УДК 539.3

# **Нестационарное движение нормальной сосредоточенной нагрузки** вдоль границы упругой полуплоскости

Оконечников А.С.\*, Тарлаковский Д.В.\*\*, Федотенков Г.В.\*\*\*

Московский авиационный институт (национальный исследовательский университет), МАИ, Волоколамское шоссе, 4, Москва, А-80, ГСП-3, 125993, Россия

\*e-mail: leon\_lionheart@mail.ru

\*\*e-mail: tdvhome@mail.ru

\*\*\*e-mail: greghome@mail.ru

#### Аннотация

В нестационарной постановке исследуется плоская задача о воздействии сосредоточенной нагрузки, движущейся по поверхности однородного изотропного упругого полупространства. С использованием принципа суперпозиции получено решение в квадратурах. В частном случае равномерного движения проведен расчет и представлены графические результаты для нормальных перемещений поверхности полупространства. Проведен анализ особенностей решения на характерных скоростных этапах движения нагрузки: дорелеевском, дозвуковом, трансзвуковом и сверхзвуковом.

**Ключевые слова:** подвижная нагрузка, нестационарная задача, принцип суперпозиции, сингулярные интегралы, регуляризация, особенности решений.

#### Введение

При проектировании современной аэрокосмической техники необходимо учитывать нестационарный характер локальных нагрузок, воздействующих на ее

элементы. Такие задачи возникают, например, при контакте корпусов летательных аппаратов с мелкими частицами, которые могут содержаться в окружающей атмосфере или космическом пространстве. Кроме того, в подобных задачах зачастую приходиться иметь дело с нагрузками, точка приложения которых движется по поверхности конструкции по определённому закону. Также актуальной проблемой является создание высокоскоростных средств передвижения, которых исследование указанных проблем также может найти применение. В общей постановке построение решений подобных задач является чрезвычайно сложной проблемой. В данной работе рассмотрена модельная задача о воздействии подвижной сосредоточенной нагрузки на упругое однородное изотропное полупространство. Предложен и реализован метод, позволяющий получить решение в замкнутой форме, а также выявить все возможные особенности решения на различных скоростных режимах движения.

#### 1.Постановка задачи

В начальный момент времени по нормали к границе z=0 невозмущенного упругого однородного изотропного полупространства прикладывается нормальная сосредоточенная нагрузка  $q=H(t)\delta[x-f(t)]$ , где функция времени f(t) описывает закон ее движения со скоростью V(t)=df/dt, H(t) - функция Хевисайда, а  $\delta(x)$  - дельта-функция Дирака. Используется прямоугольная декартова система координат Oxz, ось Ox которой направлена вдоль свободной границы полупространства, а ось

Oz - в глубь полупространства. Предполагается, что компоненты напряженнодеформированного состояния и перемещений не изменяются в направлении оси Oy.

Движение среды описывается уравнениями Ламе [1]

$$(\lambda + \mu)$$
grad div  $\mathbf{u} + \mu \Delta \mathbf{u} = \rho \frac{\partial^2 \mathbf{u}}{\partial t^2}$ . (1.1)

Здесь  $\mathbf{u} = (u, w)^T$  - вектор перемещений (u и w - перемещения вдоль осей Ox и Oz соответственно),  $\lambda$ ,  $\mu$  и  $\rho$  - параметры Ламе и плотность среды.

Ненулевые компоненты  $\varepsilon_{ij}$  тензора деформаций связаны с перемещениями соотношениями Коши:

$$\varepsilon_{11} = \frac{\partial u}{\partial x}, \ \varepsilon_{13} = \frac{1}{2} \left( \frac{\partial u}{\partial z} + \frac{\partial w}{\partial x} \right), \ \varepsilon_{33} = \frac{\partial w}{\partial z}.$$
(1.2)

Ненулевые компоненты  $\sigma_{ij}$  тензора напряжений определяются законом Гука:

$$\sigma_{11} = 2\mu\epsilon_{11} + \lambda\theta, \ \sigma_{13} = 2\mu\epsilon_{13}, \ \sigma_{33} = 2\mu\epsilon_{33} + \lambda\theta, \ \theta = \epsilon_{11} + \epsilon_{33}.$$
 (1.3)

Касательные напряжения на границе полуплоскости z=0 отсутствуют, перемещения предполагаются ограниченными на бесконечности, что приводит к следующим граничным условиям:

$$\sigma_{13}\big|_{z=0} = 0, \ \sigma_{33}\big|_{z=0} = -H(t)\delta[x - f(t)],$$
 $u = O(1), \ w = O(1), \ \text{при } r \to \infty, \ r = \sqrt{x^2 + z^2}.$  (1.4)

Начальные условия нулевые:

$$u\Big|_{t=0} = w\Big|_{t=0} = \frac{\partial u}{\partial t}\Big|_{t=0} = \frac{\partial w}{\partial t}\Big|_{t=0} = 0.$$

Вектор перемещений удобно представить в виде суммы потенциальной и соленоидальной составляющих:

$$u = \operatorname{grad}\varphi + \operatorname{rot}\psi,$$
 (1.5)

где ф - скалярный, а  $\psi$  - векторный потенциалы упругих смещений.

Подстановка (1.5) в (1.1) приводит к двум волновым уравнениям относительно скалярного ф и ненулевой компоненты ψ векторного потенциала упругих смещений:

$$c_1^2 \Delta \varphi = \frac{\partial^2 \varphi}{\partial t^2}, \ c_2^2 \Delta \psi = \frac{\partial^2 \psi}{\partial t^2}, \ \Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial z^2}, \ c_1^2 = \frac{\lambda + 2\mu}{\rho}, \ c_2^2 = \frac{\mu}{\rho}.$$

Здесь  $c_1$  и  $c_2$  скорости волн растяжения-сжатия и сдвига, a -ускорение движения нагрузки.

Будем использовать систему безразмерных величин (штрихи обозначают безразмерные параметры, которые далее опущены).

$$x' = \frac{x}{L}, \ z' = \frac{z}{L}, \ \tau = \frac{c_1 t}{L}, \ u' = \frac{u}{L}, \ w' = \frac{w}{L}, \ \phi' = \frac{\phi}{L^2},$$
$$\psi' = \frac{\psi}{L^2}, \ f' = \frac{f}{L}, \ \eta = \frac{c_1}{c_2}, \ V' = \frac{V}{c_1}, \ \sigma'_{ij} = \frac{\sigma_{ij}}{\lambda + 2\mu},$$

где L - характерный линейный размер.

Постановка задачи в безразмерном виде включает в себя следующие соотношения (здесь и далее производные по безразмерному времени обозначены точками):

- уравнения движения

$$\Delta \varphi = \ddot{\varphi}, \ \Delta \psi = \eta^2 \ddot{\psi}; \tag{1.6}$$

- вытекающую из (1.2), (1.3) и (1.6) связь компонент перемещений, напряжений и деформаций с потенциалами:

$$u = \frac{\partial \varphi}{\partial x} - \frac{\partial \psi}{\partial z}, \quad w = \frac{\partial \varphi}{\partial z} - \frac{\partial \psi}{\partial x}, \quad \varepsilon_{11} = \frac{\partial^{2} \varphi}{\partial x^{2}} - \frac{\partial^{2} \psi}{\partial x \partial z}, \quad \varepsilon_{33} = \frac{\partial^{2} \varphi}{\partial z^{2}} + \frac{\partial^{2} \psi}{\partial x \partial z},$$

$$\varepsilon_{13} = \frac{1}{2} \left( \frac{\partial^{2} \psi}{\partial x^{2}} + 2 \frac{\partial^{2} \varphi}{\partial x \partial z} + \frac{\partial^{2} \psi}{\partial z^{2}} \right), \quad \sigma_{11} = \Delta \varphi - 2 \eta^{-2} \left( \frac{\partial^{2} \varphi}{\partial z^{2}} + \frac{\partial^{2} \psi}{\partial x \partial z} \right),$$

$$\sigma_{13} = \sigma_{31} = \eta^{-2} \left( \frac{\partial^{2} \varphi}{\partial x^{2}} + 2 \frac{\partial^{2} \varphi}{\partial x \partial z} - \frac{\partial^{2} \psi}{\partial z^{2}} \right), \quad \sigma_{33} = \Delta \varphi - 2 \eta^{-2} \left( \frac{\partial^{2} \varphi}{\partial x^{2}} - \frac{\partial^{2} \psi}{\partial x \partial z} \right);$$

$$(1.7)$$

- начальные условия:

$$\phi|_{\tau=0} = \dot{\phi}|_{\tau=0} = 0, \ \psi|_{\tau=0} = \dot{\psi}|_{\tau=0} = 0.$$
 (1.8)

- а также граничные условия (1.4), в которых t нужно заменить безразмерным временем  $\tau$ .

## 2.Метод решения

Используем принцип суперпозиции [2], согласно которому нормальные перемещения границы полуплоскости связаны с поверхностными напряжениями интегральным соотношением типа свертки:

$$w_0(x,\tau) = -\int_{0}^{\tau} \int_{0-\infty}^{\infty} G_f(x-\xi,\tau-t)\sigma(\xi,t)d\xi dt.$$
 (2.1)

Здесь  $w_0(x,\tau) = w(x,0,\tau)$ ,  $\sigma(x,\tau) = \sigma_{33}(x,0,\tau)$ , а ядро  $G_f(x,\tau)$  является поверхностной функцией влияния для упругой однородной изотропной полуплоскости и представляет собой нормальные перемещения границы полуплоскости как решение задачи (1.6) - (1.8) со следующими граничными условиями:

$$\sigma_{13}\big|_{z=0} = 0, \ \sigma_{33}\big|_{z=0} = \delta(x)\delta(\tau),$$
 $\varphi = O(1), \ \psi = O(1), \ \text{при } r \to \infty.$ 

Эта функция найдена в [3] и имеет вид:

$$\begin{split} G_f(x,\tau) &= \sum_{l=1}^2 G_{fl}(x,\tau) H \Big(\tau - \eta_l |x| \Big), \\ G_{f1}(x,\tau) &= \frac{1}{\pi \eta^4} g_1 \Big( x^2, \tau^2 \Big) k_1 \Big( x^2, \tau^2 \Big), G_{f2}(x,\tau) = \frac{1}{\pi \eta^4} g_2 \Big( x^2, \tau^2 \Big) k_2 \Big( x^2, \tau^2 \Big), \\ g_1(x,\tau) &= \frac{\tilde{g}_1(x,\tau)}{P_3(x,\tau)}, \ g_2(x,\tau) = \frac{\tilde{g}_2(x,\tau)}{P_3(x,\tau)}, \\ \tilde{g}_1(x,\tau) &= \Big( \eta^2 x - 2\tau \Big)^2, \ \tilde{g}_2(x,\tau) = 4\tau (\tau - x), \\ k_1(x,\tau) &= \sqrt{\tau - x}, \ k_2(x,\tau) = \sqrt{\tau - \eta^2 x}, \\ P_3(x,\tau) &= P_1(x,\tau) P_2(x,\tau), \ P_1(x,\tau) = x - c_R^2 \tau, P_2(x,\tau) = x^2 - 2\alpha^2 x \tau + \beta^2 \tau^2, \\ \alpha^2 &= \frac{4}{\eta^2} - \frac{c_R^2}{2}, \ \beta^2 = \frac{16 \Big( \eta^2 - 1 \Big)}{\eta^8 c_R^2}, \ \eta_1 = 1, \eta_2 = \eta. \end{split}$$

Отметим, что многочлен  $P_2(z,1)$  не имеет действительных корней, т.к.  $\alpha^4 - \beta^2 < 0 \ [4,5].$ 

Функции  $g_l(x,\tau)$  (l=1,2) представим в виде суммы регулярного  $g_{lr}(x,\tau)$  и сингулярного  $g_{ls}(x,\tau)$  слагаемых:

$$g_{l}(x,\tau) = g_{ls}(x,\tau) + g_{lr}(x,\tau),$$

$$g_{ls}(x,\tau) = \frac{A_{l}}{P_{1}(x,\tau)}, g_{lr}(x,\tau) = \frac{B_{l}x + C_{l}\tau}{P_{2}(x,\tau)},$$

$$A_{l} = \frac{\tilde{g}_{l}(c_{R}^{2},1)}{P_{2}(c_{R}^{2},1)}, B_{1} = \eta^{4} - A_{1}, B_{2} = -A_{2}, C_{l} = \frac{A_{l}\beta^{2} - 4}{c_{R}^{2}}.$$

Тогда функции  $G_{f}$  записываются так:

$$G_{sl}(x,\tau) = G_{sl}(x,\tau) + G_{rl}(x,\tau),$$

$$G_{sl}(x,\tau) = \frac{1}{\pi\eta^4} g_{sl}(x^2,\tau^2) k_l(x^2,\tau^2),$$

$$G_{rl}(x,\tau) = \frac{1}{\pi\eta^4} g_{rl}(x^2,\tau^2) k_l(x^2,\tau^2).$$
(2.2)

С учетом граничных условий (1.4) и свойств дельта-функции [1] представление (2.1) принимает вид:

$$w_0(x,\tau) = -\sum_{l=1}^{2} w_l(x,\tau). \tag{2.3}$$

$$w_{l}(x,\tau) = \int_{0}^{\tau} G_{fl}[x - f(t), \tau - t]H(\tau - t - \eta_{l}|x - f(t)|)dt$$

В соответствии со структурой (2.2) функции  $G_{fl}$  для дальнейшего исследования нам понадобятся значения интеграла вида

$$I(a) = \int_{y_1}^{y_2} \frac{\sqrt{1 - y^2}}{y - a} dy, \quad y_1, y_2 \in [-1, 1].$$
 (2.4)

При этом параметр a может быть как действительным  $a \in R$ , так и комплексным  $a \in C$ . В случае  $a \in R$  возможны варианты:  $a \notin [y_1, y_2]$ ,  $a \in (y_1, y_2)$ . В последнем случае интеграл (2.4) — сингулярный и понимается в смысле главного значения по Коши.

## 3. Свойства интеграла I(a)

При  $a \in R$ ,  $a \notin [y_1, y_2]$  его подынтегральная является непрерывной действительной, следовательно, для (2.4) применима формула Ньютона-Лейбница:

$$I(a) = J(y_2; a) - J(y_1; a),$$
 (3.1)

где

$$J\left(y;a\right) = \begin{cases} \sqrt{1-y^2} + a\arcsin\left(y\right) + \sqrt{1-a^2}\ln\left|F_1(a,y)\right| & \text{при } a < 1; \\ \sqrt{1-y^2} + a\arcsin\left(y\right) + 2\sqrt{a^2 - 1}\mathrm{arctg}\left(F_2(a,y)\right) & \text{при } a > 1; \\ F_3(a,y) - 2\mathrm{arctg}\left(F_3(a,y)\right) & \text{при } a = 1. \end{cases}$$

$$F_1(a,y) = \frac{\sqrt{1-a}\sqrt{1+y} - \sqrt{1+a}\sqrt{1-y}}{\sqrt{1-a}\sqrt{1+y} + \sqrt{1+a}\sqrt{1-y}}, F_2(a,y) = \frac{\sqrt{a-1}\sqrt{1+y}}{\sqrt{a+1}\sqrt{1-y}}, F_3(a,y) = \frac{\sqrt{1+y}}{\sqrt{1-y}}$$

При  $a \in C$  имеет место равенство:

$$I(a) = J_c(y_2, a) - J_c(y_1, a), \tag{3.2}$$

где

$$J_c(y;a) = \sqrt{1-y^2} + a \arcsin y + \sqrt{1-a^2} \ln(F_1(a,y)).$$

Здесь под ln z понимается главная ветвь комплексного логарифма.

При  $a \in R$ ,  $a \in (y_1, y_2)$  интеграл сингулярный.

**Утверждение 1.** Главное значение интеграла (2.4) определяется формулой (3.1).

Доказательство.

При  $y_1 < a < y_2$ 

$$I(a) = \int_{y_1}^{y_2} \frac{\sqrt{1 - y^2}}{y - a} dy = \int_{y_1}^{y_2} \frac{\sqrt{1 - y^2} - \sqrt{1 - a^2}}{y - a} dy + \sqrt{1 - a^2} \int_{y_1}^{y_2} \frac{dy}{y - a} =$$

$$= \left[ J(y; a) - \sqrt{1 - a^2} \ln |y - a| \right]_{y_1}^{y_2} + \sqrt{1 - a^2} \ln \frac{y_2 - a}{a - y_1} = J(y_2; a) - J(y_1; a).$$

Что и требовалось доказать. ■

Отметим, что утверждение 1 дает основание проводить вычисление регулярных и сингулярных интегралов с помощью одних и тех же формул (3.1).

**Утверждение 2.** Пусть  $a \in R$ . Тогда при  $a \to y_2 \pm 0$  интеграл (2.4) стремится к  $+\infty$  по логарифмическому закону, а при  $a \to y_1 \pm 0$  он стремится к  $-\infty$  по логарифмическому закону.

Доказательство. Пусть  $a=y_2\pm\epsilon$ , где  $\epsilon>0$  - малый параметр, тогда учитывая утверждение 1 и используя формулы (3.1) получаем:

$$\lim_{\varepsilon \to 0} \left[ J\left(y_2; y_2 \pm \varepsilon\right) - J\left(y_1; y_2 \pm \varepsilon\right) \right] = C_{21} + \frac{1}{\sqrt{1 - y_2^2}} \lim_{\varepsilon \to 0} \ln \left[ C_{22} f\left(\varepsilon, y_2\right) \right],$$

где

$$C_{21} = \sqrt{1 - y_2^2} - \sqrt{1 - y_1^2} + y_2 \left( \arcsin y_2 - \arcsin y_1 \right),$$

$$C_{22} = \frac{1}{2\sqrt{1 - y_2^2}} \left| \frac{\sqrt{1 - y_2} \sqrt{1 + y_1} + \sqrt{1 + y_2} \sqrt{1 - y_1}}{\sqrt{1 - y_2} \sqrt{1 + y_1} - \sqrt{1 + y_2} \sqrt{1 - y_1}} \right|,$$

$$f\left(\varepsilon, y_2\right) = \left| \sqrt{1 - \left(y_2 \pm \varepsilon\right)} \sqrt{1 + y_2} - \sqrt{1 + \left(y_2 \pm \varepsilon\right)} \sqrt{1 - y_2} \right|.$$

Определяя асимптотически эквивалентную функцию для  $f(\varepsilon, y_2)$ 

$$f(\varepsilon, y_2) \sim \frac{\varepsilon}{\sqrt{1 - y_2^2}} (\varepsilon \to 0),$$

получаем асимптотическое выражение для интеграла  $I(a) \sim I_{\epsilon 2}$  при  $a \to y_2 \pm 0$  :

$$I_{\varepsilon 2} = C_{21} + \frac{1}{\sqrt{1 - y_2^2}} \ln \left( \frac{C_{22}}{\sqrt{1 - y_2^2}} \varepsilon \right) \sim \frac{1}{\sqrt{1 - y_2^2}} \ln \varepsilon \ (\varepsilon \to 0),$$

Аналогично получаем асимптотическое выражение для интеграла  $I(a) \sim I_{\epsilon 1}$  при  $a \to y_1 \pm 0$  :

$$I_{\varepsilon 1} = C_{11} - \frac{1}{\sqrt{1 - y_1^2}} \ln \left( \frac{C_{12}}{\sqrt{1 - y_1^2}} \varepsilon \right) \sim -\frac{1}{\sqrt{1 - y_1^2}} \ln \varepsilon \ (\varepsilon \to 0).$$

где

$$C_{11} = \sqrt{1 - y_2^2} - \sqrt{1 - y_1^2} + y_1 (\arcsin y_2 - \arcsin y_1),$$

$$C_{12} = \frac{1}{2\sqrt{1 - y_1^2}} \left| \frac{\sqrt{1 - y_1}\sqrt{1 + y_2} + \sqrt{1 + y_1}\sqrt{1 - y_2}}{\sqrt{1 - y_1}\sqrt{1 + y_2} - \sqrt{1 + y_1}\sqrt{1 - y_2}} \right|. \blacksquare$$

### 4. Равномерный режим движения нагрузки

Полагаем  $f(\tau) = V\tau$ , где  $V = {\rm const}$  . Тогда соотношение (2.3) преобразуется так:

$$w_{l}(x,\tau) = w_{sl}(x,\tau) + w_{rl}(x,\tau),$$

$$w_{sl}(x,\tau) = \int_{\tau_{l1}}^{\tau_{l2}} G_{sl}(x - Vt, \tau - t) dt, w_{rl}(x,\tau) = \int_{\tau_{l1}}^{\tau_{l2}} G_{rl}(x - Vt, \tau - t) dt.$$
(4.1)

Пределы интегрирования  $\tau_1$  и  $\tau_2$  в (4.1) определяются из решений системы неравенств:

$$0 < t < \tau, \ \tau - t - \eta_t |x - Vt| > 0$$
 (4.2)

при всех возможных значениях параметров  $\tau$  , x ,  $\eta_l$  , V .

Ее решение удобно получить графоаналитическим способом. При этом рассмотрим 3 характерных режима движения нагрузки: сверхзвуковой V>1, трансзвуковой  $1/\eta < V < 1$  и дозвуковой  $V<1/\eta$ .

Графоаналитический способ решения продемонстрируем на примере сверхзвукового режима движения, рис. 1. Сплошные линии соответствуют прямым  $\xi = \pm \frac{\tau - t}{n}, \text{ штриховые - } \xi = \pm (\tau - t), \text{ а штрихпунктирная - } \xi = Vt - x. \text{ Границы } \tau_{t1}, \ \tau_{t2}$ 

области решений неравенств (4.2) являются абсциссами точек пересечения прямой  $\xi = Vt - x$  с границами областей

$$D_{l} = \left\{ (t, \xi) : 0 < t < \tau, -\frac{\tau - t}{\eta_{l}} < \xi < \frac{\tau - t}{\eta_{l}} \right\}, l = 1, 2.$$

Эти области геометрически представляют собой треугольники с вершинами  $(\tau,0),\ (0,\pm\tau/\eta_l).$  Фиксируя определенное значение V>1 и перемещая прямую  $L\colon \xi=Vt-x$  в вертикальном направлении параллельно самой себе получаем 6 характерных случаев относительного расположения областей  $D_l$  и прямой L. На рис. 2 круглыми и квадратными маркерами обозначены точки пересечения прямой L с границами областей  $D_l$  и  $D_2$  соответственно. Абсциссы точек пересечения  $t=t_{l1},t_{l2}$  в случае неравенства их нулю определяются из следующих соотношений:



Аналогично определяются все возможные случаи значения пределов в (4.1) при двух других характерных режимах движения нагрузки. В таблице 1. приведены значения  $\tau_{l1}$  и  $\tau_{l2}$  при всех возможных значениях параметров  $\tau$ , x,  $\eta_l$ , V (знак  $\varnothing$  означает пустое множество).

Таблица 1.

| V           | х                         | $\tau_{11}$     | $\tau_{12}$            | $\tau_{21}$     | $\tau_{22}$     |
|-------------|---------------------------|-----------------|------------------------|-----------------|-----------------|
| V > 1       | $x > V$ т или $x < -\tau$ | Ø               | Ø                      | Ø               | Ø               |
|             | $\tau < x < V \tau$       | t <sub>11</sub> | t <sub>12</sub>        | t <sub>21</sub> | t <sub>22</sub> |
|             | $\tau/\eta < x < \tau$    | 0               | t <sub>12</sub>        | t <sub>21</sub> | t <sub>22</sub> |
|             | $ x  < \tau/\eta$         | 0               | t <sub>12</sub>        | 0               | t <sub>22</sub> |
|             | $-\tau < x < -\tau/\eta$  | 0               | t <sub>12</sub>        | Ø               | Ø               |
| 1/η < V < 1 | $ x  > \tau$              | Ø               | Ø                      | Ø               | Ø               |
|             | $V\tau < x < \tau$        | 0               | t <sub>11</sub>        | Ø               | Ø               |
|             | $\tau/\eta < x < V\tau$   | 0               | t <sub>12</sub>        | t <sub>21</sub> | t <sub>22</sub> |
|             | $ x  < \tau/\eta$         | 0               | t <sub>12</sub>        | 0               | t <sub>22</sub> |
|             | $-\tau < x < -\tau/\eta$  | 0               | <i>t</i> <sub>12</sub> | Ø               | Ø               |
| V < 1/η     | $ x  > \tau$              | Ø               | Ø                      | Ø               | Ø               |
|             | $\tau/\eta < x < \tau$    | 0               | <i>t</i> <sub>11</sub> | Ø               | Ø               |
|             | $V\tau < x < \tau/\eta$   | 0               | <i>t</i> <sub>11</sub> | 0               | t <sub>21</sub> |
|             | $-\tau/\eta < x < V\tau$  | 0               | t <sub>12</sub>        | 0               | $t_{22}$        |
|             | $-\tau < x < -\tau/\eta$  | 0               | <i>t</i> <sub>12</sub> | Ø               | Ø               |

В случае, когда в таблице 1 значениям пределов интегрирования  $\tau_{l1}$  и  $\tau_{l2}$  соответствуют пустые множества, соответствующее слагаемое в (2.3) равно нулю.

В выражениях (4.1) сделаем замену переменной

$$z = \eta_l \frac{x - Vt}{\tau - t}.\tag{4.4}$$

Тогда приходим к следующим равенствам:

$$W_{sl}(x,\tau) = \frac{1}{\pi \eta_l^4} \sum_{j=1}^3 A_{lj} I_{slj}(x,\tau), \qquad (4.5)$$

$$I_{slj}(x,\tau) = \int_{z_{l1}}^{z_{l2}} \frac{\sqrt{1-z^2}}{z-a_{lj}} dz, \ a_{l1} = \eta_l V, \ a_{l2} = \eta_l c_R, \ a_{l3} = -\eta_l c_R,$$

$$A_{l1} = \frac{1}{V^2 - c_R^2}, A_{l2} = \frac{1}{2c_R(c_R^2 - V^2)}, A_{l3} = \frac{1}{2c_R(c_R^2 + V^2)}.$$

При этом все интегралы  $I_{slj}$  (  $j=\overline{1,3}$  ) имеют конечные значения, определяемые формулой (3.1).

Регулярные интегралы в силу непрерывности подынтегральных функций являются непрерывными функциями двух переменных. С учетом замены переменной (4.4) они записываются так:

$$w_{rl}(x,\tau) = \frac{1}{\pi \eta_l^2} \int_{z_{l1}}^{z_{l2}} f_{rl}(z) \sqrt{1 - z^2} dz,$$

$$f_{rl}(z) = \frac{1}{z - b_{l1}} \frac{B_l z^2 + \tilde{C}_l}{Q_{l2}(z) Q_{l2}(-z)},$$

где 
$$b_{l1} = a_{l1} = \eta_l V$$
,  $\tilde{C}_l = C_l \eta_l^2$ ,  $Q_{l2}(z) = z^2 + \gamma_l z + \beta_l$ ,  $\gamma_l = \eta_l \sqrt{2(\alpha^2 + \beta_l)}$ ,  $\beta_l = \eta_l^2 \beta$ ,  $\gamma_l^2 - 4\beta_l < 0$ .

Далее представляем  $Q_{l2}(z)$  и  $Q_{l2}(-z)$  в виде

$$Q_{l2}(z) = (z - c_l)(z - \overline{c}_l), \ Q_{l2}(-z) = (z + c_l)(z + \overline{c}_l),$$

$$c_l = \frac{1}{2}(-\gamma_l + i\sqrt{4\beta_l - \gamma_l^2})$$

Тогда приходим к следующим равенствам:

$$w_{rl}(x,\tau) = \frac{1}{\pi \eta_{l}^{2}} \sum_{j=1}^{5} B_{lj} I_{rlj}(x,\tau),$$

$$I_{rlj}(x,\tau) = \int_{z_{l1}}^{z_{l2}} \frac{\sqrt{1-z^{2}}}{z-b_{lj}} dz,$$

$$b_{l2} = c_{l}, b_{l3} = \overline{c}_{l}, b_{l4} = -c_{l}, b_{l5} = -\overline{c}_{l}, B_{lj} = \lim_{z \to b_{li}} f_{rl}(b_{lj})(z-b_{lj}).$$

$$(4.6)$$

Таким образом, регулярное слагаемое также сводится к вычислению интегралов вида (2.4). При этом  $I_{rl1}$  имеет действительный параметр  $b_{l1}$  и совпадает с интегралом  $I_{sl1}$ . Для его вычисления используется формула (3.1). Остальные интегралы имеют комплексные параметры  $b_{lj}$ ,  $j=\overline{2,5}$  и вычисляются по формуле (3.2).

Пределы интегрирования в (4.5) и (4.6) определяются с учетом (4.4), (4.3) и таблицы 1. Значения пределов при всех скоростных режимах приведены в таблице 2.

Таблица 2.

| V     | x                         | $z_{11}$    | $z_{12}$ | $z_{21}$      | $z_{22}$ |
|-------|---------------------------|-------------|----------|---------------|----------|
|       |                           |             |          |               |          |
| V > 1 | $x > V$ т или $x < -\tau$ | Ø           | Ø        | Ø             | Ø        |
|       | $\tau < x < V \tau$       | 1           | -1       | 1             | -1       |
|       | $\tau/\eta < x < \tau$    | <i>x</i> /τ | -1       | 1             | -1       |
|       | $ x  < \tau/\eta$         | <i>x</i> /τ | -1       | $\eta x/\tau$ | -1       |
|       | $-\tau < x < -\tau/\eta$  | <i>x</i> /τ | -1       | Ø             | Ø        |

| 1/η < V < 1 | $ x  > \tau$             | Ø           | Ø  | Ø             | Ø  |
|-------------|--------------------------|-------------|----|---------------|----|
|             | $V\tau < x < \tau$       | <i>x</i> /τ | 1  | Ø             | Ø  |
|             | $\tau/\eta < x < V\tau$  | <i>x</i> /τ | -1 | 1             | -1 |
|             | $ x  < \tau/\eta$        | <i>x</i> /τ | -1 | $\eta x/\tau$ | -1 |
|             | $-\tau < x < -\tau/\eta$ | <i>x</i> /τ | -1 | Ø             | Ø  |
| V < 1/η     | $ x  > \tau$             | Ø           | Ø  | Ø             | Ø  |
|             | $\tau/\eta < x < \tau$   | <i>x</i> /τ | 1  | Ø             | Ø  |
|             | $V\tau < x < \tau/\eta$  | <i>x</i> /τ | 1  | ηχ/τ          | 1  |
|             | $-\tau/\eta < x < V\tau$ | <i>x</i> /τ | -1 | η <i>x</i> /τ | -1 |
|             | $-\tau < x < -\tau/\eta$ | <i>x</i> /τ | -1 | Ø             | Ø  |

## 5. Особенности решения

A. Сверхзвуковой режим. При  $\tau/\eta < x < V\tau$  все интегралы, входящие в представление нормальных перемещений являются постоянными величинами, следовательно, нормальные перемещения в диапазоне  $\tau < x < V\tau$  не зависят от x и  $\tau$  (являются постоянной величиной). Это говорит о том, что динамические эффекты в точке границы полуплоскости, по которой в момент времени  $\tau$  «прошла» сосредоточенная сила, перемещающаяся со сверхзвуковой скоростью, начинают проявляться не сразу, а после прохождения периода времени  $\Delta \tau = V - 1$ , что соответствует времени прохождения волной растяжения-сжатия расстояния между ее фронтом и фронтом движения нагрузки.

Исследуем поведение решения при  $x \to \pm c_R \tau$ . Пусть  $x \to c_R \tau \pm \epsilon$ , тогда с помощью утверждения 2 получаем следующий результат:

$$I_{sl2}(x,\tau) = \int_{\eta c_R \pm \varepsilon/\tau}^{-1} \frac{\sqrt{1-z^2}}{z - \eta_l c_R} dz \sim \frac{1}{\sqrt{1-\eta_l^2 c_R^2}} \ln \varepsilon_1 \quad (\varepsilon_1 = \varepsilon/\tau \to 0).$$

Аналогично соотношение имеет место при  $x \rightarrow -c_R \tau \pm \epsilon$ :

$$I_{sl3}(x,\tau) \sim -\frac{1}{\sqrt{1-\eta_l^2 c_R^2}} \ln \varepsilon_1 \ (\varepsilon_1 \to 0).$$

На рис. 2 изображены распределения нормальных перемещений границы полупространства в момент времени  $\tau=1$  для различных значений скорости движения нагрузки. Красная кривая соответствует значению V=1, зеленая - V=1.5, синяя - V=2. Штриховые вертикальные прямые соответствуют положению фронтов волны Рэлея  $x=\pm c_R \tau$ , а штрихпунктирные - положению фронтов волны сдвига  $x=\pm \tau/\eta$ . Здесь и далее в качестве материала полупространства принята сталь с безразмерными параметром:  $\eta=1.87$ . При этом скорость волны Рэлея равна  $c_R=0.496$  [1], а скорость волны сдвига  $1/\eta=0.535$ .



На рис. 3 проиллюстрировано поведение решения при V=2 в окрестности фронтов волн Рэлея.



Рис. 3.

E. Трансзвуковой режим. Здесь отметим следующий момент. На рис. 4 изображен график зависимости суммы коэффициентов  $A_{11}+B_{11}$  при заданных свойствах материала (сталь) от скорости движения нагрузки. Вертикальная штрихпунктирная прямая соответствует скорости волны сдвига  $V=1/\eta$ . Видно, что при  $V=V_0=0.567$  сумма коэффициентов равна нулю.



Это приводит к следующему выводу. При  $V \neq V_0$  на фронте движения нагрузки при дозвуковом режиме имеется логарифмическая особенность. При этом в случае  $V > V_0$  перемещения в окрестности фронта положительны, а при  $V < V_0$  -

отрицательны. При  $V=V_0$  особенность второго рода на фронте движения нагрузки исчезает, однако при этом на фронте перемещения имеют разрыв первого рода за счет скачкообразного изменения верхнего предела  $z_{12}$  от -1 к 1 (см. таблицу 2).

На рис. 5 изображены распределения нормальных перемещений границы полуплоскости в момент времени  $\tau = 1$  для трех характерных значений скорости движения нагрузки.



Рис. 5.

Красная кривая соответствует значению  $V=1/\eta$ , зеленая -  $V=V_0=0.567$ , синяя - V=0.7. Красная вертикальная штриховая прямая соответствует положению нагрузки.

B. Дозвуковой режим. На рис. 6. представлены распределения нормальных перемещений границы полупространства при дозвуковом режиме движения в момент времени  $\tau=1$ . Красная кривая соответствует значению V=0.2, зеленая - V=0.4, синяя -  $V=c_R-0.001$ . Красная вертикальная штриховая прямая соответствует положению нагрузки.



Рис. 6.

Работа выполнена при финансовой поддержке РФФИ (проект № 13-08-01051) и гранта Президента РФ НШ-2029.2014.8.

### Библиографический список

- 1. Горшков А.Г., Медведский А.Л., Рабинский Л.Н., Тарлаковский Д.В. Волны в сплошных средах. -М.: Физматлит, 2004. 472 с.
- 2. Тарлаковский Д.В., Федотенквов Г.В. Пространственное нестационарное движение упругой сферической оболочки // Известия РАН. Механика твердого тела. 2015. № 2. С. 118-128.
- 3. Горшков А. Г., Тарлаковский Д.В. Динамические контактные задачи с подвижными границами. М.: Наука. Физматлит, 1995. 351 с.
- 4. Медведский А.Л., Тарлаковский Д.В. Плоская нестационарная задача о взаимодействии твердого ударника несовершенствами упругого Электронный МАИ», 2011, полупространства журнал «Труды **№**48: https://www.mai.ru/science/trudy/published.php?ID=27499 (дата публикации 22.11.2011).

5. Медведский А.Л., Тарлаковский Д.В. Нестационарный контакт недеформируемого ударника с несовершенствами и упругой полуплоскости на сверхзвуковом участке внедрения // Вестник Московского авиационного института.  $\mathbb{N}$  6. 2011. Т. 18. – С. 125–132.