УДК 621.454.2, 533, 519.63

Численное моделирование режимов испарения и горения капельных струй топлива в камерах сгорания жидкостных ракетных двигателей Сидлеров Д.А,*Пономарев А.А.**

Исследовательский центр имени М.В. Келдыша, ГНЦ «Центр Келдыша»,

Онежская ул., 8, Москва, 125438, Россия

*e-mail: sidlerov@rambler.ru

**e-mail: ponomar aa@mail.ru

Аннотация

Рассмотрена физико-математическая модель, позволяющая рассчитать особенности индивидуальных и групповых режимов испарения и горения плотных турбулентных капельных струй жидких топлив. Приведены результаты исследований особенностей рабочего процесса в камерах сгорания при варьировании режимов испарения и горения капель топлива.

Ключевые слова: испарение и горение капель топлива, камера сгорания, численное моделирование.

Введение

Разработка методов численного моделирования рабочего процесса в камерах сгорания жидкостных ракетных двигателей (ЖРД) является актуальной проблемой, направленной на решение задач прогнозирования параметров процесса выгорания топлива в камерах сгорания и газогенераторах ЖРД, а также обеспечения совершенствования эксплуатируемых и разработки перспективных двигательных установок.

Развитие рабочего процесса в значительной мере определяется процессами турбулентного взаимодействия плотных капельных струй распыленного горючего и окислителя.

Испарение и горение капель, находящихся внутри струи распыленного жидкого топлива имеет ряд особенностей, связанных с эффектами коллективного взаимодействия Например, испарение соседних капель. капель распыленного горючего может приводить к возникновению областей с высокой концентрацией паров горючего И, соответственно, низкой концентрацией окислителя в газовой фазе. Аналогичные явления возможны и в плотных капельных струях окислителя, где может наблюдаться повышенная концентрация паров окислителя.

Проведенные исследования показывают, что использование специальных физико-математических моделей, учитывающих эффекты взаимовлияния капель, позволяет воспроизвести при численном моделировании горения плотных топливных капельных струй режимы, когда капли не имеют индивидуальных фронтов горения, в отличие от классических моделей, основанных на теории горения уединенной капли. Во внутренних областях плотных пучков идет испарение капель, и образовавшиеся пары растекаются к внешней границе пучка, где смешиваются и вступают в реакцию с парами другого компонента топлива, и, таким образом, формируется фронт горения, охватывающий весь пучок снаружи. Кроме того, наличие большого количества капель холодного топлива приводит к снижению температуры газовой фазы в межкапельном пространстве. Комбинация эффектов снижения концентрации окислителя и охлаждения потока может привести

к тому, что процессы воспламенения и горения топлива во внутренних областях плотных капельных струй горючего будут подавляться. При более подробном рассмотрении данного вопроса можно выделить три режима горения/испарения капель в пучках:

режим индивидуального горения капель, характерный для разреженных пучков, когда каждая капля окружена индивидуальным фронтом горения;

режим, когда во внутренней части пучка капли не окружены индивидуальными фронтами горения (т.е. испаряются в окружении газовой фазы с избыточной концентрацией собственного пара), а во внешней части пучка реализуется режим индивидуального горения капель;

режим, когда капли испаряются внутри пучка, а фронт горения охватывает пучок снаружи.

Метод численного моделирования

В [1] изложены физико-математическая модель и численный метод расчетного моделирования двухфазных осесимметричных и трехмерных турбулентных течений с горением в камерах сгорания и газогенераторах. Математическая модель включает уравнения типа Навье-Стокса и k-є модель турбулентности. Скорость горения определяется по модели размыва турбулентных вихрей и по обобщенному уравнению химической кинетики аррениусова типа. Расчет движения, прогрева, испарения и дробления капель жидкого горючего и окислителя проводится в подходе Лагранжа. При этом учитывается взаимообмен массой, импульсом и энергией между фазами газа и капель с учетом особенностей турбулентного течения. Уравнения в частных производных для газовой фазы дискретизируются

методом контрольного объема и численно решаются алгоритмом типа SIMPLER [2], а обыкновенные дифференциальные уравнения для дискретной (капельной) фазы интегрируются методом Рунге-Кутты [3].

Данный метод широко используется для численного моделирования рабочего процесса в модельных и натурных камерах сгорания, имеющих смесительные элементы разнообразных типов и работающих на различных компонентах топлива [4, 5].

В настоящей работе рассматривается расчетная модель, позволяющая определить индивидуальные и групповые режимы испарения/горения плотных турбулентных капельных струй жидких топлив. Основная идея модели заключается в следующем.

Обозначим через K соотношение компонентов топлива в газовой фазе в данной точке потока. По определению $K = \frac{\dot{m}_o}{\dot{m}_r}$, где \dot{m}_o , \dot{m}_r - массовые расходы соответственно окислителя и горючего. Характеристикой состава φ называют величину, определяющуюся по формуле $\varphi = \frac{1}{K+1}$.

Решив уравнения диффузии для испаряющейся капли в сферически симметричной постановке с граничным условием $\varphi = \varphi_{\delta}$ на расстоянии δ от поверхности капли, можно получить связь между радиальной координатой r, отсчитываемой от центра капли, и характеристикой состава $\varphi(r)$:

$$r = \frac{\frac{g_0 r_{x}^2}{\Gamma}}{\left[\frac{r_{x}}{\delta} \ln\left(\frac{1 - \varphi_{\delta}}{1 - \varphi_{0}}\right) + \ln\left(\frac{1 - \varphi_{\delta}}{1 - \varphi(r)}\right)\right]}$$
(1)

Здесь g_0 - удельный поток вещества капли у ее поверхности; $r_{\rm **}$ - радиус капли; $\Gamma = D_{\rm n} \rho$; $D_{\rm n}$ - среднее по пограничному слою капли значение коэффициента диффузии; ρ - плотность газа; φ_0 - характеристика состава у поверхности капли.

$$\delta = \frac{\Gamma r_{_{\mathcal{K}}} \ln \left(\frac{1 - \varphi_{_{\delta}}}{1 - \varphi_{_{0}}} \right)}{g_{_{0}} r_{_{\mathcal{K}}} - \Gamma \ln \left(\frac{1 - \varphi_{_{\delta}}}{1 - \varphi_{_{0}}} \right)}.$$

Величина g_0 также может быть получена из решения уравнения диффузии для покоящейся капли в сферически симметричной постановке. Однако в реальных условиях такие допущения неприменимы, поэтому величину g_0 следует определять из следующего эмпирического соотношения:

$$\mathbf{g}_{0} = \frac{\mathbf{D}_{\Pi} \boldsymbol{\rho}}{\mathbf{r}_{_{\mathsf{K}}}} \ln \left(1 + \frac{\boldsymbol{\varphi}_{0} - \boldsymbol{\varphi}_{_{\infty}}}{1 - \boldsymbol{\varphi}_{0}} \right) \cdot \frac{\mathbf{Sh}}{2}.$$

Здесь Sh - число Шервуда, которое, в свою очередь, рассчитывается по формуле $Sh=2+0,54\,Re^{\frac{1}{2}}\,Sc^{\frac{1}{3}},\, \text{где Re, Sc - соответственно числа Рейнольдса и Шмидта.}$

Таким образом, определяется средний эффективный радиус фронта пламени в условиях, когда капли движутся относительно газа, фронт пламени деформируется и не является сферически симметричным.

Радиус окружающего каплю фронта пламени $r_{\text{стех}}$ соответствует стехиометрическому значению $\varphi(r) = \varphi_{\text{стех}}$. Расстояние между каплями в пучке можно оценить так: $L_{\text{жж}} \approx (1/n_{_{\#}})^{1/3}$, где $n_{_{\#}}$ - количество капель в единице объема. Если расстояние между каплями больше диаметра фронта горения, окружающего капли, т.е. $L_{\text{жж}} > 2 \cdot r_{\text{стех}}$, то возможен режим индивидуального горения капель. В противном случае реализуется режим группового горения/испарения капель.

Численное моделирование и исследование особенностей испарения и горенияплотных топливных капельных струй в камерах сгорания

Разработанный расчетный метод использован для исследования особенностей развития рабочего процесса в камерах сгорания с соосноструйными смесительными элементами при варьировании режимных параметров. Проведена серия расчетов, результаты которых позволили исследовать особенности испарения и горения капельных струй при изменении начальной температуры топлива, параметров распыла и давления в камерах сгорания.

Рассмотрим результаты исследований для элемента ядра потока камеры сгорания, работающей на топливе кислород + керосин с давлением P=1 МПа при соотношении компонентов K=2,6. Через центральный цилиндрический канал струйно-центробежной газожидкостной форсунки подается генераторный газ с соотношением компонентов $K_{rr}=60$, а через периферический кольцевой канал —

керосин. Начальная температура капель керосина T_0 =300 K, а для других начальных параметров капель керосина в расчетах задавалось гауссово распределение при среднем диаметре по Заутеру [6] d_0 = 150мкм.

Детальная структура газокапельного потока видна на рис. 1, где представлены линии тока газовой фазы и выборочные траектории капель. Красным цветом обозначены капли керосина, которые находятся в режиме индивидуального горения, т.е. каждая капля окружена собственным фронтом пламени, а зеленым цветом - капли керосина, которые не имеют индивидуальных фронтов горения и находятся в режиме испарения и группового горения.

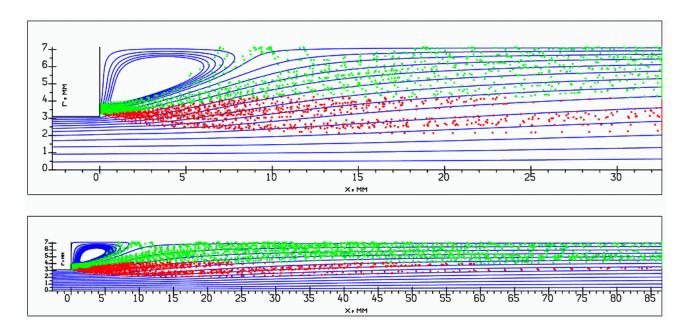


Рисунок 1 - Структура газокапельного течения. Синими линиями обозначены линии тока газовой фазы. Символами о обозначены выборочные траектории капель горючего в режиме индивидуального горения, а символами о – в режиме испарения/группового горения.

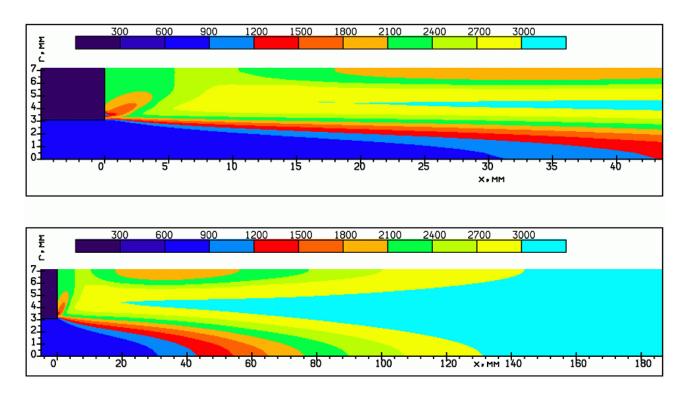


Рисунок 2 - Поле температуры, К.

Отметим особенности основные поведения пучка керосина. капель Непосредственно после попадания В камеру капли находятся режиме испарения/группового горения. По мере движения капли, находящиеся в той части керосиновой струи, которая граничит с потоком генераторного газа, входят в зону индивидуального горения. Как видно, зона индивидуального горения составляет существенную долю (около 1/3) от общего расхода керосина. В дальнейшем по мере прогрева и испарения капель, изменения температуры (рис. 2), концентраций горючего, окислителя и продуктов сгорания (рис. 3) в потоке происходят изменения, которые приводят к тому, что часть капель в средней части пучка переходят из режима индивидуального горения в режим испарения/группового горения.

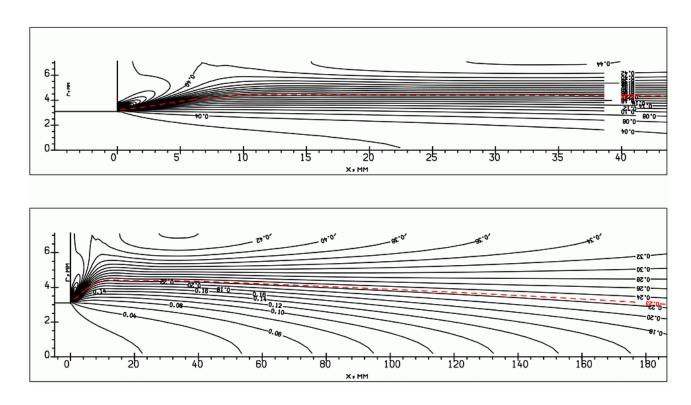


Рисунок 3 - Изолинии характеристики состава φ . Красной пунктирной линией обозначена стехиометрическая линия.

Данный вариант характеризуется неравномерными концентрационными и температурными полями в окрестности инжекции горючего и повышенной температурой в периферической зоне на начальном участке. Основная причина этих явлений — относительно малая скорость газификации горючего, которая обуславливается большим исходным диаметром и низкой начальной температурой капель, а также относительно небольшим давлением в камере сгорания.

Для адекватного моделирования рабочего процесса в камерах сгорания, работающих на жидком топливе, учет режимов индивидуального и группового горения капельных струй может быть очень важен. Для демонстрации этого утверждения был проведен специальный расчет. Все параметры расчетной модели в данном расчёте совпадают с вариантом, рассмотренным выше, за исключением одного — в данном варианте отключена опция, воспроизводящая режим

индивидуального горения капель. Результаты этого расчета приведены на рис. 4–6. Проведем сравнительный анализ особенностей рабочего процесса.

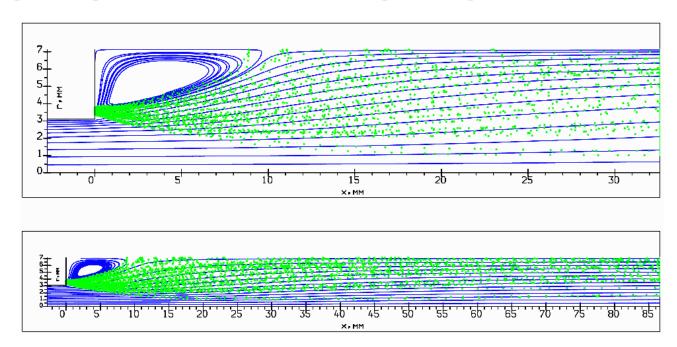


Рисунок 4 - Структура газокапельного течения. Синими линиями обозначены линии тока газовой фазы. Символами о обозначены выборочные траектории капель горючего в режиме индивидуального горения, а символами о – в режиме испарения/группового горения. В расчете отключена опция режима индивидуального горения капель.

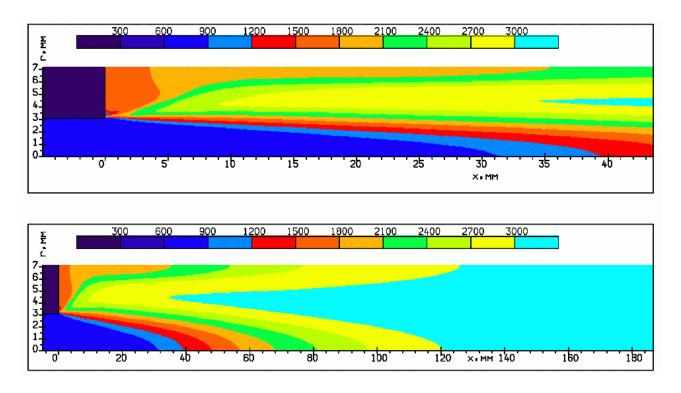


Рисунок 5 - Поле температуры, К. В расчете отключена опция режима индивидуального горения капель.

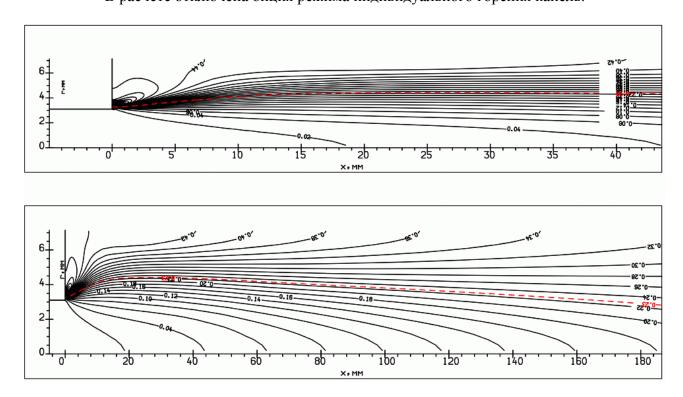


Рисунок 6 - Изолинии характеристики состава φ . Красной пунктирной линией обозначена стехиометрическая линия. В расчете отключена опция режима индивидуального горения капель.

Отключение опции индивидуального горения капель приводит к снижению темпов прогрева и, следовательно, к уменьшению скорости испарения капель горючего, находящихся в зоне высокой концентрации окислителя (рис. 4). Это, в свою очередь, вызывает уменьшение скорости выгорания компонентов топлива, а также соотношения компонентов в газовой фазе и температуры внутри пучка капель (рис. 5, 6). Соответственно, снижается концентрация продуктов сгорания. Различие в уровне температур между двумя рассматриваемыми вариантами в периферической области потока на начальном участке достигает 500 К. Указанные отличия в структуре двухфазного турбулентного потока существенно меняют тепловой режим

конструкции камеры на начальном участке, параметры высокочастотной устойчивости рабочего процесса и полноту выгорания топлива.

Выводы

Проведена доработка метода численного моделирования взаимодействия и горения плотных топливных капельных струй, которая позволяет учесть возможность реализации различных режимов индивидуального и группового горения капельных пучков.

Представлены результаты расчетов, демонстрирующие возможности метода по исследованию особенностей рабочего процесса в камерах сгорания с соосными струйно-центробежными газожидкостными смесительными элементами для различных режимов горения топливных струй.

Библиографический список

- 1. Kalmykov G.P., Larionov A.A., Sidlerov D.A., Yanchilin L.A. Numerical Simulation and Investigation of Working Process Features in High-Duty Combustion Chambers, Journal of Engineering Thermophysics, 2008, vol. 17, no. 3, pp. 196–217.
- 2. Pantankar S. Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, New York, 1980, 197 p.
- 3. Gosman A.D., Ioannides E. Aspects of Computer Simulations of Liquid-Fuelled Combustors // AIAA Paper 81-0323, 1981.

- 4. Мосолов С.В., Сидлеров Д.А., Пономарев А.А., Смирнов Ю.Л. Расчетное исследование особенностей рабочего процесса в камерах сгорания ЖРД, работающих на топливе кислород + углеводороды // Электронный журнал «Труды МАИ», 2012, №58: http:// www.mai.ru/science/trudy/published.php?ID=33406 (дата публикации 26.09.2012).
- 5. Мосолов С.В., Сидлеров Д.А., Пономарев А.А. Сравнительный анализ особенностей рабочего процесса в камерах сгорания ЖРД со струйно-струйными и струйно-центробежными форсунками на основе численного моделирования // Электронный журнал «Труды МАИ», 2012, №59: http://www.mai.ru/science/trudy/published.php?ID=34989 (дата публикации 23.11.2012).
- 6. Дитякин Ю.Ф, Клячко Л.А., Новиков Б.В., Ягодкин Б.И. Распыливание жидкостей. М.: Машиностроение, 1977. 206 с.