ИНФОРМАЦИОННО-ПРОГРАММНЫЙ КОМПЛЕКС КОСМИЧЕСКОЙ СИСТЕМЫ НАБЛЮДЕНИЯ ЗА МОРСКИМИ ОБЪЕКТАМИ

Малова Н. В.

ФГУП трудового красного знамени «Центральный научноисследовательский институт «Комета», г. Москва, Россия

На сегодняшний день существуют различные небольшие информационные центры наблюдения за перемещением судов в акватории мирового океана, контролирующие различные объекты, однако информация между ними не синхронизируется, нет общей картины обстановки. Возникает необходимость создания общего Центра сбора и обработки информации (ЦСОИ), куда бы стекались все данные по морским объектам, которые будут храниться в определенном виде с возможностью быстрого доступа.

Источники информации по обстановке мирового океана могут быть различные, кроме средств связи судов и других способов предлагается использовать космическую составляющую. Привлечение космических средств дает следующие возможности:

- независимая информация о положении морских объектов;
- контроль обстановки прибрежных зон и зон патрулирования флотом;
- поиск пропавших судов (не выходящих на связь);
- возможность мониторинга опасных зон или заданного района (например, наблюдение за районом перемещения пиратских судов).

Основные районы с особым режимом плавания отражены в лоциях и Сводных описаниях районов океанских зон. В этих районах опасности, подстерегающие суда

статические. При возникновении динамических опасностей таких как: цунами, начавшиеся военные действия и т.д. необходимо решать задачу обеспечения безопасности плавания путем своевременного информирования и оценки времени возвращения судов в ближайшие безопасные зоны.

В настоящее время контролю подлежат свыше десятка тысяч морских объектов различного назначения, находящихся в акватории мирового океана. Так как для принятия решения и прогнозирования ситуации нужны не только данные в текущий момент времени, но и за предыдущее время, то необходимое количество точек мирового океана, подлежащих контролю, может быть около миллиона.

Для создания информационно-программных комплексов (ИПК), оперирующих значительными объемами данных, целесообразно использование информационной технологии проектирования (ИТП). Согласно принятой концепции, основой этой технологии являются данные, которые должны быть организованы в виде базы данных (БД) с целью адекватного отображения изменяющегося реального мира и удовлетворения потребностей пользователей.

Анализ разработанных программных комплексов обработки информации и управления показывает, что значительная программного кода выполняют поиск, выборку и упорядочивание данных. Проведя анализ информации на этапе проектирования и, создав упорядоченную структуру в виде БД, можно воспользоваться предоставляемыми средствами СУБД, которые обеспечивают большинство функций работы с данными. Недостающие функции разрабатываются в виде приложений и библиотек.

В настоящей работе рассматривается информационно-управляющая система (ИУС) мониторинга обстановки мирового океана средствами космических аппаратов с различным типом бортовой аппаратуры обнаружения, а именно принципы и особенности создания информационно-программного обеспечения (ИПО) для ЦСОИ по обстановке в мировом океане.

Персонал, обслуживающий ИУС, обеспечивает автоматизированное управление системой на основании информации, предоставляемой ему в составе интерфейса пользователя на рабочих местах (РМ) операторов. Для рассматриваемой системы необходима реализация следующих функций:

- формирование задания на работу в виде назначений объектов исполнения и наблюдения средств наблюдения на основании приходящих распоряжений;
 - планирование: расчет и оптимизация плана работы взаимодействующих систем;
 - корректировка и утверждение сформированной выходной информации;
- обеспечение безопасности информации: формирование и контроль доступа персонала к информации;
- администрирование базы данных: обеспечение актуальности, целостности и сохранности информации в БД;
- прием информации, контроль поступающих от внешних абонентов данных на соответствие полноты и достоверности;
 - выдача информации внешним абонентам по электронной почте;
 - ведение обстановки с применением электронной карты;
 - обеспечение гидро-метео информацией.

Этот далеко не полный перечень функций показывает необходимость создания распределённой ИУС, в которой функции разделены между несколькими операторами.

Из вариантов создания среды, поддерживающей подобную структуру, наиболее предпочтительным является метод, применяемый в веб-технологиях и, прежде всего, по причине доступности решений, наличия готовых программ для комплектации изделия и выполнению требований по надежности и качеству функционирования.

Метод состоит в использовании связки программного обеспечения:

- HTTP-сервер, установленный на выделенной машине в сети (Сервер) (принимает от клиентов HTTP запросы и выдает HTTP ответы);
- система управления базами данных (СУБД), где сервер СУБД может совпадать с машиной Сервер;
- HTML-браузер, установленный на машине клиента и таких машин может быть произвольное количество.

Особенности:

- обмен данными осуществляется по протоколу НТТР;
- СЕРВЕР стандартный веб-сервер + БД + СУБД + функциональное программное обеспечение (ФПО), там происходит процесс авторизации, выполнение запросов, обработка ошибок;
- КЛИЕНТЫ стандартные веб-браузеры, на клиентах осуществляют только отправка запросов и воспроизведение ответов, присланных сервером, в виде HTML-страниц.

Применение метода связано с распределенным характером системы и необходимостью интеграции возможностей и ресурсов всех участников ИУС, которые нуждаются в согласованной информации, а также необходимостью сокращения трудозатрат на разработку при сохранении функций и качеств систем.

В процессе выполнения конкурсной работы предложена реализация метода с использованием следующих средств информационной технологии **КоРЕх**:

- − веб-сервер apache;
- фреймворк PHP **Ko**hana (в качестве слоя обработки данных, скриптовый серверный язык для создания динамических веб-приложений);
- интерпретатор серверных скриптов РНР;
- СУБД **P**ostgresql (Линтер-ВС);
- фреймворк JavaScript ExtJs (для разработки пользовательских интерфейсов,

поддерживает технологию <u>АЈАХ</u>, анимацию, работу с <u>DOM</u>, реализацию таблиц, вкладок, обработку событий);

- интерпретатор клиентских скриптов JS
- базовый веб-клиент Mozilla FireFox;
- платформа Linux (MCBC) или Windows NT.

В работе описано представление информации ИУС, оно реализовано в виде БД объектной структуры, полностью отражающей все необходимые свойства и функции объектов.

Описание каждого объекта представляет собой набор таблиц:

- *головная информация* (Данные), специфичная для экземпляра объекта;
- **типовая информация** (\$ТИП), характеризующая серию объектов данного типа;
- *значения* (\$3НАЧ) чаще всего цифровые, реже символьные параметры, которые могут быть при описании объекта, относящиеся как к отдельному экземпляру, так и ко всем экземплярам типа;
- *состояние* (\$COCT) описание состояния объекта на определённое время;
- **словарь** (\$СЛ) содержит словарные термины, используемые во всех компонентах описания объекта;
- *соединение* (\$СДК), связывающая данный объект с другими объектами;
- *фильтр (*\$ФЛ) для создания списков и фильтров возможных значений.

Таким образом представлены все объекты БД: космические аппараты, корабли различного назначения, районы, владельцы и другие.

БД предложенной структуры обладает следующими достоинствами:

- Легкость модернизации при проектировании. БД собирается из типовых объектов; состав выдаваемой и хранимой информации меняется с помощью предусмотренных таблиц специального вида;
- Динамичность при сопровождении. БД позволяет учесть практически все новые требования по структуре и составу информации, выдвигаемые пользователями.
- Эффективность хранения информации. В БД нет запасенных мест для будущей информации. Места появляются при её поступлении.

Использование БД в ИПК дает возможность хранения различного рода данных в упорядоченной структуре, что обеспечивает оперативное получение информации для расчетов и различной обработки, а также вывод информации различной компоновки, представляющей собой всевозможные таблицы и отчеты.

Один из разделов работы посвящен более подробному описанию принципов моделирования и планирования осмотров для КА. Для решения задачи слежения реализованы следующие функции обработки данных:

- расчет трасс движения KA на заданном интервале с использованием аналитического прогнозирования;
- определение географических координат пересечения трасс КА с зонами возможного нахождения объектов;
- выборка информации из БД по текущим параметрам KA, техническим характеристикам аппаратуры наблюдения для расчета плана работы KA;
- прогноз движения объекта с задаваемыми вероятностными параметрами для получения трассы движения объекта;
- режим ускоренного времени с отображением перемещений объекта на карте;
- формирование заявок на осмотр для взаимодействующих систем в формате XML;
- взаимодействие с источниками и перегрузка информации средствами SQL

созданием локальных БД для обмена данными и др.

2

Средствами СУБД осуществляется выборка информации из БД, являющейся входными данными для функций, производится обработка этих данных и вставка в БД полученных результатов в соответствии со структурой.

Реализация данных функций позволяет получить интервалы контроля объектов для различных исходных данных: количество КА, параметры орбит, характеристики аппаратуры наблюдения, трассы движения объектов.

Предложенная в конкурсной работе ИТП Корех создавалась и совершенствовалась по мере разработки в подразделении сложных программных комплексов. Технология реализована при создании ИПК для ЦСОИ мониторинга обстановки мирового океана. Анализируя результаты применения ИТП Корех, можно отметить следующие преимущества:

- увеличение скорости разработки и отладки комплекса;
- уменьшение трудозатрат на проектирование, обработку информации за счет использования структурированных данных и интеграции готовых решений в средствах автоматизации проектирования;
 - упрощение создания разнородного пользовательского интерфейса;
- кроссплатформенность возможность реализации сервера и браузера на разных платформах;
- простота обеспечения информационного и управляющего взаимодействия между приложениями комплекса;
- соответствие мировым стандартам форматов обмена данными, что дает возможность подключения новых источников информации, а также использование ЦСОИ как источника данных для других информационных систем;
 - получение заданных временных параметров работы подсистем и комплекса в целом.