МЕТОДИКА РАСЧЕТА ЭНЕРГЕТИЧЕСКИХ ХАРАКТЕРИСТИК ПОДСИСТЕМ МОБИЛЬНЫХ МНОГОФУНКЦИОНАЛЬНЫХ ЛАЗЕРНЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК НА ОСНОВЕ ВОЛОКОННЫХ ЛАЗЕРОВ

Авдеев А.В.1*, Каторгин Б.И.2**, Метельников А.А.1***

¹ Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, 125993, Россия ² НПО «Энергомаш им. академика В.П. Глушко», ул. Бурденко, 1, Химки, 141400, Россия ^{*} e-mail: alex021894@mail.ru ^{**} e-mail: bikator@mail.ru ^{***} e-mail: Metelnikov91@gmail.com

Статья поступила в редакцию 12.03.2019

Предметом исследования являются энергетические характеристики подсистем генерации, преобразования и передачи энергии, а также отвода тепла многофункциональных лазерных энергоустановок (МЛЭУ) на основе волоконных лазеров. В статье предложена методика расчета характеристик МЛЭУ. Приведены результаты апробации разработанной методики для расчета параметров МЛЭУ, решающей задачу борьбы с фрагментами космического мусора (ФКМ). Представленные методики могут быть использованы для комплексной оценки параметров подсистем МЛЭУ и разработки рекомендаций по ее применению.

Ключевые слова: космический мусор, многофункциональная лазерная энергоустановка, волоконный лазер.

Введение

Для решения ряда перспективных задач [1—12] современные космические аппараты (КА) с МЛЭУ должны одновременно решать задачи генерации, преобразования, передачи энергии (лазерного излучения) и отвода тепла. Кроме этого, должны быть решены задачи коррекции орбиты КА и его маневрирования. В современных проектах данные задачи рассмотрены частично, а иногда и на уровне экспертных оценок [1—7]. Поэто-

му для реализации системного подхода на этапе проектирования требуется создать методику разработки МЛЭУ, рассматривающую решение всех вышеперечисленных задач в комплексе.

На основании приведенных задач можно выделить следующие подсистемы КА с МЛЭУ (табл. 1).

Принципиальная схема МЛЭУ приведена на рис. 1. Не рассматриваемые в работе связи отмечены пунктирной линией.

Таблица 1

Подсистема	Задача системы					
Электропитания (далее система электропитания – СЭП)	Генерировать требуемое количество электроэнергии					
Лазерная (далее лазерная система – ЛС)	Создание требуемой плотности энергии лазерного излучения <i>E</i> на объекте, находящемся на расстоянии <i>L</i> , и удержание лазерного пятна на объекте в течение времени <i>t</i>					
Управления движением (далее система коррекции и маневрирования – СКМ)	Коррекция орбиты КА и маневрирование					
Обеспечения теплового режима (далее система обеспечения теплового режима – СОТР)	Обеспечение температурных режимов подсистем КА с МЛЭУ					

Подсистемы МЛЭУ

Рис. 1. Принципиальная схема МЛЭУ

В данной работе предложена методика определения параметров подсистем ЛС, СЭП и СОТР КА с МЛЭУ. Разработанная методика применена для анализа параметров подсистем КА с МЛЭУ на основе волоконных лазеров, решающей задачу очистки околоземного пространства от ФКМ.

Для разработки методики анализа параметров ЛС и согласования их с СОТР и СЭП требуется:

 разработать методику определения требований к режиму работы ЛС, соответствующему решаемой задаче (заданному способу функционирования):

$$F_{\rm cn}(X_{\rm задача}) = Y_{\rm peжим},$$

где $X_{{}_{задача}}$ — вектор параметров, соответствующий рассматриваемой задаче; $Y_{{}_{pежим}}$ — вектор параметров, характеризующий режим работы ЛС;

2) разработать методику расчета параметров ЛС исходя из параметров режима работы:

$$F_{\rm JC}(Y_{\rm pexum}) = X_{\rm JC},$$

где $X_{\rm ЛC}$ – параметры ЛС, требуемые для реализации работы ЛС в режиме с параметрами $Y_{\rm режим}$;

3) разработать методику определения требований к основным параметрам СЭП и СОТР для ЛС с параметрами *X*_{пC}:

$$F_{\rm COTP}(X_{\rm JIC}) = X_{\rm COTP},$$

$$F_{\rm C\Theta\Pi}(X_{\rm JC}) = X_{\rm C\Theta\Pi}$$

где $X_{\text{СОТР}}$ и $X_{\text{СЭП}}$ – параметры систем СОТР.

Методика определения режима работы ЛС для очистки околоземного пространства в составе КА с МЛЭУ

Считаем, что для очистки околоземного пространства необходимо понизить орбиту ФКМ $H^{\Phi KM}$ на величину $\Delta h^{\Phi KM}$. Тогда, согласно [1], требуемое значение характеристической скорости для изменения орбиты ФКМ составит:

$$\Delta v^{\Phi KM} = \sqrt{\frac{2\mu r_2}{r_1 \left(r_1 + r_2\right)}} - \sqrt{\frac{\mu}{r_1}}.$$
 (1)

Здесь μ — гравитационный параметр Земли (μ =3,986·10⁵ км³/c²);

$$r_1 = H^{\Phi \mathrm{KM}} + R_3;$$

$$r_2 = H^{\Phi \mathrm{KM}} + \Delta h^{\Phi \mathrm{KM}} + R_3,$$

где R_3 — экваториальный радиус Земли, $R_3 = 6378,14$ км.

Для случая ФКМ, имеющего орбиту $H^{\Phi KM} = 1000$ км, изменение орбиты $\Delta h^{\Phi KM}$ лежит в диапазоне [50; 900] км. Тогда полученные по формуле (1) значения $\Delta v^{\Phi KM}$ должны лежать в диапазоне [12,5; 242,7] м/с.

Для выбора длительности импульса воспользуемся соотношением [2]:

$$\tau_{\rm nc} = \left(\frac{J^{\rm \phi KM}}{4,79 \cdot 10^8}\right)^2,\tag{2}$$

где $J^{\Phi \text{KM}}$ — плотность энергии, создаваемая на ΦKM , Дж/м²; $\tau_{\text{ЛС}}$ — длительность импульса, с.

Зависимость (2) справедлива для длительностей импульса более 10 пс.

Тогда зависимость между плотностями мощности $P^{\Phi \text{KM}}$ и энергии $J^{\Phi \text{KM}}$ имеет вид:

$$P^{\Phi \rm KM} = J^{\Phi \rm KM} / \tau_{\rm JC} = \frac{\left(4,79 \cdot 10^8\right)^2}{J^{\Phi \rm KM}}.$$

Согласно [3] создаваемая на ФКМ плотность мощности $P^{\Phi KM}$ должна лежать в диапазоне [10¹¹;10¹⁴] Вт/м². На рис. 2 приведена зависимость оптимальных значений времени импульса $\tau_{\Lambda C}$ и плотности энергии $J^{\Phi KM}$ от плотности мощности $P^{\Phi KM}$.

Изменение скорости за один импульс определяется согласно выражению [3]:

 $\Delta V_{\rm MMT} = C_m J^{\Phi \rm KM} S / m,$

Рис. 2. Зависимость оптимальных значений времени импульса $au_{
m ЛC}$ и плотности энергии $J^{\Phi {
m KM}}$ от плотности мощности $P^{\Phi {
m KM}}$

где *S* – площадь фокального пятна, если она меньше площади поперечного сечения ФКМ, в противном случае *S* – характерная площадь ФКМ, м²; *m* – масса ФКМ, кг; *J*^{ФКМ} – плотность энергии на ФКМ, Дж/м²; $\tau_{\rm ЛC}$ – длительность импульса, с. Результаты расчёта изменения скорости за один импульс $\Delta V_{\rm имп}$ приведены на рис. 3.

Рассмотрим очистку рассматриваемой орбиты от Φ KM, принадлежащих к 4-7 группам по классификации [13]. Характерные значения площади *S* и массы т Φ KM рассматриваемых групп приведены в табл. 2.

Выберем диапазон изменения скорости за один импульс $\Delta V_{\rm имп} = [0,1; 1,6]$ м/с, что соответствует плотности энергии на ФКМ $J^{\Phi \rm KM} = [2,5\cdot10^4; 2,5\cdot10^5]$ Дж/м² и длительностям импульса $\tau_{\rm IIC}$ [2,7·10⁻⁹; 2,7·10⁻⁷] с.

Для придания требуемого изменения скорости Δν^{ΦKM} потребуется следующее количество импульсов:

Рис. 3. Зависимость изменения скорости ФКМ за один импульс от плотности энергии и группы КМ

Таблица 2

Характерные значения площади S и массы т ФКМ рассматриваемых групп

Группа ФКМ [14]	Группа КМ [13]	<i>S*</i> , м	<i>М</i> , кг	Примечание [14]
C	4	0,0175	0,0018	C
Среднеразмерный	5	0,0375	0,01	Столкновение приводит к структурным поврежлениям частей КА
	6	0,0750	0,064	
Крупноразмерный	7	0,1500	0,363	Столкновение ведет к полному уничтожению КА или его подсистем

* Среднее значение характерного размера.

$$N_{\rm MMII} = \frac{\Delta v^{\rm \Phi KM}}{\Delta V_{\rm MMII}}$$

Оценим минимальное и максимальное значе-

ния $N_{\text{имп}}$ для диапазонов значений $\Delta v^{\Phi \text{KM}}$ [12,5; 242,7] м/с и $\Delta V_{\text{имп}}^{} = [0,1; 1,6]$ м/с (табл. 3).

Таблица З

Число импульсов воздействия для изменения высоты орбиты и скорости

$\Delta h^{\Phi \mathrm{KM}}$, км	$\Delta v^{\Phi KM}, M/c$	$N_{\scriptscriptstyle \rm ИM\Pi}$	
50	12,5	[7,8; 125]	
900	242,7	[151,6; 2425]	

Из табл. 3 видно, что $N_{\rm имп}$ изменяется в диапазоне [7,8; 2425].

Оценим характерное время воздействия МЛЭУ на ФКМ. Считаем, что КА и ФКМ движутся напротив друг друга со скоростями V_{KA} и $V_{\Phi KM}$. Обозначим дальность воздействия $R_y^{\Phi KM}$, участок траектории ФКМ, на котором осуществляется воздействие $R_{возд}^{\Phi KM}$, разницу между высотами ор-

бит ФКМ и КА $\Delta H_{\text{орб}}$, направление на ФКМ α_{y} .

Расчетная схема приведена на рис. 4.

Из рисунка видно, что

$$R^{\Phi \mathrm{K}\mathrm{M}} = 2 \cdot R_{\mathrm{y}}^{\Phi \mathrm{K}\mathrm{M}} \cdot \sin{(\alpha_{\mathrm{y}})},$$

где

$$\alpha_{\rm y} = \arccos\left(\frac{\Delta H_{\rm op6}}{R_y^{\Phi\rm KM}}\right).$$

Тогда время воздействия составит:

$$t_{\text{возд}}^{\Phi\text{KM}} = \frac{R^{\Phi\text{KM}}}{V_{\text{отн}}},\tag{3}$$

Рис. 4. Расчетная схема воздействия

где $V_{\rm orth}$ — относительная скорость сближения КА и ФКМ.

Согласно [13] $V_{\text{отн}}$ лежит в диапазоне [10,8; 12] км/с. Тогда требуемый период $T_{\text{ЛС}}$ и частота следования импульсов $f_{\text{ЛС}}$ ЛС МЛЭУ составят:

$$\begin{split} T_{\rm JC} = t_{\rm bogg}^{\rm \Phi KM} / N_{\rm mmm} > t_{\rm mmm}, \\ f_{\rm JC} = 1 / T_{\rm JC}, \end{split}$$

где *t*_{имп} – длительность импульса.

Считаем, что разница между орбитами КА и $\Phi KM \Delta H_{op6}$ лежит в диапазоне [0; 150] км, дальность воздействия — в диапазоне [10; 150] км. Значения времени воздействия $t_{возд}^{\Phi KM}$, полученные согласно (3), приведены на рис. 5.

Из рис. 5 видно, что время воздействия $t_{\text{возд}}^{\Phi\text{KM}}$

лежит в диапазоне [2; 28] с. Тогда для $\Delta h^{\Phi \text{KM}} = 50$ и 900 км потребуется частота следования импульсов $f_{\Pi \text{C}}$ (табл. 4).

Далее примем, что значение частоты работы лазера $f_{\rm ЛC}$ лежит в диапазоне [1; 1250] Гц.

Рис. 5. Время воздействия на ФКМ

Таблица 4

Требуемая для снижения высоты орбиты ФКМ частота следования импульсов

$\Delta h^{\Phi \mathrm{KM}},$ KM	<i>Т</i> лс, с	<i>f</i> лс, Гц
50	[0,016; 3,584]	[62,5; 0,279]
900	[0,8.10-3; 0,185]	[5,411; 1250]

Методика расчета параметров ЛС на основе волоконных лазеров для заданного режима работы в составе КА с МЛЭУ

Определим параметры ЛС на основе волоконных лазеров, требуемые для обеспечения $J_{\Phi \text{KM}} = [2,5 \cdot 10^4; 2,5 \cdot 10^5]$ Дж/м² на дальности $R_v^{\Phi \text{KM}} = [10; 150]$ км.

Тогда для известной дальности и необходимой плотности энергии размеры телескопа находятся из выражения:

$$\frac{E_{\Pi C} \cdot D_{\Pi C}^2}{(1,22)^2 \cdot \lambda_{\Pi C}^2 \cdot M^2} = \pi \cdot E_{\Phi KM} \cdot \left(R_y^{\Phi KM}\right)^2, \quad (4)$$

где $D_{\rm JC}$ — диаметр выходного зеркала формирующего телескопа ЛС, м; $\lambda_{\rm JC}$ — длина волны генерируемого ЛС излучения, м; M^2 — оптическое качество генерируемого лазерного излучения.

Считаем, что $D_{\rm JC} = [0,5; 3]$ м [1], $M^2 = 1$. Для простоты расчета примем длину волны $\lambda_{\rm JC} = 1$ мкм. На рис. 6 представлена полученная по формуле (4) зависимость требуемой энергии в импульсе $E_{\rm JC}$ от дальности и $D_{\rm фос}$ для обеспечения плотности энергии $J^{\Phi \rm KM}$.

Ограничение на пороговую мощность в импульсе для одного канала (волокна) из кремния (Si) может быть получена из соотношения [15]:

$$P_{\rm MAKC} = \frac{\lambda^2}{2\pi n_0 n_2}$$

где λ — длина волны лазерного излучения, мкм; n_0, n_2 — коэффициенты преломления и нелинейный коэффициент преломления второго порядка.

Рис. 6. Зависимость требуемой энергии в импульсе $E_{\rm JC}$ от дальности и трех значений $D_{\rm JC}$ для обеспечения плотности энергии $J^{\Phi\rm KM}$ на $\Phi\rm KM$

Нелинейный коэффициент преломления второго порядка для импульсов с длительностью более 1 нс составляет $n_2 \sim 2,6\cdot 10^{-20} \text{ м}^2/\text{Вт}$, для более коротких импульсов $n_2 \sim 2,2\cdot 10^{-20} \text{ м}^2/\text{Вт}$. Для волокон из кремния коэффициент преломления $n_0 \sim 1,45$ [16]. Тогда $P_{\text{макс}}(\lambda_{\text{вых}}) = 4,2\cdot 10^6 \text{ BT}$.

Для длительности импульса более 50 пс пороговое значение энергии в импульсе для волокна составит [2]:

$$E_{\text{макс}} = 480 \sqrt{\tau_{\text{имп}}} A_{eff}, \, \text{Дж},$$

где $A_{e\!f\!f}$ — эффективная площадь лазерной моды, см².

Согласно [16] характерное значение A_{eff} составляет 1000 мкм². Результаты расчёта пороговой лучевой прочности $E_{\text{макс}}$ для длительности импульса $\tau_{\text{ЛС}}$, лежащей в диапазоне [2,7·10⁻⁹; 2,7·10⁻⁷] с, приведены на рис. 7.

Рис. 7. Зависимость лучевой прочности волокна от длительности импульса

Из рис. 7 видно, что пороговое значение энергии в импульсе для одного волокна не позволяет достичь требуемую энергию в импульсе $E_{\rm ЛC}$ (см. рис. 6). Для достижения требуемых значений энергии в работах [1, 17, 18] предложено использовать МЛЭУ с волоконными лазерами с технологией когерентного сложения пучков.

Ключевой особенностью технологии является то, что для обеспечения больших энергий в импульсе используются $N_{\rm k}$ волоконных лазеров (каналов), синхронизированных по фазе. Оценим число каналов (волокон), которое должна иметь ЛС для обеспечения требуемых значений $E_{\rm RC}$:

$$N_{\rm K} = E_{\rm JIC} / E_{\rm makc}$$

Результаты расчета числа каналов $N_{\rm k}$ и полученные по данным рис. 6 диапазоны выходной энергии в импульсе $E_{\rm JC}$ для ЛС с различными размерами выходной апертуры $D_{\rm JC}$ приведены в табл. 5.

7	аблица	5
	Cr O S r V V V V V	~

Число каналов и диапазон требуемой энергии в импульсе для трех значений выходной апертуры ЛС

<i>D</i> _{лс} , м	0,5	1,75	3
<i>Е</i> лс, Дж	[46,8; 1,05·10 ⁵]	[3,8; 8,6·10 ³]	[1,3; 2,9·10 ³]
Nк	[592; 1,3·10 ⁷]	[48; 1,1·10 ⁵]	[16; 3,7.105]

Оценим КПД ЛС на основе волоконных лазеров с технологией когерентного сложения [13, 14]:

$$\eta_{\rm JC} = \eta_{\rm CF} \cdot \eta_{\rm CH} \cdot \eta_{\rm CKC}; \tag{5}$$

$$\eta_{\rm C\Gamma} = \frac{dP_{\rm BMX}}{dP_{\rm HAK}} \approx \left(\frac{\lambda_{\rm HAK}}{\lambda_{\rm BMX}}\right) \cdot \eta_{\rm a} \cdot \eta_{\rm M} \cdot \eta_{\rm ac}; \qquad (6)$$

$$\eta_{\rm CH} = \eta_{_{\rm JH}} \cdot \eta_{_{\rm OIIT}},\tag{7}$$

где $\eta_{CKC} - K\Pi Д$ системы когерентного сложения ($\eta_{CKC} \approx 0,7 [1, 13]$); $\eta_{CH} - K\Pi Д$ CH; $\eta_{_{ЛH}} - K\Pi Д$ лазера (диодный лазер) накачки ($\eta_{_{ЛH}} = [0,5; 0,7]$ [19]); $\eta_{_{O\PiT}} - K\Pi Д$ формирующей оптической системы накачки ($\eta_{_{O\PiT}} = [0,8; 0,9]$ [19]); $\lambda_{_{HaK}} - дли$ на волны накачки, м; $\lambda_{_{BbIX}} - дли$ на волны лазерного излучения, м; $\eta_a - эффективность поглоще$ ния лазерного излучения накачки ($\eta_a \approx 1$ [15]); $\eta_{_{M}} - эффективность передачи излучения накач$ $ки лазерной моде; <math>\eta_{ac} - K\Pi Д$ активной среды лазера. Подставим значения $\eta_{_{ЛH}}$ и $\eta_{_{O\PiT}}$ в (7): η_{CH} = [0,5; 0,7]·[0,8; 0,9] = [0,4; 0,63].

Эффективность передачи излучения накачки лазерной моде зависит от интенсивности накачки *I* и интенсивности насыщения I_{hac} . В данной работе рассмотрим случай, когда $I >> I_{\text{hac}}$. Тогда $\eta_{\text{m}} = 1$ [20].

КПД активной среды лазера [20]:

$$\eta_{\rm ac} = \frac{T\sqrt{1-L}}{T\sqrt{1-L} + L\sqrt{1-T}},$$

где T – потери на выходе из лазера; L – потери в активной среде лазера.

Примем *L*+*T* << 1 [20]. Тогда η_{ac} ≈ 0,99.

Оценим $\eta_{\rm ЛC}$ для волокна из Si с добавкой Yb³⁺ (табл. 6).

Значания КПЛ ПС

Таблица б

эпачения кнід ле									
Добавка		λ _{нак} , ΜΚΜ	λ _{βδιχ} , ΜΚΜ	$\left(\frac{\lambda_{_{HAK}}}{\lambda_{_{Bbix}}}\right)$	η_a	$\eta_{\scriptscriptstyle M}$	η_{ac}	η _{cr}	$\eta_{_{\mathcal{NC}}}$
Yb ³	+	0,9— 0,98	1,03– 1,12	0,8036— 0,9515	1	1	0,99	0,7956— 0,942	0,31; 0,59

Методика определения требований к параметрам СЭП и СОТР

Основным проектным параметром СЭП является количество электроэнергии, которая необходима для обеспечения работы МЛЭУ. Считаем, что при решении задачи очистки околоземного пространства основным потребителем электроэнергии является ЛС. Тогда:

$$N_{\rm CЭ\Pi} = \frac{E_{\Phi \rm KM}}{t_{\rm возд}^{\Phi \rm KM} \cdot \eta_{\rm JC}},\tag{8}$$

где $E_{\Phi \rm KM}$ — энергия воздействия на $\Phi \rm KM$ для изменения его орбиты,

$$E_{\Phi \mathrm{KM}} = E_{\mathrm{ЛC}} \cdot N_{\mathrm{имп}}, \ \mathrm{Дж}.$$

Основной проектный параметр СОТР — это тепловая энергия, которую необходимо отвести для обеспечения работы МЛЭУ. Тогда по аналогии с СЭП:

$$N_{\rm COTP} = N_{\rm CЭ\Pi} \cdot (1 - \eta_{\rm JC}). \tag{9}$$

Полученные согласно (8) и (9) величины генерируемой СЭП энергии $N_{CЭП}$ и отводимого СОТР тепла N_{COTP} приведены в табл. 7.

Описание разработанной методики оценки параметров МЛЭУ

Приведем описание разработанной в статье методики в общем виде. Методика состоит из трех шагов:

1) задание целевой функции и параметров для определения режима МЛЭУ. Так, для задачи очистки околоземного пространства:

$$F_{\rm cu}(X_{\rm задача}) = Y_{\rm peжим};$$

Таблица 7

Требования к генерируемой энергии и отводимому теплу для обеспечения энергии импульса $E_{\Pi C}$

<i>D</i> лс, М	Ефкм, Дж	<i>N</i> сэп, кВт	<i>N</i> сотр, кВт
0,5	$[364,7; 2,6.10^8]$	$[31, 35; 5, 7 \cdot 10^8]$	$[18,3;4,5\cdot10^8]$
1,75	[29,8; 2,1.107]	[2,6; 4,6·10 ⁷]	[1,5; 3,6.107]
3	$[10,1; 7,1.10^{6}]$	[0,87; 1,6·10 ⁷]	$[0,5; 1,24.10^7]$

$$X_{3}_{3}_{3}_{3}_{3}_{3}_{3}=$$

=
$$(H^{\Phi \text{KM}}, \Delta h^{\Phi \text{KM}}, \Delta V_{\text{имп}}, R_{\text{y}}^{\Phi \text{KM}}, \Delta H_{\text{орб}}, V_{\text{отн}})^{\text{T}};$$

$$Y_{\text{режим}} = (\tau_{\text{ЛC}}, J^{\Phi \text{KM}}, f_{\text{ЛC}}, t_{\text{возд}})^{\text{T}};$$

2) определение параметров ЛС для заданного режима работы *Y*_{режим}:

 $F_{\rm JC}(Y_{\rm pexum}) = X_{\rm JC};$

 $X_{\mathrm{JC}} = (D_{\mathrm{JC}}, M^2, \lambda_{\mathrm{JC}}, E_{\mathrm{JC}}, \tau_{\mathrm{JC}}, P_{\mathrm{makc}}, E_{\mathrm{makc}})^{\mathrm{T}};$

определение требований к параметрам СЭП
 и СОТР для ЛС с параметрами X_{ЛС} и работающей
 в режиме Y_{режим}:

 $F_{\text{COTP}}(X_{\text{ЛC}}) = N_{\text{COTP}}; \quad F_{\text{C} \ni \Pi}(X_{\text{ЛC}}) = N_{\text{C} \ni \Pi}.$

Выводы

Предложена методика для комплексной оценки параметров подсистем МЛЭУ на основе волоконных лазеров с технологией когерентного сложения пучков. Приведены результаты апробации данной методики для МЛЭУ космического базирования, решающей задачу борьбы с ФКМ.

Расчет проводился для характерной задачи $X_{_{3адача}}$, сформулированной на основании анализа, проведенного в [1—5, 8]. В результате получены требования к режиму работы МЛЭУ $Y_{_{\text{режим}}}$: плотность энергии на ФКМ [2,5·10⁴; 2,5·10⁵] Дж/м²; время импульса [2,7·10⁻⁹; 2,7·10⁻⁷] с; прогнозируемое время воздействия на ФКМ $t_{_{возд}}$ [2; 28] с; частота следования лазерных импульсов [1; 1250] Гц.

Для обеспечения дальности работы [10; 150] км и размера выходной апертуры ЛС [0,5; 3] м получены требования к энергии лазерного импульса [3; 10⁵] Дж, генерируемой СЭП энергии $N_{C \ni \Pi} = [0,87; 5,7 \cdot 10^8]$ Вт и отводимому СОТР тепловой энергии $N_{C O T P} = [0,5; 4,5 \cdot 10^8]$ Вт.

Полученные в результате применения методики данные позволяют проводить анализ параметров МЛЭУ для выбора типа СЭП, СОТР и расчета их параметров, требуемых для обеспечения требуемого режима работы МЛЭУ. Кроме этого, методика позволяет определить ограничения, накладываемые подсистемами СЭП и СОТР на энергию импульса ЛС, а следовательно, и эффективность работы МЛЭУ.

Разработанная методика может быть использована как часть методического аппарата для комплексной оценки и выбора параметров подсистем, а также разработки рекомендаций по применению МЛЭУ на основе волоконных лазеров.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках базовой части государственного задания, проект №13.9211.2017/8.9.

Библиографический список

- Soulard R., Quinn M., Tajima T., Mourou G. ICAN: A novel laser architecture for space debris removal // Acta Astronautica. 2014. Vol. 105. Issue 1, pp. 192–200. DOI: 10.1016/j.actaastro.2014.09.004
- Campbell J.W. Using Lasers In Space: Laser Orbital Debris Removal and Asteroid Deflection. – Alabama: Air University, Center for Strategy and Technology, 2000. – 31 p.
- Авдеев А.В., Башкин А.С., Каторгин Б.И., Парфеньев М.В. Анализ возможности очистки околоземного пространства от опасных фрагментов космического мусора с помощью космической лазерной установки на основе автономного непрерывного химического HF-лазера // Квантовая электроника. 2011. Т. 41. № 41(7). С. 669–674.
- 4. Авдеев А.В., Метельников А.А. Бортовая лазерная силовая установка для борьбы с космическим мусором // Труды МАИ. 2016. № 89. URL: http:// trudymai.ru/published.php?ID=72840
- 5. *Авдеев А.В.* К вопросу борьбы с космическим мусором с помощью лазерной космической установки на основе HF-HXЛ // Труды МАИ. 2012. № 61. URL: http://trudymai.ru/published.php?ID=35496
- 6. Ашурбейли И.Р., Лаговиер А.И., Игнатьев А.Б., Назаренко А.В. Возможности использования авиационной лазерной системы для борьбы с космическим мусором и поддержания орбит космического аппарата // Труды МАИ. 2011. № 43. URL: http:// trudymai.ru/published.php?ID=24856
- Авдеев А.В. Требования к параметрам космической лазерной установки на основе HF-HXЛ для очистки околоземного пространства от опасных фрагментов космического мусора // Труды MAИ. 2011. № 45. URL: http://trudymai.ru/published.php?ID= 25331
- Гридин В.Н., Квасников Л.А., Саввин В.Л., Смахтин А.П., Чуян Р.К. Беспроводная энергетика как основа создания глобальных энергетических систем // Вестник Московского авиационного института. 2009. Т. 16. № 5. С. 87-91.

- 9. Олейников И.И., Павлов В.П. Оценка вклада радиолокационных станций и оптико-электронных систем в автоматизированную систему предупреждения опасных ситуаций в околоземном космическом пространстве // Вестник Московского авиационного института. 2014. Т. 21. № 2. С. 41-48.
- Вишняков В.М., Лебеденко В.П. Использование лазерной целевой аппаратуры на борту космических аппаратов, предназначенных для полетов к астероидам // Вестник Московского авиационного института. 2014. Т. 21. № 5. С. 62-72.
- Bennett H.E., Rather D.G., Montgomery E.E. Freeelectron laser power beaming to satellites at China Lake, California // Proceedings of SPIE — The International Society for Optical Engineering. 1994. Vol. 2121, pp. 182–202. DOI: 10.1117/12.176663
- Lampel M.C., Curtin M.S., Burke R.J., Cover R.A., Rakowsky G., Bennett G.T. Power beaming with FEL lasers // Proceedings of SPIE — The International Society for Optical Engineering. 1993. Vol. 1871, pp. 328–334. DOI: 10.1117/12.145226
- ГОСТ Р 25645.167-2005. Космическая среда (естественная и искусственная). Модель пространственно-временного распределения плотности потоков техногенного вещества в космическом пространстве. — М.: Стандартинформ, 2005. — 45 с.

- 14. Вениаминов С.С., Червонов А.М. Космический мусор угроза человечеству. 2-е изд., испр. и доп. М.: ИКИ РАН, 2013. 207 с.
- Injeyan H., Goodno G. High Power Laser Handbook.
 1st Edition. New York: McGraw-Hill Professional, 2011. – 624 p.
- Dawson J.W., Messerly M.J., Beach R.J., Shverdin M.Y., Stappaerts E.A., Sridharan A.K., Pax P.H., Heebner J.E., Siders C.W., Barty C.P.J. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power // Optics Express. 2008. Vol. 16. Issue 17, pp. 13240-13266. DOI: 10.1364/OE.16.013240
- Antier M., Bourderionnet J., Larat C., Lallier E., Lenormand E., Primot J., Brignon A. kHz Closed Loop Interferometric Technique for Coherent Fiber Beam Combining // IEEE Journal of Selected Topics in Quantum Electronics. 2014. Vol. 20. Issue 5. DOI: 10.1109/JSTQE.2014.2302444
- Mourou G., Brocklesby W., Tajima T., Limpert J. The future is fibre accelerators // Nature Photonics. 2013. Vol. 7. Issue 4, pp. 258-261. DOI: 10.1038/ nphoton.2013.75
- 19. Звелто О. Принципы лазеров; Пер. с англ. 3-е изд., перераб. и доп. М.: Мир, 1990. 560 с.
- Clarkson A. High Power Fibre Lasers and Amplifiers. — United Kingdom: Optoelectronics Research Centre. University of Southampton, 2007. — 134 p.

ENERGY CHARACTERISTICS COMPUTING TECHNIQUE FOR MOBILE MULTIFUNCTIONAL LASER POWER PLANTS BASED ON FIBER LASERS

Avdeev A.V.^{1*}, Katorgin B.I.^{2**}, Metel'nikov A.A.^{1***}

 ¹ Moscow Aviation Institute (National Research University), MAI, 4, Volokolamskoe shosse, Moscow, 125993, Russia
 ² NPO "Energomash named after academician V.P.Glushko", 1, Burdenko str., Khimki, 141400, Russia

 * e-mail: alex021894@mail.ru
 ** e-mail: bikator@mail.ru
 *** e-mail: Metelnikov91@gmail.com

Abstract

Multifunctional Laser Power Plant (MLPP) should simultaneously solve the tasks of energy generation (Power Supply System (PSS)), radiation conversion and transmission (Laser System (LS)), and heat removal (Thermal Mode Supporting System (TMSS)). Meanwhile, the above said tasks are duly elaborated in modern projects. Thus, it is necessary to develop the MLPP design methodology, which accounts for the above listed subsystems interaction.

The article presents the developed technique for parameters analysis of the LS, TMSS and PSS subsystems of a multifunctional laser power plant, and results of its approbation while solving the task of space debris removal. Computing was performed for the initial data X_{task} based on the analysis presented in [1–5, 8]:

1) acting on the Space Debris Fragment (SDF) with the orbit of $H^{\text{SDF}} = 1000 \text{ km}$ by the Δh_{SDF} value required to its descent to [50; 900] km;

2) the FSD velocity change per one pulse ΔV_{pulse} of [0,1; 1,6] m/s;

3) the impact distances range of R_y^{SDF} [10; 150] km;

4) the height difference of the SDF and spacecraft (SC) orbits of H_{orb} [0; 150] km;

5) relative FSD and SC closing-in velocity of V_{rel} [10,8; 12] km/s.

The following requirements to the MLPP operation mode (Y_{mode}) were obtained for the initial data presented above: the energy density of $[2,5\cdot10^4; 2,5\cdot10^5]$ J/m² at the SDF; pulse duration of $[2,7\cdot10^{-9}; 2,7\cdot10^{-7}]$ s; FSD exposure time of [2; 28] s; pulse frequency of [1; 1250] Hz.

The requirements to the sub-systems performance for this mode are as follows:

1. LS (X_{LS}): the output aperture dimensions of [0,5; 3] m; M^2 and λ_{LS} are assumed equal to 1 for calculations simplification; efficiency is [0.31, 0.59]; the laser pulse energy of [3·10⁵] J; the threshold pulse power for one channel of 4,2·10⁶ W; the beam strength of fiber of [0,01; 0,08] J.

2. Requirement to the PSS generated energy is $N_{\text{PSS}} = [0,87; 5,7 \cdot 10^8]$ W.

3. The energy removed by TMSS is $N_{\text{TMSS}} = [0,5; 4,5 \cdot 10^8]$ W.

As a result, the inference cam be made that the data obtained while the technique application allow perform the MLPP parameters analysis for selecting the types of PSS, TMSS and their parameters, necessary for the MLPP required operation mode. Besides, this technique allows determining the limitations imposed by the PSS and TMSS subsystems on the LS pulse energy. The presented technique may be employed for the integrated assessment of the subsystems parameters and recommendations development of the MLPP application.

Keywords: space debris, multifunctional laser power plant, fiber laser.

References

- Soulard R., Quinn M., Tajima T., Mourou G. ICAN: A novel laser architecture for space debris removal. *Acta Astronautica*, 2014, vol. 105, issue 1, pp. 192–200. DOI: 10.1016/j.actaastro.2014.09.004
- Campbell J.W. Using Lasers In Space: Laser Orbital Debris Removal and Asteroid Deflection. Alabama, Air University, Center for Strategy and Technology, 2000, 31 p.
- 3. Avdeev A.V., Bashkin A.S., Katorgin B.I., Parfen'ev M.V. About possibilities of clearing near-Earth space from dangerous debris by a spaceborne laser system with an autonomous cw chemical HF laser. *Quantum Electronics*, 2011, vol. 41, no. 7, pp. 669-674.
- Avdeev A.V., Metel'nikov A.A. *Trudy MAI*, 2016, no. 89. URL: http://trudymai.ru/eng/published. php?ID=72840
- 5. Avdeev A.V. *Trudy MAI*, 2012, no. 61. URL: http:// trudymai.ru/eng/published.php?ID=35496
- Ashurbeili I.R., Lagovier A.I., Ignat'ev A.B., Nazarenko A.V. *Trudy MAI*, 2011, no. 43. URL: http:// /trudymai.ru/eng/published.php?ID=24856

- Avdeev A.V. *Trudy MAI*, 2011, no. 45. URL: http:// trudymai.ru/eng/published.php?ID=25331
- Gridin V.N., Kvasnikov L.A., Sawin V.L., Smakhtin A.P., Chuyan R.K. Wireless power engineering as a basis for development of global power networks. *Aerospace MAI Journal*, 2009, vol. 16, no. 5, pp. 87-91.
- 9. Oleynikov I.I., Pavlov V.P. Estimation of domestic radar station and optical-electronic systems contribution into automatic system designed for preventing dangerous situations in outer space. *Aerospace MAI Journal*, 2014, vol. 21, no. 2, pp. 41-48.
- 10. Vishnyakov V.M., Lebedenko V.P. Use of laser target equipment on board of missions to asteroids. *Aerospace MAI Journal*, 2014, vol. 21, no. 5, pp. 62-72.
- Bennett H.E., Rather D.G., Montgomery E.E. Freeelectron laser power beaming to satellites at China Lake, California. *Proceedings of SPIE - The International Society for Optical Engineering*, 1994, vol. 2121, pp. 182–202. DOI: 10.1117/12.176663
- Lampel M.C., Curtin M.S., Burke R.J., Cover R.A., Rakowsky G., Bennett G.T. Power beaming with FEL lasers. *Proceedings of SPIE - The International Society for Optical Engineering*, 1993, vol. 1871, pp. 328–334. DOI: 10.1117/12.145226
- Kosmicheskaya sreda (estestvennaya i iskusstvennaya). Model' prostranstvenno-vremennogo raspredeleniya plotnosti potokov tekhnogennogo veshchestva v kosmicheskom prostranstve. GOST R 25645.167-2005 (Space environment (natural and artificial). Space-time density distribution model of technogenic substance in space. State Standard R 25645.167-2005), Moscow, Standartinform, 2005, 45 p.
- Veniaminov S.S., Chervonov A.M. Kosmicheskii musor – ugroza chelovechestvu (Space debris is a threat to humanity), Moscow, IKI RAN, 2013, 207 p.
- Injeyan H., Goodno G. High Power Laser Handbook. 1st Edition. New York, McGraw-Hill Professional, 2011, 624 p.
- Dawson J.W., Messerly M.J., Beach R.J., Shverdin M.Y., Stappaerts E.A., Sridharan A.K., Pax P.H., Heebner J.E., Siders C.W., Barty C.P.J. Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power. *Optics Express*, 2008, vol. 16, issue 17, pp. 13240-13266. DOI: 10.1364/ OE.16.013240
- Antier M., Bourderionnet J., Larat C., Lallier E., Lenormand_E., Primot J., Brignon A. kHz Closed Loop Interferometric Technique for Coherent Fiber Beam Combining. *IEEE Journal of Selected Topics in Quantum Electronics*, 2014, vol. 20, issue 5. DOI: 10.1109/ JSTQE.2014.2302444
- Mourou G., Brocklesby W., Tajima T., Limpert J. The future is fibre accelerators. *Nature Photonics*, 2013, vol. 7, issue 4, pp. 258-261. DOI: 10.1038/nphoton.2013.75
- Svelto O. Principles of Lasers, 5th Edition. Springer Science + Business Media, 2010, 625 p.
- Clarkson A. High Power Fibre Lasers and Amplifiers. United Kingdom, Optoelectronics Research Centre. University of Southampton, 2007, 134 p.