рисунок 1.9. Анализ сил, действующих на КА с СП

Вычислим упомянутые выше силы для КА массы 𝑚 = 100 кг с СП пло-

щадью 𝑆 = 1000 м2, перемещающегося с относительной скоростью 𝑣 = 1 м/с

по эллиптической траектории с эксцентрисистетом 𝑒 = 0, 9 вдоль троса длины

2𝑎 = 2 км, концы которого закреплены на космических станциях 𝐹1, 𝐹2, вра-

щающихся по круговой орбите с угловой скоростью 𝜔 = 2𝜋/𝑇0 ≈ 2 · 10−7 рад/с,
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где 𝑇0 ≈ 365 · 24 · 3600 с - период вращения по круговой орбите.

Сила солнечной радиации находится по формуле (1.2), характеризу-

ющей модель СП, то есть

𝐹 = 𝑃𝑆 = 9 · 10−3 Н.

Сила Кориолиса, рассчитываемая по известному правилу, при относи-

тельной скорости КА 𝑣 = 1 м/с будет иметь значение

𝐹𝑐 = 2𝑚𝜔𝑣 = 4 · 10−5 Н.

Если учесть, что перемещение осуществляется вдоль оси 𝑂𝑥 на рассто-

яние ∆𝑥 и в начальный момент времени скорость была равна нулю, то можно

записать теорему об изменении кинетической энергии

1

2
𝑚𝑣2 = 𝐹∆𝑥,

откуда определяется скорость КА в рассматриваемой точке

𝑣 =

√︂
2𝐹∆𝑥

𝑚
. (1.20)

Новое значение скорости 𝑣 используется для пересчета силы Кориолиса

𝐹𝑐 = 2𝑚𝜔

√︂
2𝐹∆𝑥

𝑚
< 1, 1 · 10−5 Н. (1.21)

Изменение координаты ∆𝑥 должно быть сравнимо с малой полуосью

𝑏, поскольку в соответствующей ей вершине эллипса сила Кориолиса макси-

мальна, а в остальных точках она будет меньше, то есть верно неравенство

∆𝑥 ⩽ 𝑏 = 𝑎
√︀

(1− 𝑒2). При заданных в условии величинах большой полуоси 𝑎 и

эксцентриситета 𝑒, сила оказывается меньше некоторого значения 1, 1 · 10−5 Н

и направлена по внутренней нормали к эллипсу, то есть по биссектрисе угла 𝛽

между ветвями троса.

Отношение силы Кориолиса к силе солнечной радиации в первом и вто-

ром случаях будут выглядеть следующим образом

𝐹𝑐
𝐹

= 4, 4 · 10−3,
𝐹𝑐
𝐹

⩽ 1, 2 · 10−3.
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Переносная сила инерции. Инерциальная система отсчета 𝑂𝑥𝑦, вра-

щающаяся по круговой орбите на расстоянии 𝑅 от Солнца с постоянной уг-

ловой скоростью 𝜔, совершает переносное движение (рис. 1.9). В связи с тем,

что 𝜔 = 𝑐𝑜𝑛𝑠𝑡, переносная сила инерции имеет только одну составляющую, воз-

никающую из-за наличия центробежной силы, направленной по прямой 𝑆𝐴 от

Солнца

𝐹 𝑛
𝑒 = 𝑚𝜔2(𝑥+𝑅) (1.22)

где 𝑥 – координата КА на оси 𝑂𝑥.

Заметим, что в треугольнике △𝑉1𝑆𝑂 катеты равны большой полуоси

эллипса 𝑎 и радиусу круговой орбиты 𝑅, то есть 𝑂𝑉1 = 𝑎 и 𝑂𝑆 = 𝑅. Угол

∠𝑉1𝑆𝑂 оказывается достаточно малым, что следует из величины его танген-

са tg(∠𝑉1𝑆𝑂) = 6, 6 · 10−9. Кроме того, угол ∠𝐴𝑆𝑂 значительно меньше угла

∠𝑉1𝑆𝑂, так что будем полагать вектор переносной силы инерции, коллинеар-

ным оси 𝑂𝑥.

Сила гравитационного притяжения Солнца представлена векто-

ром, который аналогично переносной силе инерции принадлежит прямой, па-

раллельной той же оси. Направление силы гравитационного притяжения ока-

зывается противоположно 𝑂𝑥 согласно правилу ориентации правой тройки век-

торов, а ее величина определяется как

𝐹𝑔 = 𝐺
𝑚𝑀

(𝑥+𝑅)2
,

причем масса Солнца 𝑀 может быть выражена из условия равновесия

космической станции

−𝐺𝑚𝑀
𝑅2

+𝑚𝜔2𝑅 = 0.

Известно, что в орбитальной системе 𝑂𝑥𝑦 точка 𝐹1 находится в со-

стоянии равновесия, то есть сила притяжения первой космической станции

компенсирует влияние переносной силы инерции, тогда квадрат угловой

скорости вращения станций

𝜔2 = 𝐺
𝑀

𝑅3
.
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После подстановки массы 𝑀 сила гравитационного притяжения Солнца

для КА преобразуется в

𝐹𝑔 =
𝑚𝜔2𝑅3

(𝑥+𝑅)2
. (1.23)

Оценим разность переносной силы инерции (1.22) и гравитационного вза-

имодействия Солнца с КА (1.23)

𝐹 𝑛
𝑒 − 𝐹𝑔 = 3𝑚𝜔2𝑥.

Если эта величина изменяется пропорционально координате КА на оси

𝑂𝑥, причем 𝑥 ⩽ 𝑏, то 𝐹 𝑛
𝑒 −𝐹𝑔 ⩽ 5, 2 · 10−9 Н, что на несколько порядков меньше

даже силы Кориолиса
𝐹 𝑛
𝑒 − 𝐹𝑔
𝐹𝑐

= 4, 7 · 10−4.

Сила натяжения троса оценивается при макимально возможном зна-

чении, возникающем в тот момент, когда КА находится в вершине эллипса, со-

ответствующей малой полуоси (рис. 1.10). Учитывая относительную скорость

(1.20), силу солнечной радиации (1.2) и равномерное распределение натяжения

по ветвям троса 𝑇1 = 𝑇2 = 𝑇 , запишем уравнение относительного движения КА

в проекции на внутреннюю нормаль к эллипсу,

𝑚𝑣2

𝜌
= 2𝑇 cos

𝛽

2
− 𝐹, (1.24)

где 𝜌 – радиус кривизны, 𝛽 – угол между ветвями троса.

Можно заметить, что в этой вершине справедливы алгебраические соот-

ношения

𝜌 =
𝑎2

𝑏
, cos

𝛽

2
=
𝑏

𝑎
,

где 𝑏 = 𝑎
√
1− 𝑒2 – малая полуось эллипса, зависящая от большой по-

луоси 𝑎 и эксцентриситета 𝑒, тогда из уравнения 1.24 сила натяжения троса

выражается как

𝑇 = 𝐹
3− 2𝑒2

2
√
1− 𝑒2

, (1.25)

а ее значение при заданных в условии параметрах будет равно

𝑇 = 1, 42 · 10−2 Н = 1, 4528 гс.



—34—

Рисунок 1.10. Сила натяжения троса

К тросу приложено усилие в 1, 5 г, так что для перемещения достаточно

использовать гибкую связь, допускающую более высокую нагрузку, например

подойдет нить, выдерживающая вес в 10 г.

Если станции будут находиться на расстоянии порядка 1 а.е. от Солн-

ца, разнесены между собой на несколько километров при парусности, сопоста-

вимой уже реализованными миссиями, то максимально возможная величина

солнечной радиации, превысит на 6-7 порядков абсолютное значение разности

гравитационного притяжения Солнца (1.23) и переносной силы инерции (1.22),

действующих на КА. В связи с малостью упомянутой разности для оценки вли-

яния системы сил на движение необходимо учитывать только силы солнечной

радиации и Кориолиса.

В рассматриваемой ситуации сила Кориолиса лежит в плоскости орбиты

станций, откуда не может вывести КА. Она перпендикулярна его относительной

скорости, величину которой не способна изменить, так как траектория движе-

ния определена геометрическим ограничением, представляющим собой леер-

ную связь (1.18). При малых относительных скоростях кориолисово ускорение

может превышать центростремительное, поэтому необходимо компенсировать

соответствующую силу и обеспечить ненулевое натяжение троса в начале и в

конце движения. Компенсация силы Кориолиса в начальной и конечной точках
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перемещения возможна за счет расположения нормали СП относительно внут-

ренней нормали к траектории в течение короткого промежутка времени под

углом 3𝜋/4.

Заметим также, что при скорости порядка нескольких метров в секунду

натяжение троса в основном определяется центростремительным ускорением

КА, так как сила Кориолиса оказывается на 2-3 порядка меньше, чем перенос-

ная сила инерции.

1.7. Постановка модельной задачи

С учетом анализа динамики сил, будем предполагать, что в основном на

систему оказывает влияниие солнечная радиация, траекторию движения опре-

деляет трос, закрепленный на космических станциях 𝐹1 и 𝐹2, а сила Кориоли-

са принимает достаточное малые значения. В силу сделанных предположений

опишем постановку модельной задачи о движении КА с СП между наиболее

удаленными точками леерной связи.

Задача 1.1. КА, оснащенный СП, перемещается под действием силы
солнечной радиации 𝐹 между двумя наиболее удаленными точками леерной
связи, соответствующими вершинам эллипса 𝑉1 и 𝑉2, которые лежат на его
большой оси, при этом скорости в этих точках равны нулю 𝑣1 = 𝑣2 = 0 (рис. 1.9).

Замечание 1.9. Половина эллипса, по которой движется КА между
вершинами 𝑉1 и 𝑉2, является частным случаем траектории при перелете между
произвольными точками леерной связи 𝐴1 и 𝐴2.

В дальнейшем будут рассмотрены как общая ситуация, так и частный

случай перемещения при различных способах управления СП.

1.8. Уравнения движения и теорема об изменении кинетиче-

ской энергии

В орбитальной системе отсчета уравнения движения

r̈ = F− 2 [𝜔, ṙ] + 𝜆
𝜕𝑓

𝜕r
, 𝜆 ⩽ 0,

записанные в безразмерной форме, характиризуют динамику полета КА

с СП вдоль троса в зависимости от внешних сил, приложенных к системе. Диф-
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ференциирование по безразмерному времени обозначено как ˙( ), единица кото-

рого выбирается равной √︂
𝑚𝑎

𝐹𝑚𝑎𝑥
,

где 𝑚 – масса КА, 𝑎 – половина длины троса, 𝐹𝑚𝑎𝑥 – максимальная ве-

личина силы солнечной радиации, действующей на СП.

Множитель Лагранжа берется неположительной величиной 𝜆 ⩽ 0, по-

скольку сила реакции связи противоположна градиенту

grad 𝑓(𝑥, 𝑦) =
𝜕𝑓

𝜕r
, (1.26)

то есть 𝜆 является их коэффициентом пропорциональности.

Градиент функции, определяющей траекторию, направлен по внешней

нормали к эллипсу, а сила реакции связи - по внутренней нормали.

Наиболее значимое воздействие на характер перемещения оказывает

неидеальность оптических характеристик отражающей поверхности СП, а его

идеальная модель является частным случаем, описанным соотношением (1.2)

при коэффициенте отражения 𝑘 = 1.

Как было доказано в разделе 1.6, переносная сила инерции, силы грави-

тационного притяжения Солнца практически не влияют на перелет КА. Сила

Кориолиса (1.21) ортогональна траектории связного движения и достаточно

мала, так что в общем виде уравнения движения могут быть переписаны как

r̈ =
2

1 + 𝑘
(𝑘𝑛2

𝑥n+
1− 𝑘

2
𝑛𝑥e𝑥) + 𝜆

𝜕𝑓

𝜕r
, (1.27)

где 𝜆 = 0, если КА находится внутри эллипсоида вращения, 𝜆 ⩽ 0, если КА

расположен на его поверхности.

Заметим, что если СП перпендикулярен солнечным лучам, то нормаль к

нему в плоскости 𝑂𝑥𝑦 определяется как

n = (𝑛𝑥, 𝑛𝑦)
T = (cos𝛼, sin𝛼)T = (1, 0)T,

откуда 𝛼 = 0, тогда уравнения движения (1.27) упрощаются и принимают

вид

r̈ =

(︂
1 + 𝜆

2𝑥

1− 𝑒2
, 2𝜆𝑦

)︂T

. (1.28)
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Для уравнений (1.27) существует интеграл Якоби, который можно запи-

сать для частного случая (1.28) в виде простой суммы кинетической и потен-

циальнной энергий механической системы, сохраняющейся постоянной величи-

ной [117].

Если направление нормали n определяется только радиус-вектором

r = (𝑥, 𝑦)T, то уравнения движения (1.27) допускают интеграл энергии

1

2
(𝑥̇2 + 𝑦̇2)−

∫︁
𝑠

𝐹𝑥𝑑𝑥+ 𝐹𝑦𝑑𝑦 = ℎ, (1.29)

где 𝑠 – дуга эллипса.

С учетом положения КА (1.19) можно вычислить бесконечно малое пе-

ремещение 𝑑𝑠 =
√︀
1− 𝑒2 cos2 𝜓 𝑑𝜓, тогда криволинейный интеграл (1.29) для

неидеального СП перепишется следующим образом

1

2
(1− 𝑒2 cos2 𝜓)𝜓̇2 −

∫︁ 𝜓

𝜓1

(F, 𝜏 )
√︀
1− 𝑒2 cos2 𝜓 𝑑𝜓 = ℎ,

где 𝜓1 и 𝜓 – эксцентрические аномалии начальной точки и актуального

положения.

Если СП перпендикулярен солнечным лучам при n = (1, 0)T, и начало

движения происходит из вершины эллипса 𝑉1, которой соответствует эксцентри-

ческая аномалия 𝜓1 = 0, то при нулевой начальной скорости 𝑣1 = 0 интеграл

энергии (1.29) преобразуется в

1

2
(1− 𝑒2 cos2 𝜓)𝜓̇2 =

√
1− 𝑒2 sin𝜓 + ℎ, ℎ = 0. (1.30)

Замечание 1.10. В общем виде для движения КА между наиболее уда-
ленными точками леерной связи с учетом управления, предполагающего кор-
рекцию положения СП, вместо интеграла Якоби может быть записана теорема
об изменении кинетической энергии.
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1.9. Выводы по главе 1

1. Описаны математические модели СП и леерной связи, соответственно

характеризующие величину силы солнечной радиации и накладывающие огра-

ничение на перемещение КА. В этих моделях введены следующие углы: 𝛼 – угол

между нормалью СП и направлением солнечных лучей, причем 𝛼𝑜𝑝𝑡 – тот же

угол, обеспечивающий максимально возможное ускорение КА в каждой точке

траектории движения, 𝛾 – угол между силой солнечной радиации, действую-

щей на СП, и направлением солнечных лучей, 𝛿 – угол между касательной к

траектории КА, направленной в сторону движения, и направлением солнечных

лучей, 𝛽 – угол между ветвями троса.

2. Определены понятия базовой и производной калибровочных характе-

ристик, соответственно показывающие возможности СП создавать силу, возни-

кающую при попадании фотонов на его поверхность, и касательное ускорение

при движении вдоль заданной траектории. Вычислен оптимальный угол накло-

на СП, обеспечивающий максимальную проекцию силы солнечной радиации на

касательную к эллипсу.

3. Проведены анализ динамики системы и оценка сил, действующих на

КА с СП.

4. Представлена логика посторения модельной задачи о движении КА с

СП между наиболее удаленными точками леерной связи.

5. Записаны уравнения движения в общем виде, вычислен интеграл энер-

гии для перемещения с неизменно ориентированным СП.

6. Указан принцип перехода от безразмерных величин к значениям в

традиционных единицах измерения.

Основные результаты главы опубликованы в [98–100,104,105]



Глава 2. Задача о движении космического аппарата с

постоянно ориентированным солнечным па-

русом вдоль леерной связи

Целью данной главы является решение задачи о движении КА с посто-

янно ориентированным СП (1.2) между точками леерной связи (1.15), соединя-

ющей две гелиоцентрические космические станции в плоскости их орбиты.

Доказывается возможность перемещения вдоль троса между парами то-

чек при нулевых начальных и конечных скоростях. Отмечено, что если сохра-

нять неизменным положение СП относительно солнечных лучей, возникают ма-

ятниковые колебания. Записываются условия существования связного движе-

ния, предполагающие, что сила солнечной радиации должна быть сонаправлена

с внешней нормалью к эллипсу в некоторой точке. Выбор точки определяется

средним арифметическим эксцентрических аномалий начального и конечного

положения КА на эллипсе. В частном случае, для идеального СП достаточно,

чтобы сила солнечной радиации была сонаправлена c его нормалью. Строят-

ся диаграммы точек леерной связи, между которыми возможно перемещение.

Вычисляются и оцениваются динамические характиристики полета КА с СП

между произвольными точками с учетом результатов из главы 1.

В разделе 2.1. описаны маятниковые колебания КА с СП вдоль троса. В

разделе 2.2. доказаны необходимое и достаточное условия существования свя-

занного движения между точками эллипса. В разделе 2.3. найдены все пары

точек, между которыми возможно перемещение с неослабевающим тросом. В

разделе 2.4. разработан алгоритм исследования динамики полета КА с постоян-

но ориентированным СП. В разделе 2.5. рассмотрено перемещение между наи-

более удаленными точками леерной связи. В разделе 2.6. вычислены основные

динамические характеристики полета между произвольными точками леерной

связи. В разделе 2.7. произведена оценка параметров движения для реальных

КА с СП. В разделе 2.8. сформулированы выводы по главе 2.

39
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2.1. Маятниковые колебания

Задача 2.1. КА, оснащенный неизменно ориентированнным СП, пере-
мещается под действием постоянной силы солнечной радиации 𝐹 между произ-
вольными точками леерной связи 𝐴𝑖, 𝑖 = 1, 2 с нулевыми начальной и конечной
скоростями 𝑣𝑖 = 0.

Пусть СП неизменно ориентирован по отношению к солнечным лучам,

тогда вектор F = 𝑐𝑜𝑛𝑠𝑡 в орбитальной системе отсчета 𝑂𝑥𝑦. В этом случае, что

следует из интеграла энергии (1.28) и оценок действующих сил из раздела 1.6,

движение КА с СП вдоль леерной связи будут маятниковыми колебаниями

между некоторыми точками эллипса, ограничивающего эту связь, причем пря-

мая, соединяющая точки будет ортогональна вектору силы солнечной ради-

ации. Для решения поставленной задачи необходимо расположить постоянно

ориентированный СП так, чтобы вектор F был ортогонален 𝐴1𝐴2, то есть со-

направлен c внешней нормалью к эллипсу в некоторой точке 𝐴 (рис. 2.1).

Как следует из определения радиус-вектора (1.19), координаты точек

𝐴𝑖, 𝑖 = 1, 2 вычисляются по формулам

r𝑖 = (𝑥𝑖, 𝑦𝑖)
T =

(︁√
1− 𝑒2 sin𝜓𝑖, cos𝜓𝑖

)︁T
, 𝑖 = 1, 2,

тогда вектор 𝐴1𝐴2 имеет вид

F ⊥ 𝐴1𝐴2 =
(︁√

1− 𝑒2 (sin𝜓2 − sin𝜓1) , cos𝜓2 − cos𝜓1

)︁T
.

Из равенства (F, 𝐴1𝐴2) = 0 следует параллельность векторов

F ‖
(︁
cos𝜓1 − cos𝜓2,

√
1− 𝑒2 (sin𝜓2 − sin𝜓1)

)︁T
,

причем правую часть можно преобразовать как

2
√
1− 𝑒2 sin

(︂
𝜓2 − 𝜓1

2

)︂(︂
1√

1− 𝑒2
sin

(︂
𝜓1 + 𝜓2

2

)︂
, cos

(︂
𝜓1 + 𝜓2

2

)︂)︂T

. (2.1)

Учитывая, что внешняя нормаль к эллипсу 𝜈 сонаправлена с grad 𝑓(𝑥, 𝑦),

который находится согласно выражениям (1.18) и (1.26), можно установить па-

раллельность векторов

𝜈 ‖
(︂

1√
1− 𝑒2

sin𝜓, cos𝜓

)︂T

. (2.2)
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В результате эксцентрическая аномалия точки 𝐴 оказывается средним

арифметическим аналогичных аномалий начального и конечного положений

КА

𝜓(𝐴) =
𝜓1 + 𝜓2

2
.

Сила солнечной радиации F должна быть сонаправлена с внешней нор-

малью к эллипсу в точке 𝐴, то есть

𝜈(𝐴) = (cos 𝛾, sin 𝛾)T,

где 𝛾 – угол между силой солнечной радиации и направлением солнечных

лучей согласно разделу 1.2.

Зависимость 𝛾 от эксцентрической аномалии 𝜓(𝐴) перепишется как

sin 𝛾 =

√
1− 𝑒2 cos𝜓(𝐴)√︀
1− 𝑒2 cos2 𝜓(𝐴)

, cos 𝛾 =
sin𝜓(𝐴)√︀

1− 𝑒2 cos2 𝜓(𝐴)
.

Кроме того, чтобы выбор положения СП, необходимый для перемеще-

ния между двумя точками 𝐴𝑖, 𝑖 = 1, 2, был возможным, должно выполняться

условие |sin 𝛾| ⩽ 𝑘, возникающее из-за особенностей базовой калибровочной ха-

рактеристики для основной модели. В данном случае неравенство примет вид
√
1− 𝑒2 |cos𝜓(𝐴)|√︀
1− 𝑒2 cos2 𝜓(𝐴)

⩽ 𝑘.

Если не менять направление нормали, то перелет будет начинаться и

заканчиваться в точках 𝐴𝑖, 1, 2, причем КА достигнет пункта назначения с

нулевой скоростью. При последующем сохранении ориентации СП относительно

солнечных лучей между заданными точками продолжатся колебания.

Для описания движения КА необходимо знать условия существования

связного движение между точками при нулевых начальных и конечных скоро-

стях с неизменно ориентированной в орбитальной системе отсчета 𝑂𝑥𝑦 норма-

лью. Отметим, что физический смысл ситуация сохраняет только тогда, когда

𝑛𝑥 > 0. Направление нормали выбирается независимо от того, в какую сторону

происходит перелет между точками 𝐴𝑖, 𝑖 = 1, 2. Без ограничения общности рас-

суждений будем считать, что 𝑦2 > 𝑦1, при этом 𝑦1 = 𝑦2 невозможно, поскольку

тогда 𝑛𝑥 = 0.
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Рисунок 2.1. О выборе точки 𝐴

Чтобы записать условия существования движения вдоль леерной связи,

обозначим внешнюю нормаль к траектории для произвольной точки через 𝜈. В

частности, в точках 𝐴𝑖, 𝑖 = 1, 2 величина принимает значения 𝜈𝑖, 𝑖 = 1, 2. Для

определения этой нормали в общем виде необходимо нормировать вектор (2.2),

то есть

𝜈 =

(︃
sin𝜓√︀

1− 𝑒2 cos2 𝜓
,

√
1− 𝑒2 cos𝜓√︀
1− 𝑒2 cos2 𝜓

)︃T

. (2.3)

Замечание 2.1. С учетом введенных обозначений для идеального от-
ражающего зеркала внешняя нормаль к траектории в точке 𝐴, записанная как
𝜈(𝐴), может быть заменена на нормаль СП n.

2.2. Необходимое и достаточное условия существования связ-

ного движения

При выборе такого положения СП, когда F сонаправлена с 𝜈(𝐴), переме-

щение КА, начинающееся из точки 𝐴1 с нулевой начальной скоростью, может

приводить к ослабеванию троса, и дальнейшему движению внутри эллипса с

последующим ударным выходом на связь. Если в уравнениях (1.27) множитель

Лагранжа в любой точке траектории будет отрицательным 𝜆 ⩽ 0, то этого

не произойдет. С учетом малости силы Кориолиса при скалярном умножении
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общих уравнений движения на 𝜈 получается соотношение

(F,𝜈)− (r̈,𝜈) = −𝜆
(︂
𝜕𝑓

𝜕r
,𝜈

)︂
.

Градиент эллипса grad 𝑓(𝑥, 𝑦) и вектор 𝜈 сонаправлены, поэтому(︂
𝜕𝑓

𝜕r
,𝜈

)︂
> 0,

тогда неравенство

(F,𝜈) ⩾ (r̈,𝜈)

можно рассматривать, как условие нахождения на связи.

При движении по эллипсу для нормального ускорения справедливо

утверждение −𝑤𝑛 = (r̈,𝜈) ⩽ 0, поэтому выполнение критерия

(F,𝜈) > 0

в каждой точке траектории гарантирует ненулевую реакцию троса и

невозможность схода со связи.

В частном случае этот критерий превращается в следующее неравенство.

Теорема 2.1. Для того, чтобы движение между 𝐴𝑖, 𝑖 = 1, 2 происхо-
дило без схода со связи, достаточно выполнения условий

(𝜈 (𝐴) ,𝜈𝑖) > 0, 𝑖 = 1, 2. (2.4)

Доказательство теоремы 2.1. Внешняя нормаль к траектории 𝜈 (𝐴)

в данной точке сонаправлена с силой солнечной радиации F, а касательная

параллельна прямой 𝐴1𝐴2 (рис. 2.2).

Рассмотрим функцию 𝑔 = (𝜈 (𝐴) ,𝜈), где 𝜈 - внешняя нормаль в про-

извольной точке эллипса. При перемещении вдоль леерной связи по часовой

стрелке от точки 𝐴 к симметричной относительно центра 𝑂 точке, и далее сно-

ва к 𝐴, функция сначала монотонно убывает от 1 до −1, а затем монотонно

возрастает от −1 до 1.

Таким образом, функция 𝑔 обращается в нуль ровно в двух точках эл-

липса, симметричных относительно центра 𝑂.
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Рисунок 2.2. Маятниковые движения с постоянно ориентированным
неидеальным СП

Предположим, что 𝑔𝑖 = (𝜈 (𝐴) ,𝜈𝑖) > 0, 𝑖 = 1, 2, тогда на дугах 𝐴𝐴𝑖,

составляющих меньше половины эллипса, функция 𝑔 может менять знак не

более одного раза. Однако, в точках 𝐴 и 𝐴𝑖 она положительна, поэтому знак не

меняется ни на одной из дуг, то есть всегда 𝑔 > 0.

Доказано достаточное условие существования движения вдоль леерной

связи.

□

Следствие 2.1. При выполнении неравенства (2.4) во всех точках ду-
ги 𝐴1𝐴2 угол между внешней нормалью к эллипсу и аналогичным вектором
в точке 𝐴 будет острым, что гарантирует выполнение условия нахождения
на связи.

Следствие 2.2. Для идеального СП нормаль к нему совпадает с внеш-
ней нормалью к траектории в точке 𝐴, и достаточное условие существования
движения вдоль леерной связи можно переписать как

(n,𝜈𝑖) > 0, 𝑖 = 1, 2.

Теорема 2.2. Неравенства

(𝜈 (𝐴) ,𝜈𝑖) ≥ 0, 𝑖 = 1, 2. (2.5)

являются необходимыми условиями связного движения между 𝐴𝑖, 𝑖 = 1, 2.
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Рисунок 2.3. К доказательству 2.2

Доказательство теоремы 2.2. Согласно упрощениям, принятым в

разделе 1.6, во время движения на КА c СП действуют сила солнечной радиа-

ции F, сонаправленная с внешней нормалью к эллипсу 𝜈(𝐴) в соответствующей

точке, сила натяжения троса T ориентирована противоположно данному век-

тору (рис. 2.3). Для идеального СП ситуация аналогична, только нормаль СП

n совпадает с внешней нормалью к траектории в точке 𝐴. По условию задачи

в точках 𝐴𝑖, 𝑖 = 1, 2 скорость КА с СП равна 𝑣𝑖 = 0, 𝑖 = 1, 2, а сумма проекций

сил на направление внешней нормали к траектории 𝜈𝑖, 𝑖 = 1, 2 будет также

равна нулю, то есть

(F,𝜈𝑖) + (T,𝜈𝑖) = 0, 𝑖 = 1, 2.

Движение считается связным, поэтому сила натяжения троса T должна быть

противоположна внешней нормали к эллипсу, в крайнем случае равна нулю

(T,𝜈𝑖) = − |T| ⩽ 0, 𝑖 = 1, 2,

что равносильно неравенствам (𝜈(𝐴),𝜈𝑖) ⩽ 0, 𝑖 = 1, 2.

Доказано необходимое условие существования движения вдоль леерной

связи.

□

Следствие 2.3. Для идеального СП необходимое условие существова-
ния движения вдоль леерной связи примет вид

(n,𝜈𝑖) ≥ 0, 𝑖 = 1, 2.
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2.3. Пары точек, допускающие связное перемещение

Найдем все пары точек на эллипсе, являющемся пересечением эллип-

соида с плоскостью орбиты космических станций, между которыми возможно

связное перемещение КА с постоянно ориентированным СП при нулевых на-

чальной и конечной скоростях.

Для определенности будем считать, что −𝜋
2
⩽ 𝜓𝑖 ⩽ 3𝜋

2
. Рассмотрим сна-

чала ситуацию, когда cos𝜓1 > cos𝜓2.

В разделе 2.1. показано, что для неидеального СП внешняя нормаль в

точке 𝐴, записанная как 𝜈(𝐴), или нормаль идеального СП n оказываются

сонаправлены с вектором(︁
cos𝜓2 − cos𝜓1,

√
1− 𝑒2 (sin𝜓1 − sin𝜓2)

)︁T
,

при этом в начальной и конечной точках движения 𝐴𝑖, 𝑖 = 1, 2 внешние

нормали к эллипсу 𝜈𝑖 параллельны соответственно векторам(︁
sin𝜓𝑖,

√︀
(1− 𝑒2) cos𝜓𝑖

)︁T
, 𝑖 = 1, 2.

В силу сделанных предположений условия (2.4) запишутся следующим

образом

(cos𝜓2 − cos𝜓1) sin𝜓𝑖 + (1− 𝑒2) (sin𝜓1 − sin𝜓2) cos𝜓𝑖 > 0, 𝑖 = 1, 2. (2.6)

Далее приводятся частные случаи условий связного движения при раз-

личных эксцентриситетах эллипса 0 < 𝑒 < 1, проиллюстрированные соответ-

ствующими диаграммами.

Частные случаи.

Если 𝑒 = 0, то эллипс превращается в окружность, и условия (2.6) пере-

пишутся как

sin (𝜓1 − 𝜓2) > 0.

Вертикальная штриховка обозначает область, где одновременно с полу-

ченным неравенством выполняется критерий перелета из точки 𝐴1 в точку 𝐴2.
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Рисунок 2.4. Множество пар точек при 𝑒 = 0

Учитывая, что перемещение может происходить и в обратном направле-

нии из 𝐴2 в 𝐴1, на рис. 2.4 добавлена заполненная горизонтальной штриховкой

область, симметричная относительно прямой 𝜓1 = 𝜓2. Каждая внутренняя точ-

ка квадрата 𝐴𝐵𝐶𝐷 соответствует паре точек 𝐴𝑖, 𝑖 = 1, 2 на эллипсе, между

которыми возможно движение при постоянно ориентированном СП с нулевы-

ми начальной и конечной скоростями. Границы квадрата рассматриваются от-

дельно. Точка 𝐷
(︀
𝜋
2
,−𝜋

2

)︀
соответствует вершинам, принадлежащим малой оси

эллипса, между которыми такое движение невозможно, так как в этом случае

нормаль СП должна быть перпендикулярна солнечным лучам. Точка 𝐸 (𝜋, 0)

сопоставима с вершинами, расположенным на большой оси эллипса, между ко-

торыми может осуществляться перелет.

Если 𝑒 стремится к единице, то с учетом критерия связного движения из

точки 𝐴1 в точку 𝐴2, условия (2.6) примут вид

sin𝜓𝑖 > 0, 𝑖 = 1, 2.
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Рисунок 2.5. Множество пар точек при 𝑒→ 1

Вертикальной штриховкой выделяет область △𝑂𝐸𝐹 , где выполняется

все перечисленные условия, а с учетом перестановки начальной и конечной то-

чек движение также возможно для внутренней части △𝑂𝐺𝐹 (рис. 2.5).

Общий случай.

Для любого 𝑒 выражение (2.6) можно переписать следующим образом

𝑒2 cos𝜓𝑖 (sin𝜓2 − sin𝜓1) + sin (𝜓1 − 𝜓2) > 0, 𝑖 = 1, 2.

Анализ полученных условий показывает, что рассматриваемые движения

возможны во внутренних частях областей, изображенных при эксцентриситетах

эллипса 0 < 𝑒 < 1√
2
(рис. 2.6, a), 𝑒 = 1√

2
(рис. 2.6, б), 1√

2
< 𝑒 < 1 (рис. 2.6, в).

Диаграмма на рис. 2.6, б представляет уникальный случай, когда криво-

линейные участки границы имеют вертикальные и горизонтальные касательные

в своих крайних точках.
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Рисунок 2.6. Множество пар точек при a) 0 < 𝑒 < 1√
2
, б) 𝑒 = 1√

2
, в) 1√

2
< 𝑒 < 1

Отметим, что на всех рисунках кривые 𝐴𝐺, 𝐺𝐵 и 𝐸𝐶, 𝐷𝐸 симметричны

относительно прямой 𝐺𝐸, заданной выражением 𝜓2 + 𝜓1 = 𝜋, в то время как

кривые 𝐴𝐺, 𝐷𝐸 и 𝐺𝐵, 𝐸𝐶 симметричны относительно прямой 𝑂𝐹 , описанной

соотношением 𝜓1 = 𝜓2, то есть кривые 𝐴𝐺, 𝐺𝐵, 𝐸𝐶, 𝐷𝐸 конгруэнтны. При из-

менении эксцентриситета эллипса 0 ⩽ 𝑒 < 1 искомая область эволюционирует

из квадрата 𝐴𝐵𝐶𝐷 в квадрат 𝑂𝐺𝐹𝐸, причем вершины фигур все время оста-

ются на границе этой области. Следовательно, любой внутренней точке участка,
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заштрихованного на рис. 2.6 соответствуют точки эллипса 𝐴𝑖, 𝑖 = 1, 2, между

которыми возможно перемещение с независимо направленной нормалью к СП

и с нулевыми начальной и конечной скоростями.

Руководствуясь необходимостью выполнения условий нахождения на

связи, построим алгоритм решения задачи о движении КА с неизменно ори-

ентированным СП. Алгоритм состоит из четырех этапов. На первом этапе про-

веряется, что значение угла между силой солнечной радиации и направлением

солнечных лучей 𝛾 соответствует ограничению 0 ⩽ 𝛾 ⩽ 𝛾𝑚𝑎𝑥, где 𝛾𝑚𝑎𝑥 = 𝜋
2
для

идеального СП, 𝛾𝑚𝑎𝑥 = arcsin 𝑘 для неидеального СП. Вычисляется базовая ка-

либровочная характеристика 𝐹 (𝛾), отражающая величину силы солнечной ра-

диации 𝐹 . На втором этапе подтверждается выполнение условия нахождения

на связи (2.4). На третьем этапе определяются основные динамические характе-

ристики перемещения согласно теореме об изменении кинетической энергии. На

четвертом этапе осуществляется пересчет полученных величин в традиционные

единицы измерения.

2.4. Алгоритм исследования динамики полета космического

аппарата с постоянно ориентированным солнечным пару-

сом

В разделе описывается алгоритм 2.1, позволяющий вычислить основные

динамические характеристики движения между двумя точками при СП, неиз-

менно ориентированном относительно солнечных лучей.

Алгоритм 2.1.

Этап 1.
1.1. Проверить неравенство 0 ⩽ 𝛾 ⩽ 𝛾𝑚𝑎𝑥 при 𝛾𝑚𝑎𝑥 = 𝜋

2
для идеального

СП и 𝛾𝑚𝑎𝑥 = arcsin 𝑘 для неидеального СП. Если оно выполнено, то перейти к
следующему шагу, иначе завершить алгоритм и показать, что введенный угол
𝛾 слишком большой.

1.2. Найти значение базовой калибровочной характеристики 𝐹 (𝛾) и
определить величину силы солнечной радиации 𝐹 . Перейти к этапу 2.

Этап 2.
2.1. Удостовериться, что выполняется условие нахождения на связи

(2.4). Если неравенство выполнено, перейти к следующему шагу, иначе завер-
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шить алгоритм и вывести предупреждение о невозможности связного переме-
щения между выбранными точками. Перейти к следующему шагу 2.2.

2.2. Вычислить массив ускорений 𝑤𝜏 [𝑗]. Перейти к этапу 3.
Этап 3.

3.1. Записать теорему об изменении кинетической энергии (2.7). Пе-
рейти к шагу 3.2.

3.2. Определить массивы скоростей 𝑣[𝑗] и сил натяжения троса 𝑇 [𝑗].
Перейти к шагу 3.3.

3.3. Рассчитать продолжительность перемещения 𝑡. Построить гра-
фики. Перейти к этапу 4.

Этап 4.
4.1. Выразить из безразмерных значений величины динамических ха-

рактеристик в традиционных единицах измерения, в частности для реальных
КА. Завершить алгоритм.

Алгоритм 2.1 предполагает последовательное решение задачи о движе-

ния КА с постоянно ориентированным СП при перелете между двумя точками

с нулевыми начальной и конечной скоростями.

Процедура вычислений согласно алгоритму 2.1 показана в форме блок-

схемы (2.7).

В качестве входных данных поступают коэффициент отражения 𝑘, вли-

яющий на отражательную способность материала СП, эксцентриситет эллипса

𝑒, определяющий траекторию, и координаты точек перемещения 𝐴𝑖, 𝑖 = 1, 2,

заданные через эксцентрические аномалии 𝜓𝑖, 𝑖 = 1, 2.

С учетом введенных параметров определяется значение базовой ка-

либровочной характеристики 𝐹 (𝛾) по формуле (1.13) и проверяется, что

0 ⩽ 𝛾 ⩽ arcsin 𝑘. Если 𝛾 удовлетворяет данному неравенству, то находится ве-

личина силы солнечной радиации, если не удовлетворяет, то угол оказывается

слишком большим, и дальнейшие вычисления произвести невозможно.

В следующем шаге проверяется условие нахождения на связи КА с СП

(2.7). Если условие выполняется, то вычисляются касательное ускорение 𝑤𝜏 ,

которое в безразмерных переменных совпадает с проекцией силы солнечной

радиации 𝐹𝜏 на касательную к траектории. Если условие не выполняется, то

КА сходит со связи.
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Рисунок 2.7. Алгоритм исследования динамики полета космического аппарата
с постоянно ориентированным солнечным парусом
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Используя формулы (1.5) и (1.20) из 𝐹𝜏 получают скорость v и силу

натяжения троса T, которые определяют их максимальные значения 𝑣𝑚𝑎𝑥 и

𝑇𝑚𝑎𝑥. Кроме того, определяется продолжительность перемещения 𝑡.

Таким образом, можно получить графики траектории и базовой калиб-

ровочной характеристики 𝐹 (𝛾) в системе координат 𝑂𝑥𝑦, а также графики ка-

сательного ускорения, относительной скорости и силы натяжения троса, зави-

сящие от эксцентрической аномалии 𝜓.

Для перехода к динамическим характеристикам реальных КА необходи-

мо преобразовать полученные безразмерные величины 𝑡, 𝑣𝑚𝑎𝑥, 𝑇𝑚𝑎𝑥 с учетом

площади СП 𝑆, массы КА 𝑚, расстояний между станциями 2𝑐 и от Солнца до

центра эллипса 𝑅. В качестве выходных данных получают длину троса 2𝑎*,

время перелета 𝑡*, максимальные значения скорости 𝑣*𝑚𝑎𝑥 и натяжения троса

𝑇 *
𝑚𝑎𝑥, выраженные в традиционных единицах измерения.

Для подсчета несобственных интегралов, возникающих в процессе реше-

ния задачи, используются численные методы интегрирования.

В приложении A показан пример применения алгоритма для исследова-

ния динамики полета КА с постоянно ориентированным СП.

2.5. Продолжительность перемещения между наиболее уда-

ленными точками леерной связи

Если начальная скорость равна нулю 𝑣1 = 0, то в выражении (1.30) ℎ = 0,

и его можно переписать как

1

2
(1− 𝑒2 cos2 𝜓)𝜓̇2 =

√
1− 𝑒2 sin𝜓. (2.7)

Для неидеального СП в случае, когда начальная и конечная скорости

равны нулю 𝑣𝑖 = 0, 𝑖 = 1, 2, время перелета между наиболее удаленными точ-

ками леерной связи 𝑉1 и 𝑉2, которым соответствуют эксцентрические аномалии

𝜓1 = 0 и 𝜓2 = 𝜋, будет отличаться от этого показателя для идеально отра-

жающей поверхности на некоторый множитель больше единицы, зависящий от

коэффициента отражения 𝑘

𝑡(𝑘) = 𝑡

√︂
2

1 + 𝑘
.
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Для идеального СП продолжительность перемещения между теми же

точками можно найти по формуле

𝑡 =

√
2

4
√
1− 𝑒2

∫︁ 𝜋
2

0

√︃
1− 𝑒2 cos2 𝜓

sin𝜓
𝑑𝜓.

Отметим, что если эксцентриситет эллипса стремится к нулю 𝑒 → 0,

то функция времени 𝑡 → 2𝐾
(︁√

2
2

)︁
≈ 3.708, где 𝐾 – полный эллиптический

интеграл первого рода. Если эксцентриситет стремится к единице 𝑒 → 1, то

продолжительность перемещения стремится к бесконечности 𝑡 → ∞. Диффе-

ренцируя зависимость 𝑡 по 𝑒, можно установить, что время перелета между вер-

шинами эллипса при нулевых начальной и конечной скоростях 𝑣𝑖 = 0, 𝑖 = 1, 2

будет принимать минимальное значение 𝑡𝑚𝑖𝑛 = 3.5575 при 𝑒𝑚𝑖𝑛 = 0.7906, когда

𝑏/𝑎 = 0.3066 (рис. 2.8).
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Рисунок 2.8. Зависимость времени перемещения 𝑡 от эксцентриситета 𝑒 и
отношения полуосей 𝑏/𝑎 при нулевой начальной и конечной скоростях в

безразмерных единицах измерения
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2.6. Перемещение между произвольными точками леерной

связи

В рамках сделанных предположений на КА действует только одна ак-

тивная сила, а относительные скорости в начальной и конечной точках равны

нулю 𝑣𝑖 = 0, 𝑖 = 1, 2. Из теоремы об изменении кинетической энергии можно

вычислить расстояние ∆𝑥 между прямой 𝐴1𝐴2 и актуальным положением КА.

Если уравнение прямой 𝐴1𝐴2 в плоскости 𝑂𝑥𝑦 переписать как

√
1− 𝑒2 cos

(︂
𝜓1 + 𝜓2

2

)︂
(𝑦 − cos𝜓1) + sin

(︂
𝜓1 + 𝜓2

2

)︂(︁
𝑥−

√
1− 𝑒2 sin𝜓1

)︁
= 0,

и воспользоваться стандартными формулами аналитической геометрии,

позволяющими найти расстояние от точки до прямой, то можно вывести равен-

ство

∆𝑥 =
2
√
1− 𝑒2

⃒⃒
sin
(︀
𝜓−𝜓1

2

)︀
sin
(︀
𝜓2−𝜓

2

)︀⃒⃒√︁
1− 𝑒2 cos2

(︀
𝜓1+𝜓2

2

)︀ .

Расстояние ∆𝑥 принимает максимальное значение в точке 𝐴, где экс-

центрическая аномалия 𝜓(𝐴) выбирается согласно указаниям из раздела 2.1,

которое может быть найдено

∆𝑥𝑚𝑎𝑥 =
2
√
1− 𝑒2 sin2

(︀
𝜓2−𝜓1

4

)︀√︀
1− 𝑒2 cos2 𝜓(𝐴)

.

Относительная скорость КА. Известно, что относительная скорость

КА в произвольной точке эллипса определяется в безразмерном виде по фор-

муле (1.20) следующим образом

𝑣 =
√
2𝐹∆𝑥,

тогда при ∆𝑥 = ∆𝑥𝑚𝑎𝑥, характеризующем расстояние между прямой

𝐴1𝐴2 и положением КА, она достигает максимального значения

𝑣𝑚𝑎𝑥 = 2
√
𝐹

4
√
1− 𝑒2

⃒⃒
sin
(︀
𝜓2−𝜓1

4

)︀⃒⃒
4
√︀
1− 𝑒2 cos2 𝜓(𝐴)

.

Сила натяжения троса. Для вычисления силы натяжения троса мож-

но воспользоваться уравнениями движения в проекции на внутреннюю нормаль
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к эллипсу (1.24), которые с учетом формул для вычисления скорости, силы сол-

нечной радиации (1.2), нормали к эллипсу (2.3) можно выразить в виде

𝑇 =
𝐹

2 cos 𝛽
2

(︂
2∆𝑥

𝜌
+ (𝜈 (𝐴) ,𝜈)

)︂
,

где

𝜌 =
(1− 𝑒2 cos2 𝜓)

3
2

√
1− 𝑒2

, cos
𝛽

2
=

√
1− 𝑒2√︀

1− 𝑒2 cos2 𝜓
. (2.8)

Продолжительность перемещения. Чтобы найти продолжитель-

ность перемещения КА с неизменно ориентированным СП между произволь-

ными точками, необходимо подставить в уравнения движения (1.24) относи-

тельную скорость 𝑣, силу солнечной радиации 𝐹 , расстояние ∆𝑥 от прямой до

актуальной точки. В результате время перелета можно выразить квадратурой

𝑡 =

4

√︁
1− 𝑒2 cos2

(︀
𝜓1+𝜓2

2

)︀
2
√
𝐹 4
√
1− 𝑒2

∫︁ 𝜓2

𝜓1

√︃
1− 𝑒2 cos2 𝜓

sin
(︀
𝜓−𝜓1

2

)︀
sin
(︀
𝜓2−𝜓1

2

)︀𝑑𝜓, (2.9)

причем несобственный интеграл находится численно [118].

2.7. Оценка динамических характеристик

Переход от безразмерных единиц измерения к традиционной продолжи-

тельности перемещения осуществляется по формуле

𝑡* = 𝑡

√︂
𝑚𝑎

𝐹𝑚𝑎𝑥
,

где 𝑡* – время перелета в размерной форме, 𝑚 – масса КА, 𝑎 – поло-

вина длины троса, 𝐹𝑚𝑎𝑥 – максимально возможная сила солнечной радиации,

действующая на СП в рамках основной модели, определяемой равенством

𝐹𝑚𝑎𝑥 =
1 + 𝑘

2
𝑃𝑆

𝑅2
0

𝑅2
, 𝑅0 ≈ 1 а.е.

в соответствие с обозначениями: 𝑃 – характерная величина солнечного

давления на орбите Земли, 𝑆 – площадь СП, 𝑅0 – расстояние от Земли до

Солнца, 𝑅 – актуальное расстояние от Солнца до КА.

Характеристики реальных КА, использованные в расчетах, указаны в

таблице 1.1. Перемещение происходит между некоторыми точками при условии,

что длина троса 𝑎 = 2 км.
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Если КА с постоянно ориентированным СП осуществляет движение меж-

ду вершинами эллипса 𝑉1 и 𝑉2, которым соответствуют точки с эксцентриче-

скими аномалиями 𝜓1 = 0 и 𝜓2 = 𝜋, то для оценки времени перелета 𝑡(𝑘) при

фиксированном эксцентриситете 𝑒 = 0.8 на расстоянии от Солнца 𝑅 = 0.5 а.е.

может быть составлена таблица 2.1.

Таблица 2.1. Зависимость времени перелета 𝑡 от коэффициента отражения 𝑘
для КА с постоянно ориентированным СП между точками 𝑉1 и 𝑉2

Космический Продолжительность перелета 𝑡, ч при 𝑘 = ...

аппарат 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
IKAROS 10.06 9.92 9.50 9.13 8.80 8.50 8.23 7.98 7.75 7.55 7.35

NanoSail 5.20 4.95 4.75 4.57 4.40 4.25 4.12 3.98 3.87 3.77 3.67

LightSail-2 3.25 3.10 2.97 2.85 2.75 2.65 2.57 2.48 2.42 2.35 2.30

Sunjammer 1.73 1.65 1.58 1.52 1.47 1.42 1.37 1.33 1.30 1.27 1.23

Helios 1.25 1.18 1.13 1.10 1.05 1.02 0.98 0.95 0.93 0.90 0.88

Заметим, что время перелета оказывается тем дольше, чем меньше ко-

эффициент отражения СП, но практически всегда оно остается приемлемым,

то есть порядка нескольких часов при перемещении на пару километров. Если

увеличить расстояние до нескольких сотен километров, то на транспортировку

грузов между точками будет затрачиваться не менее суток. Эффективным ока-

зывается даже СП, который полностью поглощает солнечную радиацию, так

как в процессе движения все равно будет возникать некоторое ускорение.

Sunjamer и Helios оказываются наиболее быстрыми при перелете на за-

данные расстояния благодаря своим техническим параметрам, а именно высо-

кой парусности, то есть отношению площади СП к массе КА.



—58—

На рис. 2.9 и в таблице 2.2 показаны основные динамические характе-

ристики движения КА с постоянно ориентированным СП при перемещении с

нулевыми начальными и конечными скоростями 𝑣𝑖 = 0, 𝑖 = 1, 2 между вер-

шиной 𝑉1 и точкой на эллипсе, расположенной над космической станцией 𝐹2,

которым соответствуют эксцентрические аномалии 𝜓1 = 0 и 𝜓2 = 𝜋 − arccos(𝑒),

причем эксцентриситет эллипса 𝑒 = 0.9, коэффициент отражения 𝑘 = 0.5, рас-

стояние от Солнца 𝑅 = 0.5 а.е.
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Рисунок 2.9. Динамические характеристики перемещения КА с постоянно
ориентированным СП между точками 𝜓1 = 0 и 𝜓2 = 𝜋 − arccos(𝑒) в

безразмерных единицах измерения
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Таблица 2.2. Динамические характеристики перемещения КА с постоянно
ориентированным СП между точками 𝜓1 = 0 и 𝜓2 = 𝜋 − arccos(𝑒)

Космический Продолжительность Максимальное Максимальная
аппарат перелета 𝑡, ч натяжение 𝑇𝑚𝑎𝑥, гc скорость 𝑣𝑚𝑎𝑥,м/с
IKAROS 8.55 0.830 0.110

NanoSail 4.27 0.041 0.220

LightSail-2 2.67 0.133 0.352

Sunjammer 1.43 4.978 0.657

Helios 1.02 4.107 0.914

Helios развивает наибольшую максимальную скорость и совершает самый

быстрый перелет, однако максимальное натяжение троса для него оказывает-

ся выше, чем при использовании большинства других КА. Для эксплуатации

подобного рода КА требуется оснащать систему более прочным тросом.

Для тех же параметров точек перемещения на рис. 2.10 представлены

зависимости времени перелета КА с постоянно ориентированным СП от коэф-

фициента отражения при фиксированном 𝑒 = 0.9 и от эксцентриситета при

постоянном 𝑘 = 0.5 в безразмерных единицах измерения.
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Рисунок 2.10. Зависимость времени перелета 𝑡 от коэффициента отражения 𝑘
и эксцентриситета 𝑒 при перемещении КА с постоянно ориентированным СП

между точками 𝜓1 = 0 и 𝜓2 = 𝜋 − arccos(𝑒)
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Перемещения между точками 𝑉1 и расположенной над космической стан-

цией 𝐹2 на эллипсе возможны не при всех сочетаниях коэффициента отражения

и эксцентриситета. Если 𝑘 = 0, то при постоянном 𝑒 = 0.9 движение невоз-

можно, поскольку для создания ускорения требуется технически недопустимо

большой угол поворота СП. В случае, когда постоянным является 𝑘 = 0.5, пе-

релет возможен только, если траектория движения соответствует эллипсам с

определенными эксцентриситетами.

2.8. Выводы по главе 2

1. Найден способ управления полетом КА с СП при движении вдоль леер-

ной связи, предполагающей сохранение ориентации нормали СП относительно

направления солнечных лучей. Описаны маятниковые колебания, возникающие

в процессе такого перемещения вдоль троса между двумя произвольными точ-

ками.

2. Сформулированы и доказаны условия существования движения с на-

тянутым тросом между произвольными точками леерной связи при неизменно

направленной нормали СП.

3. Построены диаграммы, характеризующие множества пар точек, меж-

ду которыми возможно связное перемещение с постоянно ориентированным СП.

Рассмотрены частные случаи при различных эксцентриситетах эллипса, вдоль

которого происходит движение.

4. Разработан алгоритм исследования динамики полета космического ап-

парата с постоянно ориентированным солнечным парусом.

5. Определены относительная скорость, сила натяжения троса и продол-

жительность перемещения КА с СП, неизменно ориентированным относительно

солнечных лучей.
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6. Проведен анализ основных динамических характеристик движения.

Составлены графики и таблицы зависимостей скорости, ускорения, силы на-

тяжения троса от положения КА на эллипсе, рассчитано время перелета при

различных коэффициентах отражения и эксцентриситетах.

Основные результаты главы опубликованы в [102–104, 106, 107,

110,111]



Глава 3. Задача о движении космического аппарата с

управляемым солнечным парусом вдоль ле-

ерной связи

Целью данной главы является решение задачи о движении КА с управля-

емым СП между произвольными точками леерной связи, закрепленной на двух

гелиоцентрических космических станциях. Ориентация СП корректируется в

зависимости от положения КА на эллипсе.

Разрабатываются методика и алгоритм вычислений, учитывающие воз-

можность управления углом наклона нормали СП относительно направления

солнечных лучей. Ориентация СП, реализующая максимальное касательное

ускорение в каждой точке траектории, называется оптимальной, так как позво-

ляет осуществлять более быстрый перелет, чем в случае, изложенном в главе 2.

Вычисляются и оцениваются динамические характеристики полета КА между

произвольными точками леерной связи с учетом изменения положения СП.

В разделе 3.1. описаны движения КА с управляемым СП вдоль троса. В

разделе 3.2. предложена методика возможного способа перемещения между за-

данными точками леерной связи, предполагающая вычисление динамических

характеристик при коррекции положения СП, в том числе угла 𝛿 между на-

правлением вектора скорости КА и направлением солнечных лучей с учетом

нулевых начальных и конечных скоростей. В разделе 3.3. разработан алгоритм

исследования динамики полета КА с управляемым СП. В разделе 3.4. рассмот-

рено перемещение между наиболее удаленными точками леерной связи. Вычис-

лена продолжительность перемещения при различных вариантах начальных

условий. В разделе 3.5. определены основные динамические характеристики

полета при нулевых начальных и конечных скоростях. В разделе 3.6. произ-

ведена оценка параметров движения для реальных КА с СП. В разделе 3.7.

сформулированы выводы по главе 3.

62
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3.1. Движение с учетом коррекции положения солнечного па-

руса

Задача 3.1. КА, оснащенный СП, изменяющим положение в процессе
движения, перемещается под действием силы солнечной радиации 𝐹 между
произвольными точками леерной связи 𝐴𝑖, 𝑖 = 1, 2 с нулевыми начальной и
конечной скоростями 𝑣𝑖 = 0.

Для того, чтобы обеспечить более быстрое, чем описанное в предыдущей

главе, движение КА, необходимо корректировать положение СП таким обра-

зом, чтобы создавать максимально возможное касательное ускорение в каждой

точке траектории.

В силу сделанных предположений в главе 1 будем рассматривать пере-

мещение с нулевыми начальной и конечной скоростями 𝑣𝑖 = 0, 𝑖 = 1, 2. В

некоторой точке 𝐵, которую можно назвать точкой переключения, касательное

ускорение должно менять направление на противоположное. Таким образом,

точка 𝐵 делит дугу 𝐴1𝐴2 на участки 𝐴1𝐵, где осуществляется разгон, и 𝐵𝐴2,

где происходит торможение (рис. 3.1).

Рисунок 3.1. Движение между произвольными точками леерной связи с
управляемым СП при нулевых начальной и конечной скоростях
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3.2. Методика вычисления динамических характеристик при

изменении ориентации солнечного паруса

Для определение положения точки переключения и продолжительности

перемещения необходимо знать не только эксцентрические аномалии начальной

и конечной точек, но и иметь возможность вычислять максимум величины про-

екции силы солнечной радиации на касательную к траектории. При расчетах

можно использовать производную калибровочную характеристику 𝐹𝜏 (𝛿), поиск

которой осуществляется по формуле (1.14).

Для решения поставленной задачи используется следующая последова-

тельность действий:

1. Определение базовой калибровочной характеристики 𝐹 (𝛾). Будет ис-

пользоваться базовая калибровочная характеристика модели (1.2).

2. Поиск производной калибровочной характеристики 𝐹𝜏 (𝛿), рассчиты-

ваемой через 𝐹 (𝛾), и построение с ее помощью полей максимально возможного

касательного ускорения при разгоне и торможении.

3. Формирование по теореме об изменении кинетической энергии полей

скоростей для разгона с нулевой начальной скоростью и для торможения с

нулевой конечной скоростью.

4. Фиксация точки переключения, в которой совпадают поля скоростей

для разгона и для торможения.

5. Вычисление времени перелета как суммы продолжительностей пере-

мещения на участках разгона и торможения, определяемых соответствующими

полями скоростей.

Прежде, чем перейти к описанию алгоритма исследования динамики по-

лета космического аппарата с управляемым солнечным парусом, написанного

на основе методики, покажем, как выбирается угол 𝛿 для участков разгона и

торможения.
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Во все время перелета касательное ускорение должно быть максимально

по модулю, причем на дуге 𝐴1𝐵 направлено в сторону движения, а на дуге

𝐵𝐴2 противоположно. Угол 𝛿 между касательной к эллипсу и направлением

солнечных лучей будем обозначать 𝛿1 на участке ускорения, а 𝛿2 на участке

замедления (рис. 3.2).

Рисунок 3.2. Определение угла между вектором скорости и направлением
солнечных лучей на участках разгона и торможения

Относительная скорость определяется равенством

𝑣 =
(︁√

1− 𝑒2𝜓̇ cos𝜓,−𝜓̇ sin𝜓
)︁T

,

поэтому

cos 𝛿1 =

√
1− 𝑒2 cos𝜓√︀
1− 𝑒2 cos2 𝜓

,

откуда

𝛿1 = arccos

√
1− 𝑒2 cos𝜓√︀
1− 𝑒2 cos2 𝜓

, 𝛿2 = 𝜋 − arccos

√
1− 𝑒2 cos𝜓√︀
1− 𝑒2 cos2 𝜓

. (3.1)

Пусть масса КА равна единице, тогда безразмерные уравнения относи-

тельного движения в проекциях на касательную к траектории можно записать

в виде

𝑣̇ = ±𝐹𝜏 (𝛿𝑖), 𝑖 = 1, 2, (3.2)

где для разгона выбирается положительный знак при 𝑖 = 1, а для участка

торможения - отрицательный знак при 𝑖 = 2.
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Правая часть уравнения (3.2) зависит только от положения КА на эл-

липсе, и уравнение допускает первый интеграл

𝑣2

2
=

∫︁ 𝑠

𝑠1

𝐹𝜏 (𝛿𝑖) 𝑑𝑠, 𝑖 = 1, 2,

где 𝑠 – натуральный параметр эллипса,

𝐹𝜏 (𝛿𝑖) =

⎧⎨⎩ 𝐹𝜏 (𝛿1), 𝑠1 ⩽ 𝑠 ⩽ 𝑠(𝐵),

−𝐹𝜏 (𝛿2), 𝑠(𝐵) ⩽ 𝑠 ⩽ 𝑠2,

причем 𝑠𝑖 и 𝑠(𝐵) соответствуют точкам 𝐴𝑖, 𝑖 = 1, 2 и 𝐵.

Этот интеграл по существу является теоремой об изменении кинетиче-

ской энергии в орбитальной системе отсчета.

При вычислении криволинейного интеграла учитывается производная

калибровочная характеристика, вычисленная с использованием (3.1), а также

выражение для дифференциала 𝑑𝑠 =
√︀

1− 𝑒2 cos2 𝜓 𝑑𝜓, то есть теорема об из-

менении кинетической энергии принимает вид

𝑣2

2
=

∫︁ 𝜓

𝜓1

𝐹𝜏 (𝛿𝑖)
√︀

1− 𝑒2 cos2 𝜓 𝑑𝜓, 𝑖 = 1, 2, (3.3)

где 𝜓 – эксцентрическая аномалия актуальной точки, 𝜓𝑖 – эксцентриче-

ские аномалии начальной и конечной точек 𝐴𝑖, 𝑖 = 1, 2.

В точке 𝐴2 скорость равна нулю, а точка 𝐵 разделяет участки разго-

на и торможения, для определения ее эксцентрической аномалии 𝜓(𝐵) можно

использовать равенство∫︁ 𝜓(𝐵)

𝜓1

𝐹𝜏 (𝛿1)
√︀

1− 𝑒2 cos2 𝜓 𝑑𝜓 =

∫︁ 𝜓2

𝜓(𝐵)

𝐹𝜏 (𝛿2)
√︀

1− 𝑒2 cos2 𝜓 𝑑𝜓, (3.4)

получающееся из (3.3) подстановкой 𝜓2 вместо 𝜓.

Построим алгоритм решения поставленной задачи о движении КА с ори-

ентируемым СП при использовании базовой и производной калибровочных ха-

рактеристик. Алгоритм состоит из четырех этапов. На первом этапе вычисля-

ется базовая калибровочная характеристика 𝐹 (𝛾), отражающая величину силы

солнечной радиации. На втором этапе с учетом ограничения 0 ⩽ 𝛿 ⩽ 𝛿𝑚𝑎𝑥, где
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𝛿𝑚𝑎𝑥 = 𝜋
2
+ 𝛾𝑚𝑎𝑥, накладываемого на угол между силой солнечной радиации и

касательной к траектории 𝛿, вычисляется производная калибровочная харак-

тиристика 𝐹𝜏 (𝛿). На третьем этапе с помощью теоремы об изменении кинетиче-

ской энергии для участков разгона и торможения находится точка переключе-

ния ускорения. Если известны значения 𝐹𝜏 (𝛿𝑖), 𝑖 = 1, 2 на каждом из участков,

то определяются основные динамические характеристики. На четвертом этапе

осуществляется пересчет полученных величин в традиционные единицы изме-

рения.

3.3. Алгоритм исследования динамики полета космического

аппарата с управляемым солнечным парусом

В данном разделе подробно рассматривается алгоритм, позволяющий

определить точку переключения ускорения и вычислить основные динамиче-

ские характеристики движения между двумя произвольными точками при кор-

рекции положения СП.

Алгоритм 3.1.

Этап 1.
1.1. Найти значение базовой калибровочной характеристики 𝐹 (𝛾). Пе-

рейти к этапу 2.
Этап 2.

2.1. Определить значение производной калибровочной характеристи-
ки 𝐹𝜏 (𝛿𝑖), 𝑖 = 1, 2 при разгоне и торможении согласно (1.14). Перейти к этапу
3.

Этап 3.
3.1. Записать теорему об изменении кинетической энергии при разгоне

и торможении (3.3) и перейти к шагу 3.2.
3.2. Вычислить поля скоростей при разгоне и торможении. Перейти

к шагу 3.3.
3.3. Сравнить поля скоростей по формуле (3.4) при разгоне и тормо-

жении, перейти к шагу 3.4.
3.4. Вычислить точку переключения ускорения 𝜓(𝐵), найти участки

разгона и торможения. Перейти к шагу 3.5.
3.5. Удостовериться, что точка переключения ускорения находится

между начальной и конечной точками перемещения, то есть 𝜓1 < 𝜓(𝐵) < 𝜓2.
Если неравенство выполнено, перейти к следующему шагу, иначе завершить
алгоритм и вывести, что движение недопустимо.
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3.6. Вычислить массив ускорений 𝑤𝜏 [𝑗]. Перейти к шагу 3.7.
3.7. Определить массивы скоростей 𝑣𝜏 [𝑗] и сил натяжения троса 𝑇 [𝑗].
3.8. Рассчитать суммарное время перелета 𝑡. Построить графики. Пе-

рейти к этапу 4.
Этап 4.

4.1. Выразить из безразмерных значений величины динамических ха-
рактеристик в традиционных единицах измерения, в частности для реальных
КА. Завершить алгоритм.

Алгоритм 3.1 позволяет анализировать динамику полета КА с управ-

ляемым СП между любыми двумя точками границы леерной связи, располо-

женными на дуге эллипса при 0 ⩽ 𝜓 ⩽ 𝜋 с нулевыми начальной и конечной

скоростями.

Процедура вычисления согласно алгоритму 3.1 показана в форме блок-

схемы 3.3.

Входными данными являются те же параметры, что и в случае с посто-

янно ориентированным парусом, то есть коэффициент отражения СП 𝑘, эксцен-

триситет эллипса 𝑒, определяющий его форму, а также координаты начальной

и конечной точек 𝐴𝑖, 𝑖 = 1, 2, выраженные через эксцентрические аномалии 𝜓𝑖.

Построенный алгоритм предназначен только для перемещений по наибо-

лее удаленной от Солнца дуге эллипса, ограниченной вершинами 𝑉𝑖, 𝑖 = 1, 2,

принадлежащими его большой оси, то есть для перелетов при 0 ⩽ 𝜓1 < 𝜓2 ⩽ 𝜋.

В этом случае трос будет все время гарантированно натянут, поэтому в отличие

от аналогичной схемы 2.7 для постоянно ориентированного СП в блок-схеме 3.3

отсутствует проверка связности движения.

Введенное значение коэффициента отражения 𝑘 позволяет определить

базовую калибровочную характеристику 𝐹 (𝛾). Используя формулу (1.14), стро-

ятся производные калибровочные характеристики 𝐹𝜏 (𝛿𝑖), 𝑖 = 1, 2, причем 𝐹𝜏 (𝛿1)

соответствует ускорению, а 𝐹𝜏 (𝛿2) торможению. Для каждой из полученных ха-

рактеристик вычисляются касательное ускорение 𝑤𝜏 , скорость v, нормальная

проекция силы солнечной радиации на касательную к траектории 𝐹𝜏 , сила на-

тяжения троса T.
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Рисунок 3.3. Алгоритм исследования динамики полета космического аппарата
с управляемым солнечным парусом
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Находится точка переключения ускорения 𝐵 с эксцентрической анома-

лией 𝜓(𝐵) и проверяется, чтобы ее положение не совпадает с начальной или

конечной точками. Если это утверждение верно, то определяются макималь-

ные скорость 𝑣𝑚𝑎𝑥 и сила натяжения троса 𝑇𝑚𝑎𝑥, иначе при 𝜓(𝐵) = 𝜓1 или

𝜓(𝐵) = 𝜓2 невозможно выделить участки либо разгона, либо торможения, то

есть предлагаемый алгоритм не может быть реализован.

Оставшаяся чать алгоритма 3.1 использует численные методы интегри-

рования. Равенство (3.4) относительно неизвестной 𝜓(𝐵) решается в шаге 3.3

с заданной точностью при помощи метода деления отрезка пополам, при этом

интегралы вычисляются по формуле Симпсона [118]. Чтобы найти продолжи-

тельность перемещения, дуги 𝐴1𝐵 и 𝐵𝐴2 разбиваются на достаточно большое

количество интервалов [𝜓𝑗−1, 𝜓𝑗], на концах каждого из которых рассчитывает-

ся скорость (1.20). Принимая движение КА в пределах каждого из интегралов

равноускоренным, время прохождения отрезка пути можно определить как

𝑡𝑗 =
2∆𝑠𝑗

𝑣(𝜓𝑗−1) + 𝑣(𝜓𝑗)
, (3.5)

где ∆𝑠𝑗 – длина дуги эллипса между точками, соответствующими экс-

центрическим аномалиям 𝜓𝑗−1 и 𝜓𝑗.

Суммарное время перелета на всех интервалах будет равно продолжи-

тельности перемещения между точками 𝐴𝑖, 𝑖 = 1, 2, то есть

𝑡 =
∑︁
𝑗

𝑡𝑗.

Далее вводятся размерные параметры: площадь СП 𝑆, масса КА 𝑚, рас-

стояния между станциями 2𝑐 и от Солнца до центра эллипса 𝑅. В результате

пересчета динамических характеристик находятся длина троса 2𝑎* в метрах,

время перелета 𝑡* в часах, максимальная скорость 𝑣*𝑚𝑎𝑥 в м/с, равная скорости

в точке переключения, максимальное натяжение троса 𝑇 *
𝑚𝑎𝑥 в граммах-силы.

Пример расчета динамических характеристик движения с использовани-

ем алгоритма проиллюстрирован графически в приложении A.
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3.4. Продолжительность перемещения между наиболее уда-

ленными точками леерной связи

Вычислим минимально возможное время перелета между наиболее уда-

ленными точками леерной связи 𝑉1 и 𝑉2, которым соответствуют эксцентриче-

ские аномалии 𝜓1 = 0 и 𝜓2 = 𝜋 в случаях, когда только начальная скорость

равна нулю 𝑣1 = 0 и когда нулевыми являются и начальная, и конечная ско-

рости 𝑣𝑖 = 0, 𝑖 = 1, 2. В рассматриваемой ситуации интеграл энергии (1.29)

зависит от оптимального угла наклона нормали идеального СП относительно

направления солнечных лучей 𝛼𝑜𝑝𝑡, являющегося корнем квадратного уравне-

ния (1.10) при 0 < 𝜓 < 𝜋, и для него справедливо выражение

1

2

(︀
1− 𝑒2 cos2 𝜓

)︀
𝜓̇2 =

∫︁ 𝜓

0

√
1− 𝑒2 cos𝜓 − tg𝛼𝑜𝑝𝑡 sin𝜓

(1 + tg2 𝛼𝑜𝑝𝑡)
3
2

𝑑𝜓,

Если правую часть выражения принять за Φ(𝛼), тогда при подстановке

значения в интеграл энергии (1.30) время перелета с учетом только нулевой

начальной скорости определяется равенством

𝑡 =

∫︁ 𝜋

0

√︃
1− 𝑒2 cos2 𝜓

2Φ(𝛼𝑜𝑝𝑡)
𝑑𝜓,

при этом полученный интеграл является сходящимся несобственным.

Графики зависимостей продолжительности перемещения 𝑡 от эксцентри-

ситета 𝑒 и от отношения полуосей 𝑏/𝑎 =
√
1− 𝑒2 только при нулевой начальной

скорости 𝑣1 = 0 приведены на рис. 3.4. Дифференцируя зависимость 𝑡 по 𝑒, мож-

но установить, что время перелета между вершинами эллипса будет принимать

минимальное значение 𝑡𝑚𝑖𝑛 = 2.5691, которое достигается при 𝑒 = 0.9085, когда

𝑏/𝑎 = 0.4189.
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Рисунок 3.4. Зависимость времени перемещения 𝑡 от эксцентриситета 𝑒 и
отношения полуосей 𝑏/𝑎 только при нулевой начальной скорости в

безразмерных единицах измерения

Определим теперь минимально возможное время перемещения между

теми же вершинами эллипса 𝑉1 и 𝑉2, но с нулевыми начальной и конечной

скоростями 𝑣𝑖 = 0, 𝑖 = 1, 2. Как и в предыдущем случае, в каждой точке траек-

тории касательное ускорение должно быть максимально возможным при задан-

ных начальных условиях. КА будет разогняться, и после прохождения точки

переключения ускорения 𝐵, принадлежащей малой полуоси эллипса и соответ-

ствующей эксцентрической аномалии 𝜓(𝐵) = 𝜋
2
, начнет замедляться до тех пор,

пока не достигнет вершины 𝑉2 с нулевой конечной скоростью. Время перелета

в данной ситуации будет вычисляться как

𝑡 = 2

∫︁ 𝜋
2

0

√︃
1− 𝑒2 cos2 𝜓

2Φ(𝛼𝑜𝑝𝑡)
𝑑𝜓.

Графики зависимостей продолжительности перемещения 𝑡 от эксцентри-

ситета 𝑒 и от отношения полуосей 𝑏/𝑎 =
√
1− 𝑒2 при нулевых начальной и ко-

нечной скоростях 𝑣𝑖 = 0, 𝑖 = 1, 2 приведены на рис. 3.5. Минимальное значение

времени 𝑡𝑚𝑖𝑛 = 3.3597 достигается при 𝑒 = 0.9117, когда 𝑏/𝑎 = 0.4324.
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Рисунок 3.5. Зависимость времени перемещения 𝑡 от эксцентриситета 𝑒 и
отношения полуосей 𝑏/𝑎 при нулевой начальной и конечной скоростях в

безразмерных единицах измерения

3.5. Перемещение между произвольными точками леерной

связи

Относительная скорость КА. Безразмерное значение скорости 𝑣 мо-

жет быть найдено на участках разгона и торможения с помощью соотношения (3.3).

Сила натяжения троса. Уравнения движения в проекции на внутрен-

нюю нормаль к эллипсу (1.24) можно переписать как

𝑣2

𝜌
= 2𝑇 cos

𝛽

2
− 𝐹 (𝛾) sin (𝛿𝑖 − 𝛾) , 𝑖 = 1, 2,

где 𝜌 и 𝛽 определяются равенствами (2.8).

Для участков ускорения и замедления сила натяжения троса в этом слу-

чае будет вычисляться по формуле

𝑇 =
𝑣2

2 (1− 𝑒2 cos2 𝜓)
+
𝐹 (𝛾) sin (𝛿𝑖 − 𝛾)

2
√
1− 𝑒2

√︀
1− 𝑒2 cos2 𝜓, 𝑖 = 1, 2.

Продолжительность перемещения. Время перелета до и после точки

𝐵, в которой происходит переключение ускорения, обозначим соответственно за

𝑡1 и 𝑡2. Данные промежутки времени могут быть определены интегрированием
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уравнения (3.3) следующим образом

𝑡1 =

∫︁ 𝜓(𝐵)

𝜓1

√︀
1− 𝑒2 cos2 𝜓 𝑑𝜓√︁

2
∫︀ 𝜓
𝜓1
𝐹𝜏 (𝛿1)

√︀
1− 𝑒2 cos2 𝜓 𝑑𝜓

𝑡2 =

∫︁ 𝜓2

𝜓(𝐵)

√︀
1− 𝑒2 cos2 𝜓 𝑑𝜓√︁

𝑣2(𝐵)− 2
∫︀ 𝜓
𝜓(𝐵)

𝐹𝜏 (𝛿2)
√︀

1− 𝑒2 cos2 𝜓 𝑑𝜓
.

(3.6)

Общая продолжительность перемещения определяется в виде суммы вре-

мени, затраченного на участках разгона и торможения.

𝑡 = 𝑡1 + 𝑡2.

3.6. Оценка динамических характеристик

На примере реальных КА из таблицы 1.1 продемонстрирована эффек-

тивность и проведена оценка разработанных способов перемещения. Предвари-

тельно определяются безразмерные величины, которые переводятся в традици-

онные единицы измерения.

Для IKAROS, NanoSail, LightSail, Sunjamer и Helios вычисляется мини-

мально возможное время перелета между вершинами 𝑉1 и 𝑉2, принадлежащими

большой оси эллипса. Рассмотрены случаи, когда СП ортогонален солнечным

лучам при нулевых начальной и конечной скоростях; когда положение СП кор-

ректируется в процессе движения при нулевых начальной и конечной скоростях;

когда ориентация СП меняется так, чтобы создать максимальное ускорение при

условии, что нулевой будет только начальная скорость.

Для перечисленных случаев определяется продолжительность перемеще-

ния на растояние 2 км и 20 км, которая показана в таблицах 3.1 и 3.2.

В качестве эталона, описывающего безразмерную ситуацию, выбраны

следующие параметры: масса КА 𝑚 = 1, площадь СП 𝑆 = 1, половина дли-

ны троса 𝑎 = 1. Характерная величина солнечного давления на расстоянии

1 а.е. от Солнца принималась равной 𝑃 = 9 · 10−6 Н/м2.
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Таблица 3.1. Продолжительность перемещения между точками 𝑉1 и 𝑉2 на
расстояние 2 км при различных способах управления

𝑡𝑚𝑖𝑛, ч с парусом, 𝑡𝑚𝑖𝑛, ч с парусом, 𝑡𝑚𝑖𝑛, ч с парусом,
Космический ортогональным корректируемым корректируемым
аппарат солнечным лучам, в процессе движении, в процессе движении,

при 𝑣𝑖 = 0, 𝑖 = 1, 2 при 𝑣𝑖 = 0, 𝑖 = 1, 2 при 𝑣1 = 0

Эталон 3.5573 3.3597 2.5691

IKAROS 18.6325 17.5975 13.4565

NanoSail 9.3163 8.7988 6.7283

LightSail-2 5.8227 5.4992 4.2052

Sunjammer 3.1248 2.9512 2.2567

Helios 2.2452 2.1205 1.6215

Таблица 3.2. Продолжительность перемещения между точками 𝑉1 и 𝑉2 на
расстояние 20 км при различных способах управления

𝑡𝑚𝑖𝑛, ч с парусом, 𝑡𝑚𝑖𝑛, ч с парусом, 𝑡𝑚𝑖𝑛, ч с парусом,
Космический ортогональным корректируемым корректируемым
аппарат солнечным лучам, в процессе движении, в процессе движении,

при 𝑣𝑖 = 0, 𝑖 = 1, 2 при 𝑣𝑖 = 0, 𝑖 = 1, 2 при 𝑣1 = 0

IKAROS 58.9212 55.6483 42.5532

NanoSail 29.4606 27.8241 21.2766

LightSail-2 18.4129 17.3901 13.2979

Sunjammer 9.8814 9.3325 7.1364

Helios 7.1000 6.7056 5.1277

Если космические станции расположены достаточно близко, время пере-

лета составляет несколько часов. Если они расположены на большем расстоянии

друг от друга, то перемещение может занимать несколько суток, что показа-

но в таблице 3.2. Насколько допустимо столь длительное движение, зависит

от характера выполняемой миссии. Найденные значения могут быть признаны

приемлемым благодаря отсутствию топливных затрат. Отметим, что средняя

скорость перелета возрастает с увеличением расстоянием между станциями.
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Из приведенных способов управления СП наиболее быстрое перемещение

обеспечивает тот, что не требует остановки КА в конечной точке. При нулевых

начальной и конечной скоростях перелет будет происходить быстрее, если кор-

ректировать положения СП в каждой точке траектории.

На рис. 3.6 и в таблице 3.3 представлены основные динамические ха-

рактеристики движения КА с управляемым СП при перемещении с нулевыми

начальными и конечными скоростями 𝑣𝑖 = 0, 𝑖 = 1, 2 между точкой на эл-

липсе, расположенной над космической станцией 𝐹1, и вершиной 𝑉2, которым

соответствуют эксцентрические аномалии 𝜓1 = arccos 𝑒 и 𝜓2 = 𝜋
2
, причем экс-

центриситет эллипса 𝑒 = 0.8, коэффициент отражения 𝑘 = 0.1, расстояние от

Солнца 𝑅 = 0.5 а.е.
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Рисунок 3.6. Динамические характеристики перемещения КА с управляемым
СП между точками 𝜓1 = arccos 𝑒 и 𝜓2 =

𝜋
2
в безразмерных переменных
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Таблица 3.3. Динамические характеристики перемещения КА с управляемым
СП между точками 𝜓1 = arccos 𝑒 и 𝜓2 =

𝜋
2

Космический Продолжительность Максимальное Максимальная
аппарат перелета 𝑡, ч натяжение 𝑇𝑚𝑎𝑥, гc скорость 𝑣𝑚𝑎𝑥,м/с
IKAROS 25.08 0.2582 0.0131

NanoSail 12.53 0.0129 0.0263

LightSail-2 7.83 0.0413 0.0421

Sunjammer 4.2 1.549 0.0784

Helios 3.02 1.278 0.1092

Helios развивает наибольшую максимальную скорость, как и в случае с

постоянно ориентированным СП, также оказывается выше максимальное натя-

жение троса, чем при использовании большинства других КА.

Для тех же параметров начальных и конечных точек перемещения на

рис. 3.7 представлены зависимости времени перелета КА с управляемым СП

от коэффициента отражения при фиксированном 𝑒 = 0.8 и от эксцентриситета

при постоянном 𝑘 = 0.1 в безразмерных единицах измерения.
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Рисунок 3.7. Зависимость времени перелета 𝑡 от коэффициента отражения 𝑘 и
эксцентриситета 𝑒 при перемещении КА с управляемым СП между точками

𝜓1 = arccos 𝑒 и 𝜓2 =
𝜋
2
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Перемещения между точками расположенной над космической станци-

ей 𝐹1 на эллипсе и 𝑉2 не всегда оказываются возможными при определенных

коэффициентах отражения и эксцентриситетах. Если 𝑘 = 0, то при постоян-

ном 𝑒 = 0.8 КА не может разогнаться, а в некоторых других ситуациях нельзя

выделить участок торможения.

В случае, когда постоянным является 𝑘 = 0.1, перелет возможен только,

если траектория движения соответствует эллипсам с определенными эксцен-

триситетами.

3.7. Выводы по главе 3

1. Предложен способ перемещения КА с корректируемым положением

СП между точками леерной связи, предусматривающий участки максимально

быстрого разгона и торможения.

2. Описана методика вычисления точки переключения ускорения и спо-

соб коррекции положения СП.

3. Разработан алгоритм исследования динамики полета космического ап-

парата с управляемым солнечным парусом.

4. Вычислены относительная скорость и силы натяжения троса в зависи-

мости от положения КА на траектории движения, определена продолжитель-

ность перемещения как сумма времени перелета на участках разгона и тормо-

жения.

5. Проведен анализ основных динамических характеристик движения КА

с управляемым СП. Составлены графики и таблицы зависимостей скорости,

ускорения, силы натяжения троса от положения КА на эллипсе, рассчитано

время перелета при различных значениях коэффициентах отражения и эксцен-

триситетах.

Основные результаты главы опубликованы в [101, 105, 108, 109,

111]



Заключение

В диссертационной работе предложены методы решения задачи динами-

ки КА с СП при движении между произвольными точками леерной связи. Если

СП не меняет положение относительно солнечных лучей, то его нормаль оста-

ется постоянно направленной, и КА совершает маятниковые колебания по дуге

эллипса. Если в каждой точке траектории положение СП корректируется таким

образом, чтобы создавалось максимально возможное ускорение, то его нормаль

необходимо поворачивать на некоторый оптимальный угол, и тогда КА будет

перемещаться по наиболее удаленной от Солнца дуге эллипса быстрее, чем в

первом случае. Для каждого из двух видов перелета получены следующие ре-

зультаты:

1. Построена математическая модель СП и записана формула для вычис-

ления соответствующей силы солнечной радиации. Введены понятия базовой

и производной калибровочных характеристик, определяющих эту силу. Най-

ден оптимальный угол наклона СП, предполагающий создание максимального

ускорения в каждой точке траектории при движении вдоль леерной связи.

2. Проведен анализ динамики КА с СП и оценка сил. Сила Кориолиса

оказывается на 3-4 порядка меньше величины солнечной радиации, на 4-5 по-

рядков больше разности гравитационного притяжения Солнца и переносной си-

лы инерции, не может привести к сходу со связи при значительных скоростях,

но требует коррекции положения СП в начале движения, а также практиче-

ски не влияет на натяжение троса. Таким образом, сила солнечной радиации и

центростремительное ускорение фактически определяют величину натяжения

троса.

3. Сформулированы необходимые и достаточные условия существования

связного движения КА с СП между произвольными точками леерной связи.

Описано множество пар точек, между которыми возможен такой перелет.

4. Выведены уравнения движения и записана теорема об изменении ки-
79
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нетической энергии при неизменно ориентированном и управляемым для со-

здания максимального ускорения СП с учетом неидеальности отражающей по-

верхности.

5. Разработана методика решения задач о движении КА с постоянно ори-

ентированным и корректируемым положением СП. Для вычисления динамиче-

ских характеристик применены методы численного интегрирования.

6. В качестве частного случая рассмотрено перемещение КА между наи-

более удаленными точками леерной связи с учетом нулевых начальных и ко-

нечных скоростей при постоянно ориентированном и изменяющемся положение

СП.

7. Разработаны алгоритмы и программный комплекс, реализующие реше-

ние задачи динамики относительного движения КА с СП в рамках космической

тросовой системы.

В дальнейшем тема, изучаемая в диссертационной работе, может быть

дополнена исследованием динамики КА с учетом коррекции положения СП при

движении вдоль леерной связи на той дуге эллипса, что наиболее близко распо-

ложена к Солнцу. Результаты позволят более комплексно судить о поставленной

задаче, в связи с чем появится необходимость внести изменения в код программ-

ного комплекса, вычисляющего динамические характеристики перелета. Кроме

того, имеет смысл сравнить представленное решение задачи управления КА с

результатом, получаемым методами теории оптимального управления.
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Приложение А. Примеры использования алгоритмов

Графическая интерпретация реализации алгоритма 2.1

Графическая интерпретация реализации алгоритма 3.1
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Приложение Б. Краткое описание программного ком-

плекса, созданного на основе результатов диссертаци-

онной работы

В диссертационной работе описаны два случая, позволяющие организо-

вать перемещение, когда СП постоянно ориентирован по отношению к солнеч-

ным лучам (глава 2) и когда его положение корректируется в процессе перелета

(глава 3). Разработанные алгоритмы предназначены для решения задач дина-

мики относительного движения КА с СП в рамках космической тросовой систе-

мы [111]. В результате их применения возникают несобственные интегралы, для

вычисления которых используются методы численного интегрирования [118].

Для реализации алгоритмов 2.1 и 3.1 был создан программный комплекс в си-

стеме компьютерной алгебры Maple с применением библиотеки для создания

графических приложений Maplets. Выбор языка программирования обусловлен

возможностью получать аналитические и численные решения, а также созда-

вать интуитивно простые графические приложения.

Изначально даннный комплекс является готовым продуктом, предназна-

ченным для определения основных динамических характеристик движения КА.

При наличие программного пакета также можно без затруднений менять исход-

ный код и модифицировать его под необходимые требования.

После запуска приложения появляется диалоговое окно «солнечный па-

рус в рамках тросовой системы», где предлагается выбрать тип траектории из

вариантов «по окружности», «по эллипсу», а также способ перемещения «с по-

стоянно ориентированным», «с управляемым» солнечным парусом. Как только

уточняется рассматриваемый вариант движения, возникает рабочее поле, ку-

да необходимо записать входные данные. Кроме того, в процессе работы про-

грамного комплекса можно вводить размерные значения параметров системы и

получать динамические характеристики в традиционных единицах измерения.
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